Skip to main content
Log in

Isolation, characterisation and comparative analysis of human umbilical cord vein perivascular cells and cord blood mesenchymal stem cells

  • Brief Communication
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Perivascular cells are known to be ancestors of mesenchymal stem cells (MSCs) and can be obtained from heart, skin, bone marrow, eye, placenta and umbilical cord (UC). However detailed characterization of perivascular cells around the human UC vein and comparative analysis of them with MSCs haven’t been done yet. In this study, our aim is to isolate perivascular cells from human UC vein and characterize them versus UC blood MSCs (UCB-MSCs). For this purpose, perivascular cells around the UC vein were isolated enzymatically and then purified with magnetic activated cell sorting (MACS) method using CD146 Microbead Kit respectively. MSCs were isolated from UCB by Ficoll density gradient solution. Perivascular cells and UCB-MSCs were characterized by osteogenic and adipogenic differentiation procedures, flow cytometric analysis [CD146, CD105, CD31, CD34, CD45 and alpha-smooth muscle actin (α-SMA)], and immunofluorescent staining (MAP1B and Tenascin C). Alizarin red and Oil red O staining results showed that perivascular cells and MSCs had osteogenic and adipogenic differentiation capacity. However, osteogenic differentiation capacity of perivascular cells were found to be less than UCB-MSCs. According to flow cytometric analysis, CD146 expression of perivascular cells were appeared to be 4.8-fold higher than UCB-MSCs. Expression of α-SMA, MAP1B and Tenascin-C from perivascular cells was determined by flow cytometry analysis and immunfluorescent staining. The results appear to support the fact that perivascular cells are the ancestors of MSCs in vascular area. They may be used as alternative cells to MSCs in the field of vascular tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    Article  CAS  PubMed  Google Scholar 

  • Boado RJ, Pardridge WM (1994) Differential expression of alpha-actin mRNA and immunoreactive protein in brain microvascular pericytes and smooth muscle cells. J Neurosci Res 39:430–435

    Article  CAS  PubMed  Google Scholar 

  • Bouacida A, Rosset P, Trichet V, Guilloton F, Espagnolle N, Cordonier T, Heymann D, Layrolle P, Sensebe L, Deschaseaux F (2012) Pericyte-like progenitors show high immaturity and engraftment potential as compared with mesenchymal stem cells. PLoS ONE 7:e48648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celebi B, Mantovani D, Pineault N (2011) Irradiated mesenchymal stem cells improve the ex vivo expansion of hematopoietic progenitors by partly mimicking the bone marrow endosteal environment. J Immunol Methods 370:93–103

    Article  CAS  PubMed  Google Scholar 

  • Celebi B, Mantovani D, Pineault N (2012) Insulin-like growth factor binding protein-2 and neurotrophin 3 synergize together to promote the expansion of hematopoietic cells ex vivo. Cytokine 58:327–331

    Article  CAS  PubMed  Google Scholar 

  • Covas DT, Panepucci RA, Fontes AM, Silva WA Jr, Orellana MD, Freitas MC, Neder L, Santos AR, Peres LC, Jamur MC (2008) Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 36:642–654

    Article  CAS  PubMed  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  • Crisan M, Corselli M, Chen WC, Peault B (2012) Perivascular cells for regenerative medicine. J Cell Mol Med 16:2851–2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299

    Article  PubMed  Google Scholar 

  • Espagnolle N, Guilloton F, Deschaseaux F, Gadelorge M, Sensebe L, Bourin P (2014) CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment. J Cell Mol Med 18:104–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlach JC, Over P, Turner ME, Thompson RL, Foka HG, Chen WC, Peault B, Gridelli B, Schmelzer E (2012) Perivascular mesenchymal progenitors in human fetal and adult liver. Stem Cells Dev 21:3258–3269

    Article  CAS  PubMed  Google Scholar 

  • Hsieh JY, Fu YS, Chang SJ, Tsuang YH, Wang HW (2010) Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton’s jelly of umbilical cord. Stem Cells Dev 19:1895–1910

    Article  CAS  PubMed  Google Scholar 

  • James AW, Zara JN, Zhang X, Askarinam A, Goyal R, Chiang M, Yuan W, Chang L, Corselli M, Shen J (2012) Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Transl Med 1:510–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kale S, Hanai J, Chan B, Karihaloo A, Grotendorst G, Cantley L, Sukhatme VP (2005) Microarray analysis of in vitro pericyte differentiation reveals an angiogenic program of gene expression. FASEB J 19:270–271

    CAS  PubMed  Google Scholar 

  • Kaltz N, Ringe J, Holzwarth C, Charbord P, Niemeyer M, Jacobs VR, Peschel C, Haupl T, Oostendorp RA (2010) Novel markers of mesenchymal stem cells defined by genome-wide gene expression analysis of stromal cells from different sources. Exp Cell Res 316:2609–2617

    Article  CAS  PubMed  Google Scholar 

  • Kang SD, Carlon TA, Jantzen AE, Lin FH, Ley MM, Allen JD, Stabler TV, Haley NR, Truskey GA, Achneck HE (2013) Isolation of functional human endothelial cells from small volumes of umbilical cord blood. Ann Biomed Eng 41:2181–2192

    Article  PubMed  Google Scholar 

  • Kirton JP, Wilkinson FL, Canfield AE, Alexander MY (2006) Dexamethasone downregulates calcification-inhibitor molecules and accelerates osteogenic differentiation of vascular pericytes: implications for vascular calcification. Circ Res 98:1264–1272

    Article  CAS  PubMed  Google Scholar 

  • Klein G, Beck S, Muller CA (1993) Tenascin ıs a cytoadhesive extracellular-matrix component of the human hematopoietic microenvironment. J Cell Biol 123:1027–1035

    Article  CAS  PubMed  Google Scholar 

  • Klein C, Strobel J, Zingsem J, Richter RH, Goecke TW, Beckmann MW, Eckstein R, Weisbach V (2013) Ex vivo expansion of hematopoietic stem- and progenitor cells from cord blood in coculture with mesenchymal stroma cells from amnion, chorion, Wharton’s jelly, amniotic fluid, cord blood, and bone marrow. Tissue Eng Part A 19:2577–2585

    Article  CAS  PubMed  Google Scholar 

  • Kouroupis, Kouroupis D, Churchman SM, McGonagle D, Jones EA (2014) The assessment of CD146-based cell sorting and telomere length analysis for establishing the identity of mesenchymal stem cells in human umbilical cord. F1000Research 3:126

    PubMed  PubMed Central  Google Scholar 

  • Martina E, Degen M, Ruegg C, Merlo A, Lino MM, Chiquet-Ehrismann R, Brellier F (2010) Tenascin-W is a specific marker of glioma-associated blood vessels and stimulates angiogenesis in vitro. FASEB J 24:778–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes LF, Pirraco RP, Szymczyk W, Frias AM, Santos TC, Reis RL, Marques AP (2012) Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs. PLoS ONE 7:e41051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Midwood KS, Hussenet T, Langlois B, Orend G (2011) Advances in tenascin-C biology. Cell Mol Life Sci 68:3175–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mildenberger E, Biesel B, Siegel G, Versmold HT (2008) Endothelin B receptors on vascular smooth muscle cells of the human umbilical vein mediate vasoconstriction. Fetal Diagn Ther 24:67–70

    Article  PubMed  Google Scholar 

  • Montemurro T, Andriolo G, Montelatici E, Weissmann G, Crisan M, Colnaghi MR, Rebulla P, Mosca F, Peault B, Lazzari L (2011) Differentiation and migration properties of human foetal umbilical cord perivascular cells: potential for lung repair. J Cell Mol Med 15:796–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nehls V, Drenckhahn D (1991) Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol 113:147–154

    Article  CAS  PubMed  Google Scholar 

  • Ohta M, Sakai T, Saga Y, Aizawa S, Saito M (1998) Suppression of hematopoietic activity in tenascin-C-deficient mice. Blood 91:4074–4083

    CAS  PubMed  Google Scholar 

  • Orekhov AN, Bobryshev YV, Chistiakov DA (2014) The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells. Cardiovasc Res 103:438–451

    Article  CAS  PubMed  Google Scholar 

  • Park TS, Gavina M, Chen CW, Sun B, Teng PN, Huard J, Deasy BM, Zimmerlin L, Peault B (2011) Placental perivascular cells for human muscle regeneration. Stem Cells Dev 20:451–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rucker HK, Wynder HJ, Thomas WE (2000) Cellular mechanisms of CNS pericytes. Brain Res Bull 51:363–369

    Article  CAS  PubMed  Google Scholar 

  • Russell KC, Phinney DG, Lacey MR, Barrilleaux BL, Meyertholen KE, O’Connor KC (2010) In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 28:788–798

    Article  CAS  PubMed  Google Scholar 

  • von Holst A (2008) Tenascin C in stem cell niches: redundant, permissive or instructive? Cells Tissues Organs 188:170–177

    Article  Google Scholar 

  • Wessels A, Markwald R (2000) Cardiac morphogenesis and dysmorphogenesis. I. Normal development. Methods Mol Biol 136:239–259

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank The Scientific and Technological Research Council of Turkey (Project Number: 113S815) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betül Çelebi-Saltik.

Ethics declarations

In this study, UC and UCB samples were obtained after birth of healthy babies borned in Hacettepe University Faculty of Medicine, Obstetrics and Gynecology Clinic. For the use of these non-invasive samples, permission was taken from Non-interventional Clinical Researches Ethics Committee.

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gökçinar-Yagci, B., Özyüncü, Ö. & Çelebi-Saltik, B. Isolation, characterisation and comparative analysis of human umbilical cord vein perivascular cells and cord blood mesenchymal stem cells. Cell Tissue Bank 17, 345–352 (2016). https://doi.org/10.1007/s10561-015-9542-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-015-9542-5

Keywords

Navigation