Skip to main content

Advertisement

Log in

Semi-quantitative assessments of dextran toxicity on corneal endothelium: conceptual design of a predictive algorithm

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Dextran is added to corneal culture medium for at least 8 h prior to transplantation to ensure that the cornea is osmotically dehydrated. It is presumed that dextran has a certain toxic effect on corneal endothelium but the degree and the kinetics of this effect have not been quantified so far. We consider that such data regarding the toxicity of dextran on the corneal endothelium could have an impact on scheduling and logistics of corneal preparation in eye banking. In retrospective statistic analyses, we compared the progress of corneal endothelium (endothelium cell loss per day) of 1334 organ-cultured corneal explants in media with and without dextran. Also, the influence of donor-age, sex and cause of death on the observed dextran-mediated effect on endothelial cell counts was studied. Corneas cultured in dextran-free medium showed a mean endothelium cell count decrease of 0.7% per day. Dextran supplementation led to a mean endothelium cell loss of 2.01% per day; this reflects an increase by the factor of 2.9. The toxic impact of dextran was found to be time dependent; while the prevailing part of the effect was observed within the first 24 h after dextran-addition. Donor age, sex and cause of death did not seem to have an influence on the dextran-mediated toxicity. Based on these findings, we could design an algorithm which approximately describes the kinetics of dextran-toxicity. We reproduced the previously reported toxic effect of dextran on the corneal endothelium in vitro. Additionally, this is the first work that provides an algorithmic instrument for the semi-quantitative calculation of the putative endothelium cell count decrease in dextran containing medium for a given incubation time and could thus influence the time management and planning of corneal transplantations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott RL, Forster RK (1979) Clinical specular microscopy and intraocular surgery. Arch Ophthalmol 97(8):1476–1479

    Article  CAS  PubMed  Google Scholar 

  • Bourne WM, O’Fallon WM (1978) Endothelial cell loss during penetrating keratoplasty. Am J Ophthalmol 85(6):760–766

    Article  CAS  PubMed  Google Scholar 

  • Bryant MR, McDonnell PJ (1998) A triphasic analysis of corneal swelling and hydration control. J Biomech Eng 120(3):370–381

    Article  CAS  PubMed  Google Scholar 

  • Carlson KH, Bourne WM, McLaren JW, Brubaker RF (1988) Variations in human corneal endothelial cell morphology and permeability to fluorescein with age. Exp Eye Res 47(1):27–41

    Article  CAS  PubMed  Google Scholar 

  • Chu W (2000) The past twenty-five years in eye banking. Cornea 19(5):754–765

    Article  CAS  PubMed  Google Scholar 

  • Corkidi G, Marquez J, Usisima R, Toledo R, Valdez J, Graue E (1993) Automated in vivo and online morphometry of human corneal endothelium. Med Biol Eng Comput 31(4):432–437

    Article  CAS  PubMed  Google Scholar 

  • Doughman DJ (1980) Prolonged donor cornea preservation in organ culture: long-term clinical evaluation. Trans Am Ophthalmol Soc 78:567–628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doughman DJ, Van Horn D, Harris JE, Miller GE, Lindstrom R, Good RA (1974) The ultrastructure of human organ-cultured cornea. I. Endothelium. Arch Ophthalmol 92(6):516–523

    Article  CAS  PubMed  Google Scholar 

  • Ehlers N (2002) Corneal banking and grafting. The background to the Danish Eye Bank System, where corneas await their patients. Acta Ophthalmol Scand 80(6):572–578. doi:10.1034/j.1600-0420.2002.800604.x

    Article  PubMed  Google Scholar 

  • Farge EJ, Cox WG, Khan MM (1995) An eye banking program for selecting donor corneas for surgical distribution. Cornea 14(6):578–582

    Article  CAS  PubMed  Google Scholar 

  • Fischbarg J, Hofer G, Koatz RA (1980) Priming of the fluid pump by osmotic gradients across rabbit corneal endothelium. Biochim Biophys Acta 603(1):198–206

    Article  CAS  PubMed  Google Scholar 

  • Maurice DM (1972) The location of the fluid pump in the cornea. J Physiol 221(1):43–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarey BE, Kaufman HE (1974) Improved corneal storage. Invest Ophthalmol 13(3):165–173

    CAS  PubMed  Google Scholar 

  • McCarey BE, Meyer RF, Kaufman HE (1976) Improved corneal storage for penetrating keratoplasties in humans. Ann Ophthalmol 8(12):1488–1492, 1495

  • Mishima S (1982) Clinical investigations on the corneal endothelium. Ophthalmology 89(6):525–530

    Article  CAS  PubMed  Google Scholar 

  • Nucci P, Brancato R, Mets MB, Shevell SK (1990) Normal endothelial cell density range in childhood. Arch Ophthalmol 108(2):247–248

    Article  CAS  PubMed  Google Scholar 

  • Padilla MD, Sibayan SA, Gonzales CS (2004) Corneal endothelial cell density and morphology in normal Filipino eyes. Cornea 23(2):129–135. doi:10.1097/00003226-200403000-00005

    Article  PubMed  Google Scholar 

  • Pels E, Schuchard Y (1983) Organ-culture preservation of human corneas. Doc Ophthalmol 56(1–2):147–153

    Article  CAS  PubMed  Google Scholar 

  • Rao GN, Gopinathan U (2009) Eye banking: an introduction. Community Eye Health 22(71):46–47

    PubMed  PubMed Central  Google Scholar 

  • Rao SK, Ranjan Sen P, Fogla R, Gangadharan S, Padmanabhan P, Badrinath SS (2000) Corneal endothelial cell density and morphology in normal Indian eyes. Cornea 19(6):820–823

    Article  CAS  PubMed  Google Scholar 

  • Redbrake C, Salla S, Nilius R, Becker J, Reim M (1997) A histochemical study of the distribution of dextran 500 in human corneas during organ culture. Curr Eye Res 16(5):405–411

    Article  CAS  PubMed  Google Scholar 

  • Redbrake C, Kompa S, Altmann G, Reim M, Arend O (2006) Hes 130 as a continuous supplement for organ culture of human corneas. Ophthalmologe 103:143–147

    Article  Google Scholar 

  • Salla S, Redbrake C, Becker J, Reim M (1995) Remarks on the vitality of the human cornea after organ culture. Cornea 14(5):502–508

    Article  CAS  PubMed  Google Scholar 

  • Schroeter J, Maier P, Bednarz J, Bluthner K, Quenzel M, Pruss A, Reinhard T (2009) [Procedural guidelines. Good tissue practice for cornea banks]. Ophthalmologe 106(3):265–274, 276. doi:10.1007/s00347-008-1913-x

  • Snellingen T, Rao GN, Shrestha JK, Huq F, Cheng H (2001) Quantitative and morphological characteristics of the human corneal endothelium in relation to age, gender, and ethnicity in cataract populations of South Asia. Cornea 20(1):55–58

    Article  CAS  PubMed  Google Scholar 

  • Thuret G, Manissolle C, Campos-Guyotat L, Guyotat D, Gain P (2005) Animal compound-free medium and poloxamer for human corneal organ culture and deswelling. Invest Ophthalmol Vis Sci 46(3):816–822. doi:10.1167/iovs.04-1078

    Article  PubMed  Google Scholar 

  • Wolf AH, Welge-Lussen UC, Priglinger S, Kook D, Grueterich M, Hartmann K, Kampik A, Neubauer AS (2009) Optimizing the deswelling process of organ-cultured corneas. Cornea 28(5):524–529. doi:10.1097/ICO.0b013e3181901dde

    Article  PubMed  Google Scholar 

  • Yee RW, Matsuda M, Schultz RO, Edelhauser HF (1985) Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res 4(6):671–678

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Campolmi N, Thuret G, Piselli S, Acquart S, Peoc’h M, Gain P (2012) Poloxamines for deswelling of organ-cultured corneas. Ophthalmic Res 48(3):124–133. doi:10.1159/000334981

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to than Ms. Sybille Altenaer for her support collecting the data and Ms. Cornelia Roggenbruck for her help improving the language precision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Filev.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Filip Filev and Ceprail Oezcan have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filev, F., Oezcan, C., Feuerstacke, J. et al. Semi-quantitative assessments of dextran toxicity on corneal endothelium: conceptual design of a predictive algorithm. Cell Tissue Bank 18, 91–98 (2017). https://doi.org/10.1007/s10561-016-9596-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-016-9596-z

Keywords

Navigation