Skip to main content
Log in

Methyl- and acetyltransferases are stable epigenetic markers postmortem

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Postmortem brain tissue has been reported to be suitable to delineate regional pattern of possible disturbances underlying epigenetic functionality. However, from many parameters that have been detected in postmortem brain regions it is noteworthy that an effect of postmortem interval (PMI), storage time and premortem parameters should not be underestimated. Our previous investigation revealed that tryptophan (TRP) levels in postmortem brain tissue is affected by PMI and storage time. Since, alteration in TRP levels are assumed to be due to protein degradation, we further investigated whether TRP correlates to variables such as RNA, proteins and DNA modulators. In addition, we aimed to elucidate whether established postmortem variables may influence epigenetic parameters. These were investigated in well characterized postmortem human brain tissue originating from the European Brain Bank consortium II (BNEII). We could confirm previous findings, in which some protein levels alter because of prolonged PMI. Similarly, we demonstrated an influence of increased storage period on TRP levels, which might indicate degradation of proteins. Still not all proteins degrade in a similar manner, therefore a specific analysis for the protein of interest would be recommended. We found that methyltransferase- and acetyltransferase-activities were relatively preserved with PMI and storage duration. In conclusion, preservation of acetyltransferase- and methyltransferase-activities provides possible evidence of stability for epigenetic studies using postmortem tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrachina M, Ferrer I (2009) DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol 68:880–891

    Article  PubMed  CAS  Google Scholar 

  • Barrachina M, Maes T, Buesa C, Ferrer I (2006) Lysosome-associated membrane protein 1 (LAMP-1) in Alzheimer’s disease. Neuropathol Appl Neurobiol 32:505–516

    Article  PubMed  CAS  Google Scholar 

  • Barton AJ, Pearson RC, Najlerahim A, Harrison PJ (1993) Pre- and postmortem influences on brain RNA. J Neurochem 61:1–11

    Article  PubMed  CAS  Google Scholar 

  • Beach TG, Sue LI, Walker DG, Roher AE, Lue L, Vedders L, Connor DJ, Sabbagh MN, Rogers J (2008) The Sun Health Research Institute Brain Donation Program: description and experience, 1987–2007. Cell Tissue Bank 9:229–245

    Article  PubMed  Google Scholar 

  • Bell JE, Alafuzoff I, Al-Sarraj S, Arzberger T, Bogdanovic N, Budka H, Dexter DT, Falkai P, Ferrer I, Gelpi E, Gentleman SM, Giaccone G, Huitinga I, Ironside JW, Klioueva N, Kovacs GG, Meyronet D, Palkovits M, Parchi P, Patsouris E, Reynolds R, Riederer P, Roggendorf W, Seilhean D, Schmitt A, Schmitz P, Streichenberger N, Schwalber A, Kretzschmar H (2008) Management of a twenty-first century brain bank: experience in the BrainNet Europe consortium. Acta Neuropathol 115:497–507

    Article  PubMed  Google Scholar 

  • Birkmayer W, Riederer P (1980) Die Parkinson-Krankheit: Biochemie, Klinik, Therapie. Springer-Verlag, Vienna

    Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of proteins utilizing principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Buesa C, Maes T, Subirada F, Barrachina M, Ferrer I (2004) DNA chip technology in brain banks: confronting a degrading world. J Neuropathol Exp Neurol 63:1003–1014

    PubMed  CAS  Google Scholar 

  • Chandana R, Mythri RB, Mahadevan A, Shankar SK, Srinivas Bharath MM (2009) Biochemical analysis of protein stability in human brain collected at different post-mortem intervals. Indian J Med Res 129:189–199

    PubMed  CAS  Google Scholar 

  • Chevyreva I, Faull RL, Green CR, Nicholson LF (2008) Assessing RNA quality in postmortem human brain tissue. Exp Mol Pathol 84:71–77

    Article  PubMed  CAS  Google Scholar 

  • Crecelius A, Gotz A, Arzberger T, Frohlich T, Arnold GJ, Ferrer I, Kretzschmar HA (2008) Assessing quantitative post-mortem changes in the gray matter of the human frontal cortex proteome by 2-D DIGE. Proteomics 8:1276–1291

    Article  PubMed  CAS  Google Scholar 

  • Ernst C, Deleva V, Deng X, Sequeira A, Pomarenski A, Klempan T, Ernst N, Quirion R, Gratton A, Szyf M, Turecki G (2009) Alternative splicing, methylation state, and expression profile of tropomyosin-related kinase B in the frontal cortex of suicide completers. Arch Gen Psychiatry 66:22–32

    Article  PubMed  CAS  Google Scholar 

  • Ervin JF, Heinzen EL, Cronin KD, Goldstein D, Szymanski MH, Burke JR, Welsh-Bohmer KA, Hulette CM (2007) Postmortem delay has minimal effect on brain RNA integrity. J Neuropathol Exp Neurol 66:1093–1099

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I, Armstrong J, Capellari S, Parchi P, Arzberger T, Bell J, Budka H, Strobel T, Giaccone G, Rossi G, Bogdanovic N, Fakai P, Schmitt A, Riederers P, Al-Sarraj S, Ravid R, Kretzschmar H (2007a) Effects of formalin fixation, paraffin embedding, and time of storage on DNA preservation in brain tissue: a BrainNet Europe study. Brain Pathol 17:297–303

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I, Santpere G, Arzberger T, Bell J, Blanco R, Boluda S, Budka H, Carmona M, Giaccone G, Krebs B, Limido L, Parchi P, Puig B, Strammiello R, Strobel T, Kretzschmar H (2007b) Brain protein preservation largely depends on the postmortem storage temperature: implications for study of proteins in human neurologic diseases and management of brain banks: a BrainNet Europe Study. J Neuropathol Exp Neurol 66:35–46

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I, Martinez A, Boluda S, Parchi P, Barrachina M (2008) Brain banks: benefits, limitations and cautions concerning the use of post-mortem brain tissue for molecular studies. Cell Tissue Bank 9:181–194

    Article  PubMed  CAS  Google Scholar 

  • Grinberg LT, Ferretti RE, Farfel JM, Leite R, Pasqualucci CA, Rosemberg S, Nitrini R, Saldiva PH, Filho WJ (2007) Brain bank of the Brazilian aging brain study group - a milestone reached and more than 1, 600 collected brains. Cell Tissue Bank 8:151–162

    Article  PubMed  Google Scholar 

  • Grünblatt E, Monoranu CM, Apfelbacher M, Keller D, Michel TM, Alafuzoff I, Ferrer I, Al-Saraj S, Keyvani K, Schmitt A, Falkai P, Schittenhelm J, McLean C, Halliday GM, Harper C, Deckert J, Roggendorf W, Riederer P (2009) Tryptophan is a marker of human postmortem brain tissue quality. J Neurochem 110:1400–1408

    Article  PubMed  Google Scholar 

  • Hynd MR, Lewohl JM, Scott HL, Dodd PR (2003) Biochemical and molecular studies using human autopsy brain tissue. J Neurochem 85:543–562

    Article  PubMed  CAS  Google Scholar 

  • Keller S, Sarchiapone M, Zarrilli F, Videtic A, Ferraro A, Carli V, Sacchetti S, Lembo F, Angiolillo A, Jovanovic N, Pisanti F, Tomaiuolo R, Monticelli A, Balazic J, Roy A, Marusic A, Cocozza S, Fusco A, Bruni CB, Castaldo G, Chiariotti L (2010) Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Arch Gen Psychiatry 67:258–267

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar H (2009) Brain banking: opportunities, challenges and meaning for the future. Nat Rev Neurosci 10:70–78

    Article  PubMed  CAS  Google Scholar 

  • Kundakovic M, Chen Y, Guidotti A, Grayson DR (2009) The reelin and GAD67 promoters are activated by epigenetic drugs that facilitate the disruption of local repressor complexes. Mol Pharmacol 75:342–354

    Article  PubMed  CAS  Google Scholar 

  • Li E, Bird A (2007) DNA methylation in mammals. In: Allis C, Jenuwein T, Reinberg D (eds) Epigenetics. Cold Spring Harbor Laboratory Press, New York NY, pp 341–356

    Google Scholar 

  • McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M, Turecki G, Meaney MJ (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348

    Article  PubMed  CAS  Google Scholar 

  • Mohajerani MH, Sivakumaran S, Zacchi P, Aguilera P, Cherubini E (2007) Correlated network activity enhances synaptic efficacy via BDNF and the ERK pathway at immature CA3 CA1 connections in the hippocampus. Proc Natl Acad Sci USA 104:13176–13181

    Article  PubMed  CAS  Google Scholar 

  • Monoranu CM, Apfelbacher M, Grünblatt E, Puppe B, Alafuzoff I, Ferrer I, Al-Saraj S, Keyvani K, Schmitt A, Falkai P, Schittenhelm J, Halliday G, Kril J, Harper C, McLean C, Riederer P, Roggendorf W (2009) pH measurement as quality control on human post mortem brain tissue: a study of the BrainNet Europe consortium. Neuropathol Appl Neurobiol 35:329–337

    Article  PubMed  CAS  Google Scholar 

  • NIH Sheet 17 (2001), Procurement and use of human biological materials for research (http://ohsr.od.nih.gov/info/sheet17.html)

  • Omalu BI, Mancuso JA, Cho P, Wecht CH (2005) Diagnosis of Alzheimer’s disease in an exhumed decomposed brain after twenty months of burial in a deep grave. J Forensic Sci 50:1453–1458

    Article  PubMed  Google Scholar 

  • Perrett CW, Marchbanks RM, Whatley SA (1988) Characterisation of messenger RNA extracted post-mortem from the brains of schizophrenic, depressed and control subjects. J Neurol Neurosurg Psychiatry 51:325–331

    Article  PubMed  CAS  Google Scholar 

  • Pope TW, Raymond L, Foresman L, Pinson D, Joag SV, Marcario J, Berman NE, Raghavan R, Cheney PD, Narayan O, Wilkinson S, Gordon MA (1997) Texture analysis of cerebral white matter in SIV-infected macaque monkeys. J Neurosci Methods 74:53–64

    Article  PubMed  CAS  Google Scholar 

  • Popova T, Mennerich D, Weith A, Quast K (2008) Effect of RNA quality on transcript intensity levels in microarray analysis of human post-mortem brain tissues. BMC Genomics 9:91

    Article  PubMed  Google Scholar 

  • Santpere G, Puig B, Ferrer I (2006) Low molecular weight species of tau in Alzheimer’s disease are dependent on tau phosphorylation sites but not on delayed post-mortem delay in tissue processing. Neurosci Lett 399:106–110

    Article  PubMed  CAS  Google Scholar 

  • Schmitt A, Bauer M, Heinsen H, Feiden W, Consortium of Brainnet E, II, Falkai P, Alafuzoff I, Arzberger T, Al-Sarraj S, Bell JE, Bogdanovic N, Bruck W, Budka H, Ferrer I, Giaccone G, Kovacs GG, Meyronet D, Palkovits M, Parchi P, Patsouris E, Ravid R, Reynolds R, Riederer P, Roggendorf W, Schwalber A, Seilhean D, Kretzschmar H (2007) How a neuropsychiatric brain bank should be run: a consensus paper of Brainnet Europe II. J Neural Transm 114:527–537

    Article  PubMed  CAS  Google Scholar 

  • Stan AD, Ghose S, Gao XM, Roberts RC, Lewis-Amezcua K, Hatanpaa KJ, Tamminga CA (2006) Human postmortem tissue: what quality markers matter? Brain Res 1123:1–11

    Article  PubMed  CAS  Google Scholar 

  • Tamura Y, Kunugi H, Ohashi J, Hohjoh H (2007) Epigenetic aberration of the human REELIN gene in psychiatric disorders. Mol Psychiatry 12(519):93–600

    Google Scholar 

  • Tomita H, Vawter MP, Walsh DM, Evans SJ, Choudary PV, Li J, Overman KM, Atz ME, Myers RM, Jones EG, Watson SJ, Akil H, Bunney WE Jr (2004) Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry 55:346–352

    Article  PubMed  CAS  Google Scholar 

  • Waldvogel HJ, Bullock JY, Synek BJ, Curtis MA, van Roon-Mom WM, Faull RL (2008) The collection and processing of human brain tissue for research. Cell Tissue Bank 9:169–179

    Article  PubMed  CAS  Google Scholar 

  • Xue H, Xian B, Dong D, Xia K, Zhu S, Zhang Z, Hou L, Zhang Q, Zhang Y, Han JD (2007) A modular network model of aging. Mol Syst Biol 3:147

    Article  PubMed  Google Scholar 

  • Zhubi A, Veldic M, Puri NV, Kadriu B, Caruncho H, Loza I, Sershen H, Lajtha A, Smith RC, Guidotti A, Davis JM, Costa E (2009) An upregulation of DNA-methyltransferase 1 and 3a expressed in telencephalic GABAergic neurons of schizophrenia patients is also detected in peripheral blood lymphocytes. Schizophr Res 111:115–122

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all tissue donors and their families as well as to the BrainNet Europe II Consortium and the German BrainNet. We thank Prof. Dr. Med. Hans A. Kretzschmar the coordinator of the BrainNet Europe II Consortium for his enormous organizational work. We thank Dr. Thomas Arzberger, Dr. Susanne Kneitz, Hannelore Schraut, Rainer Burger, Monika Siemer and Carola Gagel for excellent technical assistance. This study was supported by the European Commission’s Sixth Framework Program (BrainNet Europe II, LSHM-CT-2004-503039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna Grünblatt.

Additional information

Camelia Maria Monoranu, Edna Grünblatt, contributed equally and to be considered as equal first authors.

Isidro Ferrer, Peter Riederer, to be considered as equal last authors.

Camelia Maria Monoranu, Edna Grünblatt, Safa Al-Saraj, Andrea Schmitt, Peter Falkai, Wolfgang Roggendorf, Isidro Ferrer, Peter Riederer—Member of BrainNet Europe II Consortium (BrainNet Europe http://www.brainnet-europe.org).

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 34 kb)

(DOC 57 kb)

(DOC 69 kb)

(DOC 232 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monoranu, C.M., Grünblatt, E., Bartl, J. et al. Methyl- and acetyltransferases are stable epigenetic markers postmortem. Cell Tissue Bank 12, 289–297 (2011). https://doi.org/10.1007/s10561-010-9199-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-010-9199-z

Keywords

Navigation