Skip to main content

Advertisement

Log in

Comparative analysis of molecular activity in dermal mesenchymal stem cells from different passages

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are used for tissue regeneration in several pathological conditions, including autoimmune diseases. However, the optimal sources and culture requirements for these cells are still under investigation. Here, we compared mRNA expression in dermal MSCs (DMSCs) at passage (P) 3 and P5 to provide a reference for future studies related to DMSCs expansion. In normal DMSCs, the expression of three of eight genes associated with basic cellular activity were different at P5 compared to that at P3: PLCB4 and SYTL2 were upregulated by 4.30- and 6.42-fold, respectively (P < 0.05), whereas SATB2 was downregulated by 39.25-fold (P < 0.05). At the same time, genes associated with proliferation, differentiation, inflammation, and apoptosis were expressed at similar levels at P3 and P5 (P > 0.05). In contrast, in DMSCs isolated from psoriatic patients we observed differential expression of three inflammation-associated genes at P5 compared to P3; thus IL6, IL8, and CXCL6 mRNA levels were upregulated by 16.02-, 31.15-, and 15.04-fold, respectively. Our results indicate that normal and psoriatic DMSCs showed different expression patterns for genes related to inflammation and basic cell activity at P3 and P5, whereas those for genes linked to proliferation, differentiation, and apoptosis were mostly similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmadbeigi N, Soleimani M, Gheisari Y, Vasei M, Amanpour S, Bagherizadeh I, Shariati SA, Azadmanesh K, Amini S, Shafiee A, Arabkari V, Nardi NB (2011) Dormant phase and multinuclear cells: two key phenomena in early culture of murine bone marrow mesenchymal stem cell. Stem Cells Dev 20:1337–1347

    Article  PubMed  CAS  Google Scholar 

  • Campanati A, Orciani M, Lazzarini R, Ganzetti G, Consales V, Sorgentoni G, Di Primio R, Offidani A (2017) TNF-α inhibitors reduce the pathological Th1–Th17/Th2 imbalance in cutaneous mesenchymal stem cells of psoriasis patients. Exp Dermatol 26:319–324

    Article  PubMed  CAS  Google Scholar 

  • Choi JS, Lee BJ, Park HY, Song JS, Shin SC, Lee JC, Wang SG, Jung JS (2015) Effects of donor age, long-term passage culture, and cryopreservation on tonsil-derived mesenchymal stem cells. Cell Physiol Biochem 36:85–99

    Article  PubMed  CAS  Google Scholar 

  • English K, French A, Wood KJ (2010) Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell 7:431–442

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247

    Article  PubMed  CAS  Google Scholar 

  • Hou R, Yin G, An P, Wang C, Liu R, Yang Y, Yan X, Li J, Li X, Zhang K (2013) DNA methylation of dermal MSCs in psoriasis: identification of epigenetically dysregulated genes. J Dermatol Sci 72:103–109

    Article  PubMed  CAS  Google Scholar 

  • Hou R, Yan H, Niu X, Chang W, An P, Wang C, Yang Y, Yan X, Li J, Liu R, Li X, Zhang K (2014) Gene expression profile of dermal mesenchymal stem cells from patients with psoriasis. J Eur Acad Dermatol 28:1782–1797

    Article  CAS  Google Scholar 

  • Hwang IS, Bae HK, Cheong HT (2015) Comparison of the characteristics and multipotential and in vivo cartilage formation capabilities between porcine adipose-derived stem cells and porcine skin-derived stem cell-like cells. Am J Vet Res 76:814–821

    Article  PubMed  CAS  Google Scholar 

  • Kasper G, Mao L, Geissler S, Draycheva A, Trippens J, Kühnisch J, Tschirschmann M, Kaspar K, Perka C, Duda GN, Klose J (2009) Insights into mesenchymal stem cell aging: involvement of antioxidant defense and actin cytoskeleton. Stem Cells 27:1288–1297

    Article  PubMed  CAS  Google Scholar 

  • Kim DS, Lee MW, Ko YJ, Chun YH, Kim HJ, Sung KW, Koo HH, Yoo KH (2016) Cell culture density affects the proliferation activity of human adipose tissue stem cells. Cell Biochem Funct 34:16–24

    Article  PubMed  CAS  Google Scholar 

  • Nikolakis G, Seltmann H, Hossini AM, Makrantonaki E, Knolle J, Zouboulis CC (2015) Ex vivo human skin and SZ95 sebocytes exhibit a homoeostatic interaction in a novel coculture contact model. Exp Dermatol 24:497–502

    Article  PubMed  CAS  Google Scholar 

  • Park BW, Kang EJ, Byun JH, Son MG, Kim HJ, Hah YS, Kim TH, Mohana Kumar B, Ock SA, Rho GJ (2012) In vitro and in vivo osteogenesis of human mesenchymal stem cells derived from skin, bone marrow and dental follicle tissues. Differentiation 83:249–259

    Article  PubMed  CAS  Google Scholar 

  • Riekstina U, Muceniece R, Cakstina I, Muiznieks I, Ancans J (2008) Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions. Cytotechnology 58:153–162

    Article  PubMed  CAS  Google Scholar 

  • Salvolini E, Lucarini G, Zizzi A, Orciani M, Di Benedetto G, Di Primio R (2010) Human skin-derived mesenchymal stem cells as a source of VEGF and nitric oxide. Arch Dermatol Res 302:367–374

    Article  PubMed  CAS  Google Scholar 

  • Tan Q, Liu PPY, Rui YF (2012) Effect of in vitro passaging on the stem cell-related properties of tendon-derived stem cells-implications in tissue engineering. Stem Cells Dev 21:790–800

    Article  PubMed  CAS  Google Scholar 

  • Wagner W, Bork S, Horn P, Krunic D, Walenda T, Diehlmann A, Benes V, Blake J, Huber FX, Eckstein V, Boukamp P, Ho AD (2009) Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS ONE 4:e5846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon DS, Choi Y, Jang Y, Lee M, Choi WJ, Kim SH, Lee JW (2014) SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow derived mesenchymal stem cells. Stem Cells 32:3219–3231

    Article  PubMed  CAS  Google Scholar 

  • Yu KR, Kang KS (2013) Aging-related genes in mesenchymal stem cells: a mini-review. Gerontology 59:557–563

    Article  PubMed  CAS  Google Scholar 

  • Zhang FB, Li L, Fang B, Zhu DL, Yang HT, Gao PJ (2005) Passage-restricted differentiation potential of mesenchymal stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun 336:784–792

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant Nos. 81371736, 81401360, and 81472888), Science Foundation of Shanxi Province (Grant No. 2014011046-4 to CN), and Shanxi Health Department (Grant No. 201202046). We would like to thank all the volunteers participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiming Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, J., Zhao, X. et al. Comparative analysis of molecular activity in dermal mesenchymal stem cells from different passages. Cell Tissue Bank 19, 277–285 (2018). https://doi.org/10.1007/s10561-017-9672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-017-9672-z

Keywords

Navigation