Skip to main content
Log in

Effects of channel structure and acidity of molecular sieves in hydroisomerization of n-octane over bi-functional catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract.

SAPO-5, −11, −31, −41, −34, ZSM-5, −22 and −23 were synthesized by using the hydrothermal method and characterized by various methods such as XRD, SEM, XRF and TPD of NH3. They are representative of large-pore, medium-pore, small-pore, weak acid, strong acid, monodimensional channel and zigzag channel type of molecular sieves. Effects of pore size, the number of acid sites over medium-pore SAPOs, acid strength and shape of medium-pore channel on hydroisomerization of n-octane were examined over Pt-loaded corresponding molecular sieves. These results indicate that the selectivity to isomerization in hydroisomerization of n-octane is highly influenced by channel structure in molecular sieves and the conversion activity of n-octane is dependent on acidity of molecular sieves. Monodimensional medium-pore molecular sieves are ideal catalytic materials for higher isomerization selectivity in hydroisomerization of n-octane regardless of acid strength, such as SAPO-11, −31, −41, ZSM-22 and −23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K.W. Smith, W.C. Starr and N.Y. Chen, Oil. Gas. J., May 26 (1980) 75.

    Google Scholar 

  • S J. Miller, Zeolites and Related Microporous Materials: State of the Art 1994, Stud. Surf. Sci. Catal., Vol. 84, Elsevier, Amsterdam, 1994, p. 2319.

  • S.J. Miller, U. S. Patent 5, 246, 566 (1993).

    Google Scholar 

  • A.K. Sinha S. Sivasanker (1999) Catal. Today. 49 293 Occurrence Handle1:CAS:528:DyaK1MXps1KmtA%3D%3D

    CAS  Google Scholar 

  • M. Hochtl A. Jentys H. Vinek (2001) Catal. Today. 65 171 Occurrence Handle1:CAS:528:DC%2BD3MXhvFCjtbc%3D

    CAS  Google Scholar 

  • J.M. Campelo F. Lafont J.M. Marinas (1998) Appl. Catal. A 170 139 Occurrence Handle1:CAS:528:DyaK1cXis1OmsLY%3D

    CAS  Google Scholar 

  • F. Zhang C.H. Geng Z.X. Gao J.L. Zhou (2004) Chin. J. Catal. 25 431

    Google Scholar 

  • Y.M. Liu F.M. Zhang X.T. Shu M.Y. He (2003) Chin. J. Catal. 24 781

    Google Scholar 

  • I. Eswaqramoothi N. Lingappan (2004) J. Mol. Catal. A 218 229

    Google Scholar 

  • P. Meriaudeau V.A. Tuan V.T. Nghiem S.Y. Lai L.N. Hung C. Naccache (1997) J. Catal. 169 55 Occurrence Handle1:CAS:528:DyaK2sXksVKnsLw%3D

    CAS  Google Scholar 

  • P. Meriaudeau V.A. Tuan G. Sapaly V.T. Nghiem S.Y. Lai C. Naccache (1999) Catal. Today. 49 285 Occurrence Handle1:CAS:528:DyaK1MXps1Kmtw%3D%3D

    CAS  Google Scholar 

  • K.C. Park S.-K. Ihm (2000) Appl. Catal. A 203 201 Occurrence Handle1:CAS:528:DC%2BD3cXmtVCmtrg%3D

    CAS  Google Scholar 

  • P. Raybaud A. Patrigeon H. Toulhoat (2001) J. Catal. 198 98

    Google Scholar 

  • T.L. Maesen M. Schenk T.J.H. Vlugt J.P. Jonge B. Smit (1999) J. Catal. 188 403 Occurrence Handle1:CAS:528:DyaK1MXotFeksbk%3D

    CAS  Google Scholar 

  • M.C. Claude G. Vanbutsele J.A. Martens (2001) J. Catal. 203 213 Occurrence Handle1:CAS:528:DC%2BD3MXntlWrtrY%3D

    CAS  Google Scholar 

  • M.C. Claude J.A. Martens (2000) J. Catal. 190 39 Occurrence Handle1:CAS:528:DC%2BD3cXnsVekuw%3D%3D

    CAS  Google Scholar 

  • P. Raybaud A. Patrigeon H. Toulhoat (2001) J. Catal. 197 98 Occurrence Handle1:CAS:528:DC%2BD3cXptVGntb8%3D

    CAS  Google Scholar 

  • B.M. Lok, C.A. Messing, R.L. Patton, R.T. Gajek, T.R. Cannan and E.M. Flanigen, U. S. Patent 4,440,871 (1984).

    Google Scholar 

  • S.j. Miller, U. S. Patent 5,158,665 (1992).

  • S.j. Miller, U. S. Patent 5,230,881 (1993).

  • Y.F. Hu X.S. Wang X.W. Guo P. Xu S.L. Li (2004) Chin. J. Catal. 25 87 Occurrence Handle1:CAS:528:DC%2BD2cXisFegsb4%3D

    CAS  Google Scholar 

  • B.M. Lowe and A. Araya, U. S. Patent 4,900,528 (1990).

  • S.I. Zones, J.N. Ziemer, D.S. Santilli, R.A. Innes, S. Rafael and D.L. Holtermann, U. S. Patent 5,300,210 (1994).

    Google Scholar 

  • X.Q. Wang, X.S. Wang and X.W. Guo, CN Patent 1,240,193 (2000).

  • C. Baerlocher W.M. Meier D.H. Olson (2001) Atlas of Zeolite Framework Types Elsevier Amsterdam

    Google Scholar 

  • C.M. Zicovich-wilson P. Viruela A. Corma (1995) J. Phys. Chem. 99 13224 Occurrence Handle1:CAS:528:DyaK2MXnsVKqt7w%3D

    CAS  Google Scholar 

  • V.B. Kazanski I.N. Senchenya (1989) J. Catal. 119 108

    Google Scholar 

  • J.A. Martens P.A. Jacobs (1986) Zeolites 6 334 Occurrence Handle1:CAS:528:DyaL28XlvFOksL0%3D

    CAS  Google Scholar 

  • J. Weitkamp S. Ernst (1994) Catal. Today. 19 107 Occurrence Handle1:CAS:528:DyaK2cXisVOks7g%3D

    CAS  Google Scholar 

  • J.A. Maetens P.A. Jacobs J. Weitkamp (1986) J. Appl. Catal. 20 283 Occurrence Handle10.1016/0166-9834(86)80021-5

    Article  Google Scholar 

  • I.E. Maxwell (1987) Catal. Today. 2 385

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Xinwen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yunfeng, H., Xiangsheng, W., Xinwen, G. et al. Effects of channel structure and acidity of molecular sieves in hydroisomerization of n-octane over bi-functional catalysts. Catal Lett 100, 59–65 (2005). https://doi.org/10.1007/s10562-004-3086-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-004-3086-9

KEY WORDS

Navigation