Skip to main content

Advertisement

Log in

Chemical sterilization of allograft dermal tissues

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Common terminal sterilization methods are known to alter the natural structure and properties of soft tissues. One approach to providing safe grafts with preserved biological properties is the combination of a validated chemical sterilization process followed by an aseptic packaging process. This combination of processes is an accepted method for production of sterile healthcare products as described in ANSI/AAMI ST67:2011. This article describes the validation of the peracetic acid and ethanol-based (PAAE) chemical sterilization process for allograft dermal tissues at the Musculoskeletal Transplant Foundation (MTF, Edison, NJ). The sterilization capability of the PAAE solution used during routine production of aseptically processed dermal tissue forms was determined based on requirements of relevant ISO standards, ISO 14161:2009 and ISO 14937:2009. The resistance of spores of Bacillus subtilis, Clostridium sporogenes, Mycobacterium terrae, Pseudomonas aeruginosa, Enterococcus faecium, and Staphylococcus aureus to the chemical sterilization process employed by MTF was determined. Using a worst-case scenario testing strategy, the D value was calculated for the most resistant microorganism, Bacillus. The 12D time parameter determined the minimum time required to achieve a SAL of 10−6. Microbiological performance qualification demonstrated a complete kill of 106 spores at just a quarter of the full cycle time. The validation demonstrated that the PAAE sterilization process is robust, achieves sterilization of allograft dermal tissue to a SAL 10−6, and that in combination with aseptic processing secures the microbiological safety of allograft dermal tissue while avoiding structural and biochemical tissue damage previously observed with other sterilization methods such as ionizing irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AATB (2016) Guidance document—microbial process validation and surveillance program. American Association of Tissue Banks, McLean

    Google Scholar 

  • Al Kayal T et al (2015) Evaluation of the effect of a gamma irradiated DBM-pluronic F127 composite on bone regeneration in Wistar rat. PLoS ONE 10:e0125110. doi:10.1371/journal.pone.0125110

    Article  PubMed  PubMed Central  Google Scholar 

  • ANSI/AAMI/ISO13408 (2011) Aseptic processing of healthcare products—part 1: general requirements. AAMI

  • ANSI/AAMI/ISO14937 (2009/(R)2013) Sterilization of healthcare products—general requirements for characterization of a sterilizing agent and the development, validation and routine control of a sterilization process for medical devices. Association for the Advancement of Medical Instrumentation, Arlington

  • Aspenberg P, Johnsson E, Thorngren KG (1990) Dose-dependent reduction of bone inductive properties by ethylene oxide. J Bone Joint Surg 72:1036–1037

    CAS  Google Scholar 

  • Bochicchio GV, De Castro GP, Bochicchio KM, Weeks J, Rodriguez E, Scalea TM (2013) Comparison study of acellular dermal matrices in complicated hernia surgery. J Am Coll Surg 217:606–613. doi:10.1016/j.jamcollsurg.2013.04.041

    Article  PubMed  Google Scholar 

  • Dasgupta A, Orgill D, Galiano RD, Zelen CM, Huang YC, Chnari E, Li WW (2016) A novel reticular dermal graft leverages architectural and biological properties to support wound repair. Plast Reconstr Surg Glob Open 4:e1065. doi:10.1097/GOX.0000000000001065

    Article  PubMed  PubMed Central  Google Scholar 

  • Dearth CL et al (2016) The effect of terminal sterilization on the material properties and in vivo remodeling of a porcine dermal biologic scaffold. Acta Biomater 33:78–87. doi:10.1016/j.actbio.2016.01.038

    Article  CAS  PubMed  Google Scholar 

  • Delgado LM, Pandit A, Zeugolis DI (2014) Influence of sterilisation methods on collagen-based devices stability and properties. Expert Rev Med Devices 11:305–314. doi:10.1586/17434440.2014.900436

    Article  CAS  PubMed  Google Scholar 

  • FDA (2004) Guidance for industry: sterile drug products produced by aseptic processing—current good manufacturing practice. CDER/CBER/ORA, Rockville

    Google Scholar 

  • FDA (2011) Guidance for Industry Current Good Tissue Practice (CGTP) and additional requirements for manufacturers of Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps). CBER, Rockville

    Google Scholar 

  • FDA (2012) Media fills for validation of aseptic preparations for positron emission tomography (PET) drugs. CDER, Silver Spring

    Google Scholar 

  • Freytes DO, Badylak SF, Webster TJ, Geddes LA, Rundell AE (2004) Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials 25:2353–2361

    Article  CAS  PubMed  Google Scholar 

  • Gouk SS, Lim TM, Teoh SH, Sun WQ (2008) Alterations of human acellular tissue matrix by gamma irradiation: histology, biomechanical property, stability, in vitro cell repopulation, and remodeling. J Biomed Mater Res Part B Appl Biomater 84:205–217. doi:10.1002/jbm.b.30862

    Article  PubMed  Google Scholar 

  • Grinnell F, Ho CH, Wysocki A (1992) Degradation of fibronectin and vitronectin in chronic wound fluid: analysis by cell blotting, immunoblotting, and cell adhesion assays. J Invest Dermatol 98:410–416

    Article  CAS  PubMed  Google Scholar 

  • Hamer A, Stockley I, Elson R (1999) Changes in allograft bone irradiated at different temperatures. Bone Joint J 81:342–344

    Article  CAS  Google Scholar 

  • Hodde J, Hiles M (2002) Virus safety of a porcine-derived medical device: evaluation of a viral inactivation method. Biotechnol Bioeng 79:211–216. doi:10.1002/bit.10281

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Dawson RA, Pegg DE, Kearney JN, Macneil S (2004) Use of peracetic acid to sterilize human donor skin for production of acellular dermal matrices for clinical use. Wound Repair Regen 12:276–287. doi:10.1111/j.1067-1927.2004.012312.x

    Article  PubMed  Google Scholar 

  • Johnston C et al (2016) Disinfection of human skin allografts in tissue banking: a systematic review report. Cell Tissue Bank 17:585–592 doi:10.1007/s10561-016-9569-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leaper S (1984) Synergistic killing of spores of Bacillus subtilis by peracetic acid and alcohol. Int J Food Sci Technol 19:355–360. doi:10.1111/j.1365-2621.1984.tb00359.x

    Article  CAS  Google Scholar 

  • Lensing HH, Oei HL (1985) Investigations on the sporicidal and fungicidal activity of disinfectants. Zentralblatt fur Bakteriologie, Mikrobiologie und Hygiene 1 Abt Originale B Hygiene 181:487–495

    CAS  Google Scholar 

  • Lomas RJ, Cruse-Sawyer JE, Simpson C, Ingham E, Bojar R, Kearney JN (2003) Assessment of the biological properties of human split skin allografts disinfected with peracetic acid and preserved in glycerol. Burns J Int Soc Burn Injuries 29:515–525

    Article  CAS  Google Scholar 

  • Macadam SA, Lennox PA (2012) Acellular dermal matrices: use in reconstructive and aesthetic breast surgery. Can J Plast Surg (Journal canadien de chirurgie plastique) 20:75–89

    Google Scholar 

  • Malchesky PS (2001) Medical application of peracetic acid. In: Block SS (ed) Disinfection, sterilization, and preservation. Lippincott, Williams, & Wilkins, Philadelphia, pp 979–998

    Google Scholar 

  • Matuska AM, McFetridge PS (2015) The effect of terminal sterilization on structural and biophysical properties of a decellularized collagen-based scaffold; implications for stem cell adhesion. J Biomed Mater Res Part B Appl Biomater 103:397–406. doi:10.1002/jbm.b.33213

    Article  PubMed  Google Scholar 

  • McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medel FJ et al (2009) Gamma inert sterilization: a solution to polyethylene oxidation? J Bone Joint Surg Am Vol 91:839–849. doi:10.2106/JBJS.H.00538

    Article  Google Scholar 

  • Mills CR, Wironen JF (2002) Cyclic implant perfusion cleaning and passivation process. United States Patent 6482584, November 19, 2002

  • Mrazova H, Koller J, Kubisova K, Fujerikova G, Klincova E, Babal P (2016) Comparison of structural changes in skin and amnion tissue grafts for transplantation induced by gamma and electron beam irradiation for sterilization. Cell Tissue Bank 17:255–260. doi:10.1007/s10561-015-9536-3

    Article  CAS  PubMed  Google Scholar 

  • Nerandzic MM, Sunkesula VC, Setlow P, Donskey CJ (2015) Unlocking the sporicidal potential of ethanol: induced sporicidal activity of ethanol against Clostridium difficile and Bacillus spores under altered physical and chemical conditions. PLoS ONE 10:e0132805

    Article  PubMed  PubMed Central  Google Scholar 

  • Nerandzic MM, Setlow P, Donskey CJ (2016) A cumulative spore killing approach: synergistic sporicidal activity of dilute peracetic acid and ethanol at low pH against Clostridium difficile and Bacillus subtilis spores. In: Open forum infectious diseases, vol 1. Oxford University Press, Oxford, p ofv206

  • Nilsen TJ, Dasgupta A, Huang Y-C, Wilson H, Chnari E (2016) Do processing methods make a difference in acellular dermal matrix properties? Aesthet Surg J 36:sjw163

    Article  Google Scholar 

  • PDA (2011) PDA Technical Report No. 22 (Revised 2011), Process simulation for aseptically filled products. Parenteral Drug Association, Inc.

  • Pruss A et al (2003) Peracetic acid-ethanol treatment of allogeneic avital bone tissue transplants—a reliable sterilization method. Ann Transplant 8:34–42

    PubMed  Google Scholar 

  • Rooney P, Eagle M, Hogg P, Lomas R, Kearney J (2008) Sterilisation of skin allograft with gamma irradiation. Burns J Int Soc Burn Injuries 34:664–673. doi:10.1016/j.burns.2007.08.021

    Article  CAS  Google Scholar 

  • Scheffler SU, Scherler J, Pruss A, von Versen R, Weiler A (2005) Biomechanical comparison of human bone-patellar tendon-bone grafts after sterilization with peracetic acid ethanol. Cell Tissue Bank 6:109–115. doi:10.1007/s10561-004-6403-z

    Article  CAS  PubMed  Google Scholar 

  • Scheffler S, Trautmann S, Smith M, Kalus U, von Versen R, Pauli G, Pruss A (2007) No influence of collagenous proteins of Achilles tendon, skin and cartilage on the virus-inactivating efficacy of peracetic acid-ethanol. Biol J Int Assoc Biol Stand 35:355–359. doi:10.1016/j.biologicals.2007.03.004

    CAS  Google Scholar 

  • Shetty N, Srinivasan S, Holton J, Ridgway GL (1999) Evaluation of microbicidal activity of a new disinfectant: Sterilox 2500 against Clostridium difficile spores, Helicobacter pylori, vancomycin resistant Enterococcus species, Candida albicans and several Mycobacterium species. J Hosp Infect 41:101–105

    Article  CAS  PubMed  Google Scholar 

  • Srun SW, Nissen BJ, Bryans TD, Bonjean M (2012) Medical device SALs and surgical site infections: a mathematical model. Biomed Instrum Technol 46:230–237. doi:10.2345/0899-8205-46.3.230

    Article  PubMed  Google Scholar 

  • Tejwani SG, Chen J, Funahashi TT, Love R, Maletis GB (2015) Revision risk after allograft anterior cruciate ligament reconstruction. Am J Sports Med 43:2696–2705. doi:10.1177/0363546515589168

    Article  PubMed  Google Scholar 

  • Truncale K, Cartmell JS, Syring C, Von Versen R, Ngo M (2010) Soft tissue processing. USA Patent 7,723,108

  • Wehmeyer JL, Natesan S, Christy RJ (2015) Development of a sterile amniotic membrane tissue graft using supercritical carbon dioxide. Tissue Eng Part C Methods 21:649–659. doi:10.1089/ten.TEC.2014.0304

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Musculoskeletal Transplant Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abigail Phipps.

Ethics declarations

Conflict of interest

A. Phipps, M. Ngo, E. Chnari, and J. Osborne are employees of the Musculoskeletal Transplant Foundation. J. Kowalski is a consultant for the Musculoskeletal Transplant Foundation (MTF). E. Vaynshteyn and K. Merritt have no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phipps, A., Vaynshteyn, E., Kowalski, J.B. et al. Chemical sterilization of allograft dermal tissues. Cell Tissue Bank 18, 573–584 (2017). https://doi.org/10.1007/s10561-017-9647-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-017-9647-0

Keywords

Navigation