Skip to main content
Log in

The effect of sterilization on the mechanical properties of intact rabbit humeri in three-point bending, four-point bending and torsion

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Load bearing bone allografts are used to replace the mechanical function of bone that has been removed or to augment bone that has been damaged in trauma. In order to minimize the risk of infection and immune response, the bone is delipidated and terminally sterilized prior to implantation. The optimal method for bone graft sterilization has been the topic of considerable research. Recently, supercritical carbon dioxide (SCCO2) treatments have been shown to terminally sterilize bone against a range of bacteria and viruses. This study aimed to evaluate the effect of SCCO2 treatment compared with two doses of gamma irradiation, on the mechanical properties of whole bone. Paired rabbit humeri were dissected and randomly assigned into either SCCO2 control, SCCO2 additive or gamma irradiation at 10 or 25 kGy treatment groups. The bones were mechanically tested in three-point and four-point bending and torsion, with the lefts acting as controls for the treated rights. Maximum load, energy to failure and stiffness were evaluated. This study found that SCCO2 treatment with or without additive did not alter maximum load, energy to failure or stiffness significantly under any loading modality. Gamma irradiation had a deleterious dose dependant effect, with statistically significant decreases in all mechanical tests at 25 kGy; while at 10 kGy there were reductions in all loading profiles, though only reaching statistical significance in torsion. This study highlights the expediency of SCCO2 treatment for bone allograft processing as terminal sterilization can be achieved while maintaining the intrinsic mechanical properties of the graft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akkus O, Belaney RM (2005) Sterilization by gamma radiation impairs the tensile fatigue life of cortical bone by two orders of magnitude. J Orthop Res 23(5):1054–1058. doi:10.1016/j.orthres.2005.03.003

    Article  PubMed  Google Scholar 

  • Akkus O, Rimnac CM (2001) Fracture resistance of gamma radiation sterilized cortical bone allografts. J Orthop Res 19(5):927–934. doi:10.1016/S0736-0266(01)00004-3

    Article  PubMed  CAS  Google Scholar 

  • Akkus O, Belaney RM, Das P (2005) Free radical scavenging alleviates the biomechanical impairment of gamma radiation sterilized bone tissue. J Orthop Res 23(4):838–845. doi:10.1016/j.orthres.2005.01.007

    Article  PubMed  Google Scholar 

  • Anderson MJ, Keyak JH, Skinner HB (1992) Compressive mechanical properties of human cancellous bone after gamma irradiation. J Bone Joint Surg Am 74(5):747–752

    PubMed  CAS  Google Scholar 

  • Balsly C, Cotter A, Williams L, Gaskins B, Moore M, Wolfinbarger L (2008) Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts. Cell Tissue Bank 9(4):289–298

    Article  PubMed  Google Scholar 

  • Barry JJ, Silva MM, Popov VK, Shakesheff KM, Howdle SM (2006) Supercritical carbon dioxide: putting the fizz into biomaterials. Philos Transact A Math Phys Eng Sci 364(1838):249–261. doi:10.1098/rsta.2005.1687

    Article  PubMed  CAS  Google Scholar 

  • Bertoloni G, Bertucco A, De Cian V, Parton T (2006) A study on the inactivation of micro-organisms and enzymes by high pressure CO2. Biotechnol Bioeng 95(1):155–160. doi:10.1002/bit.21006

    Article  PubMed  CAS  Google Scholar 

  • Burstein AH, Zika JM, Heiple KG, Klein L (1975) Contribution of collagen and mineral to the elastic-plastic properties of bone. J Bone Joint Surg Am 57(7):956–961

    PubMed  CAS  Google Scholar 

  • Campbell DG, Li P, Stephenson AJ, Oakeshott RD (1994) Sterilization of HIV by gamma irradiation. A bone allograft model. Int Orthop 18(3):172–176

    Article  PubMed  CAS  Google Scholar 

  • Cornu O, Banse X, Docquier PL, Luyckx S, Delloye C (2000) Effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. J Orthopaed Res 18(3):426–431. doi:10.1002/jor.1100180314

    Article  CAS  Google Scholar 

  • Cornu O, Boquet J, Nonclercq O, Docquier PL, Van Tomme J, Delloye C, Banse X (2011) Synergetic effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. Cell Tissue Bank 12(4):281–288. doi:10.1007/s10561-010-9209-1

    Article  PubMed  CAS  Google Scholar 

  • Currey JD, Foreman J, Laketic I, Mitchell J, Pegg DE, Reilly GC (1997) Effects of ionizing radiation on the mechanical properties of human bone. J Orthopaed Res 15(1):111–117. doi:10.1002/jor.1100150116

    Article  CAS  Google Scholar 

  • Davies OR, Lewis AL, Whitaker MJ, Tai H, Shakesheff KM, Howdle SM (2008) Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering. Adv Drug Deliv Rev 60(3):373–387. doi:10.1016/j.addr.2006.12.001

    Article  PubMed  CAS  Google Scholar 

  • Davy DT (1999) Biomechanical issues in bone transplantation. Orthop Clin North Am 30(4):553–563

    Article  PubMed  CAS  Google Scholar 

  • DePaula CA, Truncale KG, Gertzman AA, Sunwoo MH, Dunn MG (2005) Effects of hydrogen peroxide cleaning procedures on bone graft osteoinductivity and mechanical properties. Cell Tissue Bank 6(4):287–298. doi:10.1007/s10561-005-3148-2

    Article  PubMed  CAS  Google Scholar 

  • Dillow AK, Dehghani F, Hrkach JS, Foster NR, Langer R (1999) Bacterial inactivation by using near- and supercritical carbon dioxide. Proc Natl Acad Sci USA 96(18):10344–10348

    Article  PubMed  CAS  Google Scholar 

  • Dziedzic-Goclawska A, Ostrowski K, Stachowicz W, Michalik J, Grzesik W (1991) Effect of radiation sterilization on the osteoinductive properties and the rate of remodeling of bone implants preserved by lyophilization and deep-freezing. Clin Orthop Relat Res 272:30–37

    PubMed  Google Scholar 

  • Dziedzic-Goclawska A, Kaminski A, Uhrynowska-Tyszkiewicz I, Stachowicz W (2005) Irradiation as a safety procedure in tissue banking. Cell Tissue Bank 6(3):201–219. doi:10.1007/s10561-005-0338-x

    Article  PubMed  CAS  Google Scholar 

  • Fages J, Marty A, Delga C, Condoret JS, Combes D, Frayssinet P (1994) Use of supercritical CO2 for bone delipidation. Biomaterials 15(9):650–656

    Article  PubMed  CAS  Google Scholar 

  • Fages J, Poirier B, Barbier Y, Frayssinet P, Joffret ML, Majewski W, Bonel G, Larzul D (1998) Viral inactivation of human bone tissue using supercritical fluid extraction. ASAIO J 44(4):289–293

    Article  PubMed  CAS  Google Scholar 

  • Fideler BM, Vangsness CT Jr, Lu B, Orlando C, Moore T (1995) Gamma irradiation: effects on biomechanical properties of human bone-patellar tendon-bone allografts. Am J Sports Med 23(5):643–646

    Article  PubMed  CAS  Google Scholar 

  • Freeman JJ, Silva MJ (2002) Separation of the Raman spectral signatures of bioapatite and collagen in compact mouse bone bleached with hydrogen peroxide. Appl Spectrosc 56(6):770–775

    Article  CAS  Google Scholar 

  • Gerd B (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67(1–2):21–33. doi:10.1016/j.jfoodeng.2004.05.060

    Google Scholar 

  • Gibbons MJ, Butler DL, Grood ES, Bylski-Austrow DI, Levy MS, Noyes FR (1991) Effects of gamma irradiation on the initial mechanical and material properties of goat bone-patellar tendon-bone allografts. J Orthop Res 9(2):209–218. doi:10.1002/jor.1100090209

    Article  PubMed  CAS  Google Scholar 

  • Godette GA, Kopta JA, Egle DM (1996) Biomechanical effects of gamma irradiation on fresh frozen allografts in vivo. Orthopedics 19(8):649–653

    PubMed  CAS  Google Scholar 

  • Grieb TA, Forng R-Y, Stafford RE, Lin J, Almeida J, Bogdansky S, Ronholdt C, Drohan WN, Burgess WH (2005) Effective use of optimized, high-dose (50 kGy) gamma irradiation for pathogen inactivation of human bone allografts. Biomaterials 26(14):2033–2042

    Article  PubMed  CAS  Google Scholar 

  • Hamer AJ, Strachan JR, Black MM, Ibbotson CJ, Stockley I, Elson RA (1996) Biochemical properties of cortical allograft bone using a new method of bone strength measurement. A comparison of fresh, fresh-frozen and irradiated bone. J Bone Joint Surg Am 78(3):363–368

    CAS  Google Scholar 

  • Hamer AJ, Stockley I, Elson RA (1999) Changes in allograft bone irradiated at different temperatures. J Bone Joint Surg Am 81(2):342–344

    Article  CAS  Google Scholar 

  • Hemmer J (2007) Sterilization of bacterial spores by using supercritical carbon dioxide and hydrogen peroxide. J Biomed Mater Res A 80B:511–518

    Article  CAS  Google Scholar 

  • Hubner W, Blume A, Pushnjakova R, Dekhtyar Y, Hein HJ (2005) The influence of X-ray radiation on the mineral/organic matrix interaction of bone tissue: an FT-IR microscopic investigation. Int J Artif Organs 28(1):66–73

    PubMed  CAS  Google Scholar 

  • Ijiri S, Yamamuro T, Nakamura T, Kotani S, Notoya K (1994) Effect of sterilization on bone morphogenetic protein. J Orthop Res 12(5):628–636. doi:10.1002/jor.1100120505

    Article  PubMed  CAS  Google Scholar 

  • Jinno T, Miric A, Feighan J, Kirk SK, Davy DT, Stevenson S (2000) The effects of processing and low dose irradiation on cortical bone grafts. Clin Orthop Relat Res 375:275–285

    Article  PubMed  Google Scholar 

  • Lewandrowski KU, Gresser JD, Bondre S, Silva AE, Wise DL, Trantolo DJ (2000) Developing porosity of poly(propylene glycol-co-fumaric acid) bone graft substitutes and the effect on osteointegration: a preliminary histology study in rats. J Biomater Sci Polym Ed 11(8):879–889

    Article  PubMed  CAS  Google Scholar 

  • Mikhael MM, Huddleston PM, Zobitz ME, Chen Q, Zhao KD, An K-N (2008) Mechanical strength of bone allografts subjected to chemical sterilization and other terminal processing methods. J Biomech 41(13):2816–2820. doi:10.1016/j.jbiomech.2008.07.012

    Article  PubMed  Google Scholar 

  • Mitchell EJ, Stawarz AM, Kayacan R, Rimnac CM (2004) The effect of gamma radiation sterilization on the fatigue crack propagation resistance of human cortical bone. J Bone Joint Surg Am 86-A(12):2648–2657

    PubMed  Google Scholar 

  • Mitton D, Rappeneau J, Bardonnet R (2005) Effect of a supercritical CO2 based treatment on mechanical properties of human cancellous bone. Eur J Orthop Surg Traumatol 15(4):264–269. doi:10.1007/s00590-005-0250-x

    Article  Google Scholar 

  • Nguyen H, Morgan DA, Forwood MR (2007a) Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics. Cell Tissue Bank 8(2):93–105. doi:10.1007/s10561-006-9020-1

    Article  PubMed  Google Scholar 

  • Nguyen H, Morgan DA, Forwood MR (2007b) Sterilization of allograft bone: is 25 kGy the gold standard for gamma irradiation? Cell Tissue Bank 8(2):81–91. doi:10.1007/s10561-006-9019-7

    Article  PubMed  Google Scholar 

  • Nichols A, Burns D, Christopher R (2009) The sterilization of human bone and tendon musculoskeletal allograft tissue using supercritical carbon dioxide. J Orthopaed 6(2):9–17

    Google Scholar 

  • Qiu Q-Q, Leamy P, Brittingham J, Pomerleau J, Kabaria N, Connor J (2009) Inactivation of bacterial spores and viruses in biological material using supercritical carbon dioxide with sterilant. J Biomed Mater Res B 91B(2):572–578. doi:10.1002/jbm.b.31431

    Article  CAS  Google Scholar 

  • Salehpour A, Butler DL, Proch FS, Schwartz HE, Feder SM, Doxey CM, Ratcliffe A (1995) Dose-dependent response of gamma irradiation on mechanical properties and related biochemical composition of goat bone-patellar tendon-bone allografts. J Orthop Res 13(6):898–906. doi:10.1002/jor.1100130614

    Article  PubMed  CAS  Google Scholar 

  • Schwiedrzik JJ, Kaudela KH, Burner U, Zysset PK (2011) Fabric-mechanical property relationships of trabecular bone allografts are altered by supercritical CO2 treatment and gamma sterilization. Bone 48(6):1370–1377. doi:10.1016/j.bone.2011.03.768

    Article  PubMed  CAS  Google Scholar 

  • Shieh E, Paszczynski A, Wai CM, Lang Q, Crawford RL (2009) Sterilization of Bacillus pumilus spores using supercritical fluid carbon dioxide containing various modifier solutions. J Microbiol Meth 76(3):247–252

    Article  CAS  Google Scholar 

  • Simonian PT, Conrad EU, Chapman JR, Harrington RM, Chansky HA (1994) Effect of sterilization and storage treatments on screw pullout strength in human allograft bone. Clin Orthop Relat Res 302:290–296

    PubMed  Google Scholar 

  • Spilimbergo S, Bertucco A (2003) Non-thermal bacterial inactivation with dense CO(2). Biotechnol Bioeng 84(6):627–638. doi:10.1002/bit.10783

    Article  PubMed  CAS  Google Scholar 

  • Spilimbergo S, Dehghani F, Bertucco A, Foster NR (2003) Inactivation of bacteria and spores by pulse electric field and high pressure CO2 at low temperature. Biotechnol Bioeng 82(1):118–125. doi:10.1002/bit.10554

    Article  PubMed  CAS  Google Scholar 

  • Thoren K, Aspenberg P (1995) Ethylene oxide sterilization impairs allograft incorporation in a conduction chamber. Clin Orthop Relat Res 318:259–264

    PubMed  Google Scholar 

  • Triantafyllou N, Sotiropoulos E, Triantafyllou JN (1975) The mechanical properties of the lyophylized and irradiated bone grafts. Acta Orthop Belg 41(suppl 1):35–44

    PubMed  Google Scholar 

  • Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP (2001) Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28(2):195–201. doi:10.1016/S8756-3282(00)00434-8

    Article  PubMed  CAS  Google Scholar 

  • Vastel L, Meunier A, Siney H, Sedel L, Courpied JP (2004) Effect of different sterilization processing methods on the mechanical properties of human cancellous bone allografts. Biomaterials 25(11):2105–2110. doi:10.1016/j.biomaterials.2003.08.067

    Article  PubMed  CAS  Google Scholar 

  • Voggenreiter G, Ascherl R, Blumel G, Schmit-Neuerburg KP (1996) Extracorporeal irradiation and incorporation of bone grafts. Autogeneic cortical grafts studied in rats. Acta Orthop Scand 67(6):583–588

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Furukawa S, Hirata J, Koyama T, Ogihara H, Yamasaki M (2003) Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment. Appl Environ Microbiol 69(12):7124–7129

    Article  PubMed  CAS  Google Scholar 

  • White A, Burns D, Christensen TW (2006) Effective terminal sterilization using supercritical carbon dioxide. J Biotechnol 123(4):504–515

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Burrows S, Gleason C, Matthews MA, Drews MJ, Laberge M, An YH (2006) Sterilizing Bacillus pumilus spores using supercritical carbon dioxide. J Microbiol Methods 66(3):479–485. doi:10.1016/j.mimet.2006.01.012

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Qin T, Yang J, Shen B, Kang P, Peil F (2011) Mechanical strength of cortical allografts with gamma radiation versus ethylene oxide sterilization. Acta Orthop Belg 77(5):670–675

    PubMed  Google Scholar 

  • Zioupos P, Currey JD, Hamer AJ (1999) The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res 45(2):108–116. doi:10.1002/(SICI)1097-4636(199905)45:2<108:AID-JBM5>3.0.CO;2-A

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no conflict of interest in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, N.A., Rives, A., Pelletier, M.H. et al. The effect of sterilization on the mechanical properties of intact rabbit humeri in three-point bending, four-point bending and torsion. Cell Tissue Bank 14, 231–242 (2013). https://doi.org/10.1007/s10561-012-9318-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-012-9318-0

Keywords

Navigation