Skip to main content

Advertisement

Log in

Antioxidant effects of chrysin-loaded electrospun nanofibrous mats on proliferation and stemness preservation of human adipose-derived stem cells

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

An ideal biomaterial in regenerative medicine should be able to regulate the stem cell proliferation without the loss of its pluripotency. Chrysin (Chr) is a naturally occurring flavone with a wide spectrum of biological functions including anti-inflammatory and anti-oxidant properties. The present study describes the influence of Chr-loaded nanofibrous mats on the regulation of proliferation and stemness preservation of adipose-derived stem cells (ADSCs). For this purpose, Chr-loaded poly (ε-caprolactone)/poly (ethylene glycol) (PCL/PEG) nanofibrous mats were produced via electrospinning process and the successful fabrication of these bioactive mats was confirmed by field emission scanning electron microscopy (FE-SEM) and fourier transform infrared spectroscopy. ADSCs were seeded on the nanofibers and their morphology, viability, and stemness expression were analyzed using FE-SEM, MTT, and qPCR assays after 2 weeks of incubation, respectively. The results display that ADSCs exhibit better adhesion and significantly increased viability on the Chr-loaded PCL/PEG nanofibrous mats in relative to the PCL/PEG nanofibers and tissue culture polystyrene. The greater viability of ADSCs on Chr based nanofibers was further confirmed by higher expression levels of stemness markers Sox-2, Nanog, Oct-4, and Rex-1. These findings demonstrate that Chr-loaded PCL/PEG electrospun nanofibrous mats can be applied to improve cell adhesion and proliferation while concurrently preserving the stemness of ADSCs, thus representing a hopeful potential for application in stem cell therapy strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anand KV, Jaabir M, Sultan M, Thomas PA, Geraldine P (2012) Protective role of chrysin against oxidative stress in d-galactose-induced aging in an experimental rat model. Geriatr Gerontol Int 12:741–750

    Article  PubMed  Google Scholar 

  • Baglioni S et al (2009) Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB J 23:3494–3505

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya B et al (2004) Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103:2956–2964

    Article  CAS  PubMed  Google Scholar 

  • Boyer LA et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlin RL, Kasper FK, Mikos AG (2011) Polymeric nanofibers in tissue engineering. Tiss Eng Part B: Rev 17:349–364

    Article  CAS  Google Scholar 

  • Deldar Y, Pilehvar-Soltanahmadi Y, Dadashpour M, Montazer Saheb S, Rahmati-Yamchi M, Zarghami N (2017) An in vitro examination of the antioxidant, cytoprotective and anti-inflammatory properties of chrysin-loaded nanofibrous mats for potential wound healing applications. Artif Cells Nanomed Biotechnol. doi:10.1080/21691401.2017.1337022

    PubMed  Google Scholar 

  • Denu RA, Hematti P (2016) Effects of oxidative stress on mesenchymal stem cell biology. Oxid Med Cell Longev

  • Eatemadi A, Daraee H, Zarghami N, Melat Yar H, Akbarzadeh A (2016) Nanofiber: synthesis and biomedical applications. Artif Cells Nanomed Biotechnol 44:111–121

    Article  CAS  PubMed  Google Scholar 

  • Fong H, Hohenstein KA, Donovan PJ (2008) Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells 26:1931–1938

    Article  CAS  PubMed  Google Scholar 

  • Harasymiak-Krzyżanowska I, Niedojadło A, Karwat J, Kotuła L, Gil-Kulik P, Sawiuk M, Kocki J (2013) Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications. Cell Mol Biol Lett 18:479–493

    PubMed  Google Scholar 

  • Hay DC, Sutherland L, Clark J, Burdon T (2004) Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 22:225–235

    Article  CAS  PubMed  Google Scholar 

  • Huang C-S et al (2013) Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes. Arch Toxicol 87:167–178

    Article  CAS  PubMed  Google Scholar 

  • Ko E, Lee KY, Hwang DS (2011) Human umbilical cord blood–derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress. Stem Cells Dev 21:1877–1886

    Article  PubMed  PubMed Central  Google Scholar 

  • Konno M et al (2013) Adipose-derived mesenchymal stem cells and regenerative medicine. Dev Growth Differ 55:309–318

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wang S (2014) Three-dimensional nano-biointerface as a new platform for guiding cell fate. Chem Soc Rev 43:2385–2401

    Article  CAS  PubMed  Google Scholar 

  • Mantawy EM, El-Bakly WM, Esmat A, Badr AM, El-Demerdash E (2014) Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Eur J Pharmacol 728:107–118

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Leslie P, Zhang Y, Dong J (2014) Stem cells in a three-dimensional scaffold environment. Springerplus 3:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Mobarak H, Fathi E, Farahzadi R, Zarghami N, Javanmardi S (2017) L-carnitine significantly decreased aging of rat adipose tissue-derived mesenchymal stem cells. Vet Res Commun 41:41–47

    Article  PubMed  Google Scholar 

  • Mohammadian F, Abhari A, Dariushnejad H, Nikanfar A, Pilehvar-Soltanahmadi Y, Zarghami N (2016a) Effects of chrysin-PLGA-PEG nanoparticles on proliferation and gene expression of miRNAs in gastric cancer cell line. Iran J Cancer Prev 9:e4190. doi:10.17795/ijcp-4190

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadian F, Pilehvar-Soltanahmadi Y, Mofarrah M, Dastani-Habashi M, Zarghami N (2016b) Down regulation of miR-18a, miR-21 and miR-221 genes in gastric cancer cell line by chrysin-loaded PLGA-PEG nanoparticles. Artif Cells Nanomed Biotechnol 44:1972–1978

    Article  CAS  PubMed  Google Scholar 

  • Mohammadian F, Pilehvar-Soltanahmadi Y, Zarghami F, Akbarzadeh A, Zarghami N (2016c) Upregulation of miR-9 and Let-7a by nanoencapsulated chrysin in gastric cancer cells. Artif Cells Nanomed Biotechnol 45:1201–1206

    Article  Google Scholar 

  • Nabavi SF et al (2015) Neuroprotective effects of chrysin: from chemistry to medicine. Neurochem Int 90:224–231

    Article  CAS  PubMed  Google Scholar 

  • Naderi N et al (2016) The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery. Int Wound J 14:112–114

    Article  PubMed  Google Scholar 

  • Nejati-Koshki K, Mortazavi Y, Pilehvar-Soltanahmadi Y, Sheoran S, Zarghami N (2017) An update on application of nanotechnology and stem cells in spinal cord injury regeneration. Biomed Pharmacother 90:85–92

    Article  CAS  PubMed  Google Scholar 

  • Orciani M, Gorbi S, Benedetti M, Di Benedetto G, Mattioli-Belmonte M, Regoli F, Di Primio R (2010) Oxidative stress defense in human-skin-derived mesenchymal stem cells versus human keratinocytes: different mechanisms of protection and cell selection. Free Radic Biol Med 49:830–838

    Article  CAS  PubMed  Google Scholar 

  • Pilehvar-Soltanahmadi Y, Akbarzadeh A, Moazzez-Lalaklo N, Zarghami N (2016) An update on clinical applications of electrospun nanofibers for skin bioengineering. Artif Cells Nanomed Biotechnol 44:1350–1364

    CAS  PubMed  Google Scholar 

  • Pilehvar-Soltanahmadi Y, Nouri M, Martino MM, Fattahi A, Alizadeh E, Darabi M, Rahmati-Yamchi M, Zarghami N (2017) Cytoprotection, proliferation and epidermal differentiation of adipose tissue-derived stem cells on emu oil based electrospun nanofibrous mat. Exp Cell Res 357:192–201

    Article  CAS  PubMed  Google Scholar 

  • Pushpavalli G, Kalaiarasi P, Veeramani C, Pugalendi KV (2010) Effect of chrysin on hepatoprotective and antioxidant status in d-galactosamine-induced hepatitis in rats. Eur J Pharmacol 631:36–41

    Article  CAS  PubMed  Google Scholar 

  • Rezaei-Sadabady R, Eidi A, Zarghami N, Barzegar A (2016) Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif Cells Nanomed Biotechnol 44:128–134

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans C, Miller N (1996) Antioxidant activities of flavonoids as bioactive components of food. Portland Press Limited, London

    Google Scholar 

  • Saei Arezoumand K, Alizadeh E, Pilehvar-Soltanahmadi Y, Esmaeillou M, Zarghami N (2016) An overview on different strategies for the stemness maintenance of MSCs. Artif Cells Nanomed Biotechnol. doi:10.1080/21691401.2016.1246452

    PubMed  Google Scholar 

  • Sart S, Song L, Li Y (2015) Controlling redox status for stem cell survival, expansion, and differentiation. Oxid Med Cell Longev. doi:10.1155/2015/105135

    PubMed  PubMed Central  Google Scholar 

  • Shi W, Wang H, Pan G, Geng Y, Guo Y, Pei D (2006) Regulation of the pluripotency marker Rex-1 by Nanog and Sox2. J Biol Chem 281:23319–23325

    Article  CAS  PubMed  Google Scholar 

  • Sultana S, Verma K, Khan R (2012) Nephroprotective efficacy of chrysin against cisplatin-induced toxicity via attenuation of oxidative stress. J Pharm Pharmacol 64:872–881

    Article  CAS  PubMed  Google Scholar 

  • Valizadeh A et al (2016) Preparation and characterization of novel electrospun poly (ϵ-caprolactone)-based nanofibrous scaffolds. Artif Nanomed Biotechnol 44:504–509

    CAS  Google Scholar 

  • Valle-Prieto A, Conget PA (2010) Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Development 19:1885–1893

    Article  CAS  PubMed  Google Scholar 

  • Vrtovec B, Poglajen G, Haddad F (2013) Stem cell therapy in patients with heart failure. Methodist DeBakey Cardiovasc J 9:6–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan X-Z, Both SK, Yang P-S, Jansen JA, van den Beucken JJ, Yang F (2014) Human periodontal ligament derived progenitor cells: effect of STRO-1 cell sorting and Wnt3a treatment on cell behavior. BioMed Res Int. doi:10.1155/2014/145423

    Google Scholar 

  • Yang S-R, Park J-R, Kang K-S (2015) Reactive oxygen species in mesenchymal stem cell aging: implication to lung diseases. Oxid Med Cell Longev 2015

  • Zarghami N, Sheervalilou R, Fattahi A, Mohajeri A, Dadashpour M, Pilehvar-Soltanahmadi Y (2017) An overview on application of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings. Mini reviews in medicinal chemistry

  • Zeineddine D, Hammoud AA, Mortada M, Boeuf H (2014) The Oct4 protein: more than a magic stemness marker. Am J Stem Cells 3:74–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng W et al (2015) Antioxidant treatment enhances human mesenchymal stem cell anti-stress ability and therapeutic efficacy in an acute liver failure model. Sci Rep 5:11100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Stem Cell Research Center, Tabriz University for supporting this project. Also, Authors gratefully acknowledge National Institute for Medical Research Development, Tehran, Iran for providing the necessary infrastructure for successful accomplishment of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nosratollah Zarghami.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Yaghoub Deldar and Faraz Zarghami are co-first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deldar, Y., Zarghami, F., Pilehvar-Soltanahmadi, Y. et al. Antioxidant effects of chrysin-loaded electrospun nanofibrous mats on proliferation and stemness preservation of human adipose-derived stem cells. Cell Tissue Bank 18, 475–487 (2017). https://doi.org/10.1007/s10561-017-9654-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-017-9654-1

Keywords

Navigation