Skip to main content

Advertisement

Log in

Phenotypic analysis of bovine chondrocytes cultured in 3D collagen sponges: effect of serum substitutes

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Repair of damaged cartilage usually requires replacement tissue or substitute material. Tissue engineering is a promising means to produce replacement cartilage from autologous or allogeneic cell sources. Scaffolds provide a three-dimensional (3D) structure that is essential for chondrocyte function and synthesis of cartilage-specific matrix proteins (collagen type II, aggrecan) and sulfated proteoglycans. In this study, we assessed porous, 3D collagen sponges for in vitro engineering of cartilage in both standard and serum-free culture conditions. Bovine articular chondrocytes (bACs) cultured in 3D sponges accumulated and maintained cartilage matrix over 4 weeks, as assessed by quantitative measures of matrix content, synthesis, and gene expression. Chondrogenesis by bACs cultured with Nutridoma as a serum replacement was equivalent or better than control cultures in serum. In contrast, chondrogenesis in insulin-transferrin-selenium (ITS+3) serum replacement cultures was poor, apparently due to decreased cell survival. These data indicate that porous 3D collagen sponges maintain chondrocyte viability, shape, and synthetic activity by providing an environment favorable for high-density chondrogenesis. With quantitative assays for cartilage-specific gene expression and biochemical measures of chondrogenesis in these studies, we conclude that the collagen sponges have potential as a scaffold for cartilage tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2D:

two-dimensional

3D:

three-dimensional

AGG:

aggrecan

bACs:

bovine articular chondrocytes

COL I:

type I collagen

COL II:

type II collagen

FBS:

fetal bovine serum

G3PDH:

glyceraldehyde-3-phosphate dehydrogenase

HEPES:

4-(2-hydroxyethyl)piperazine-1-ethansulfonic acid

ITS:

insulin-transferrin-sodium selenite

Nut:

nutridoma

OD:

optical density

RT-PCR:

reverse transcriptase-polymerase chain reaction

s-GAG:

sulfated glycosaminoglycan

References

  • P.D. Benya S.R. Padilla M.E. Nimni (1978) ArticleTitleIndependent regulation of collagen types by chondrocytes during the loss of differentiated function in culture Cell 15 1313–1321 Occurrence Handle10.1016/0092-8674(78)90056-9 Occurrence Handle1:CAS:528:DyaE1MXhtVWit78%3D Occurrence Handle729001

    Article  CAS  PubMed  Google Scholar 

  • P.D. Benya J.D. Shaffer (1982) ArticleTitleDedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels Cell 30 215–224 Occurrence Handle10.1016/0092-8674(82)90027-7 Occurrence Handle1:CAS:528:DyaL38XlsVanur8%3D Occurrence Handle7127471

    Article  CAS  PubMed  Google Scholar 

  • B.D. Boyan T.W. Hummert D.D. Dean Z. Schwartz (1996) ArticleTitleRole of material surfaces in regulating bone and cartilage cell response Biomaterials 17 137–146 Occurrence Handle1:CAS:528:DyaK28Xnslersg%3D%3D Occurrence Handle8624390

    CAS  PubMed  Google Scholar 

  • M. Brittberg A. Lindahl A. Nilsson C. Ohlsson O. Isaksson L. Peterson (1994) ArticleTitleTreatment of deep cartilage defects in the knee with autologous chondrocyte transplantation N. Engl. J. Med. 331 889–895 Occurrence Handle1:STN:280:DyaK2czlvFGlug%3D%3D Occurrence Handle8078550

    CAS  PubMed  Google Scholar 

  • M. Brittberg L. Peterson E. Sjogren-Jansson T. Tallheden A. Lindahl (2003) ArticleTitleArticular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments J. Bone Joint Surg. Am. 85A(Suppl 3) 109–115

    Google Scholar 

  • K. Chaipinyo B.W. Oakes M.P. van Damme (2002) ArticleTitleEffects of growth factors on cell proliferation and matrix synthesis of low-density, primary bovine chondrocytes cultured in collagen i gels J. Orthop. Res. 20 1070–1078 Occurrence Handle1:CAS:528:DC%2BD38XmsVersr4%3D Occurrence Handle12382975

    CAS  PubMed  Google Scholar 

  • K. Chaipinyo B.W. Oakes M.P. Van Damme (2004) ArticleTitleThe use of debrided human articular cartilage for autologous chondrocyte implantation: Maintenance of chondrocyte differentiation and proliferation in type i collagen gels J. Orthop. Res. 22 446–455 Occurrence Handle1:CAS:528:DC%2BD2cXpsVGgtQ%3D%3D Occurrence Handle15013108

    CAS  PubMed  Google Scholar 

  • R.W. Farndale C.A. Sayers A.J. Barrett (1982) ArticleTitleA direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures Connect. Tissue Res. 9 247–248 Occurrence Handle10.3109/03008208209160269 Occurrence Handle1:CAS:528:DyaL38XlslyitLY%3D Occurrence Handle6215207

    Article  CAS  PubMed  Google Scholar 

  • C. Frondoza A. Sohrabi D. Hungerford (1996) ArticleTitleHuman chondrocytes proliferate and produce matrix components in microcarrier suspension culture Biomaterials 17 879–888 Occurrence Handle1:CAS:528:DyaK28XjtVKgt7s%3D Occurrence Handle8718933

    CAS  PubMed  Google Scholar 

  • L.C. Gerstenfeld T. Uporova J. Schmidt P.G. Strauss S.D. Shih L.F. Huang C. Gundberg S. Mizuno J. Glowacki (1996) ArticleTitleOsteogenic potential of murine osteosarcoma cells: comparison of bone-specific gene expression in in vitro and in vivo conditions Lab. Invest. 74 895–906 Occurrence Handle1:STN:280:DyaK283htlCqtw%3D%3D Occurrence Handle8642785

    CAS  PubMed  Google Scholar 

  • J. Glowacki E. Trepman J. Folkman (1983) ArticleTitleCell shape and phenotypic expression in chondrocytes Proc. Soc. Exp. Biol. Med. 172 93–98 Occurrence Handle1:CAS:528:DyaL3sXhtVGitbs%3D Occurrence Handle6828458

    CAS  PubMed  Google Scholar 

  • Glowacki J., Yates K.E., MacLean R. and Mizuno S. 2005. In vitro engineering of cartilage: Effects of serum substitutes, TGF-β, and IL-1α. Orthodont. Craniofac. Res. (In press)

  • D.A. Grande C. Halberstadt G. Naughton R. Schwartz R. Manji (1997) ArticleTitleEvaluation of matrix scaffolds for tissue engineering of articular cartilage grafts J. Biomed. Mater. Res. 34 211–220 Occurrence Handle1:CAS:528:DyaK2sXhtVygtrs%3D Occurrence Handle9029301

    CAS  PubMed  Google Scholar 

  • L. Hangody P. Fules (2003) ArticleTitleAutologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience J. Bone Joint Surg. Am. 85A(Suppl 2) 25–32

    Google Scholar 

  • H.J. Hauselmann R.J. Fernandes S.S. Mok T.M. Schmid J.A. Block M.B. Aydelotte K.E. Kuettner E.J. Thonar (1994) ArticleTitlePhenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads J. Cell Sci. 107 IssueIDPt 1 17–27 Occurrence Handle8175906

    PubMed  Google Scholar 

  • T.M. Hering J. Kollar T.D. Huynh J.B. Varelas L.J. Sandell (1994) ArticleTitleModulation of extracellular matrix gene expression in bovine high-density chondrocyte cultures by ascorbic acid and enzymatic resuspension Arch. Biochem. Biophys. 314 90–98 Occurrence Handle1:CAS:528:DyaK2cXmsFantL4%3D Occurrence Handle7944410

    CAS  PubMed  Google Scholar 

  • A.L. Horwitz A. Dorfman (1970) ArticleTitleThe growth of cartilage cells in soft agar and liquid suspension J. Cell Biol. 45 434–438 Occurrence Handle1:STN:280:DyaE3M3ms1KjsA%3D%3D Occurrence Handle4935443

    CAS  PubMed  Google Scholar 

  • N.M. Jomha G. Lavoie K. Muldrew N.S. Schachar L.E. McGann (2002) ArticleTitleCryopreservation of intact human articular cartilage J. Orthop. Res. 20 1253–1255 Occurrence Handle1:CAS:528:DC%2BD38XotVWhs7k%3D Occurrence Handle12472237

    CAS  PubMed  Google Scholar 

  • Y.J. Kim R.L. Sah J.Y. Doong A.J. Grodzinsky (1988) ArticleTitleFluorometric assay of DNA in cartilage explants using hoechst 33258 Anal. Biochem. 174 168–176 Occurrence Handle1:CAS:528:DyaL1cXmt1Kju7o%3D Occurrence Handle2464289

    CAS  PubMed  Google Scholar 

  • T. Kubo Y. Arai K. Namie K. Takahashi T. Hojo S. Inoue K. Ueshima T. Shiga Y. Yutani Y. Hirasawa (2001) ArticleTitleTime-sequential changes in biomechanical and morphological properties of articular cartilage in cryopreserved osteochondral allografting J. Orthop. Sci. 6 276–281 Occurrence Handle1:STN:280:DC%2BD3Mvjslyhtg%3D%3D Occurrence Handle11484123

    CAS  PubMed  Google Scholar 

  • J.W. Lee Y.H. Kim K.D. Park K.S. Jee J.W. Shin S.B. Hahn (2004) ArticleTitleImportance of integrin beta1-mediated cell adhesion on biodegradable polymers under serum depletion in mesenchymal stem cells and chondrocytes Biomaterials 25 1901–1909 Occurrence Handle1:CAS:528:DC%2BD2cXktlWltw%3D%3D Occurrence Handle14738854

    CAS  PubMed  Google Scholar 

  • D.A. Lee T. Reisler D.L. Bader (2003) ArticleTitleExpansion of chondrocytes for tissue engineering in alginate beads enhances chondrocytic phenotype compared to conventional monolayer techniques Acta Orthop. Scand. 74 6–15 Occurrence Handle12635786

    PubMed  Google Scholar 

  • W.J. Li K.G. Danielson P.G. Alexander R.S. Tuan (2003) ArticleTitleBiological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds J. Biomed. Mater. Res. 67 1105–1114

    Google Scholar 

  • G.A. Loredo M.H. MacDonald H.P. Benton (1996) ArticleTitleRegulation of glycosaminoglycan metabolism by bone morphogenetic protein-2 in equine cartilage explant cultures Am. J. Vet. Res. 57 554–559 Occurrence Handle1:CAS:528:DyaK28XisFymur8%3D Occurrence Handle8712524

    CAS  PubMed  Google Scholar 

  • S. Mizuno F. Allemann J. Glowacki (2001) ArticleTitleEffects of medium perfusion on matrix production by bovine chondrocytes in three-dimensional collagen sponges J. Biomed. Mater. Res. 56 368–375 Occurrence Handle1:CAS:528:DC%2BD3MXksFGqu7Y%3D Occurrence Handle11372054

    CAS  PubMed  Google Scholar 

  • S. Mizuno J. Glowacki (1996) ArticleTitleThree-dimensional composite of demineralized bone powder and collagen for in vitro analysis of chondroinduction of human dermal fibroblasts Biomaterials 17 1819–1825 Occurrence Handle1:CAS:528:DyaK28Xls1OmtbY%3D Occurrence Handle8879522

    CAS  PubMed  Google Scholar 

  • S. Mizuno T. Tateishi T. Ushida J. Glowacki (2002) ArticleTitleHydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture J. Cell Physiol. 193 319–327 Occurrence Handle1:CAS:528:DC%2BD38XovVaksbo%3D Occurrence Handle12384984

    CAS  PubMed  Google Scholar 

  • C.R. Nuttelman D.J. Mortisen S.M. Henry K.S. Anseth (2001) ArticleTitleAttachment of fibronectin to poly(vinyl alcohol) hydrogels promotes nih3t3 cell adhesion, proliferation, and migration J. Biomed. Mater. Res. 57 217–223 Occurrence Handle1:CAS:528:DC%2BD3MXmtlCqsL0%3D Occurrence Handle11484184

    CAS  PubMed  Google Scholar 

  • C. Ohlendorf W.W. Tomford H.J. Mankin (1996) ArticleTitleChondrocyte survival in cryopreserved osteochondral articular cartilage J. Orthop. Res. 14 413–416 Occurrence Handle1:STN:280:DyaK283ot1GgsQ%3D%3D Occurrence Handle8676254

    CAS  PubMed  Google Scholar 

  • J.R. Robbins S.P. Evanko K.G. Vogel (1997) ArticleTitleMechanical loading and tgf-beta regulate proteoglycan synthesis in tendon Arch. Biochem. Biophys. 342 203–211 Occurrence Handle1:CAS:528:DyaK2sXjvVWisbk%3D Occurrence Handle9186480

    CAS  PubMed  Google Scholar 

  • Z. Rymaszewski W.A. Abplanalp R.M. Cohen P. Chomczynski (1990) ArticleTitleEstimation of cellular DNA content in cell lysates suitable for rna isolation Anal. Biochem. 188 91–96 Occurrence Handle1:CAS:528:DyaK3cXksFGhur8%3D Occurrence Handle1699451

    CAS  PubMed  Google Scholar 

  • V.J. Sammarco R. Gorab R. Miller P.J. Brooks (1997) ArticleTitleHuman articular cartilage storage in cell culture medium: Guidelines for storage of fresh osteochondral allografts Orthopedics 20 497–500 Occurrence Handle1:STN:280:DyaK2szjvFSksA%3D%3D Occurrence Handle9195632

    CAS  PubMed  Google Scholar 

  • T. Skoog L. Ohlsen S.A. Sohn (1972) ArticleTitlePerichondrial potential for cartilagenous regeneration Scand. J. Plast. Reconstr. Surg. 6 123–125 Occurrence Handle1:STN:280:DyaE3s%2FpvVSjsA%3D%3D Occurrence Handle4652233

    CAS  PubMed  Google Scholar 

  • M. Solursh S. Meier (1974) ArticleTitleEffects of cell density on the expression of differentiation by chick embryo chondrocytes J. Exp. Zool. 187 311–322 Occurrence Handle1:STN:280:DyaE2c7js1ahtQ%3D%3D Occurrence Handle4274391

    CAS  PubMed  Google Scholar 

  • J. Upton S.A. Sohn J. Glowacki (1981) ArticleTitleNeocartilage derived from transplanted perichondrium: What is it? Plast. Reconstr. Surg. 68 166–174 Occurrence Handle1:STN:280:DyaL3M3kslOmug%3D%3D Occurrence Handle7255576 Occurrence Handle10.1097/00006534-198108000-00007

    Article  CAS  PubMed  Google Scholar 

  • C.A. Vacanti R. Langer B. Schloo J.P. Vacanti (1991) ArticleTitleSynthetic polymers seeded with chondrocytes provide a template for new cartilage formation Plast. Reconstr. Surg. 88 753–759 Occurrence Handle1:STN:280:DyaK38%2FitFansw%3D%3D Occurrence Handle1924560

    CAS  PubMed  Google Scholar 

  • S. Wakitani T. Goto S.J. Pineda R.G. Young J.M. Mansour A.I. Caplan V.M. Goldberg (1994) ArticleTitleMesenchymal cell-based repair of largefull-thickness defects of articular cartilage J. Bone Joint Surg. Am. 76 579–592 Occurrence Handle1:STN:280:DyaK2c3gtFaiuw%3D%3D Occurrence Handle8150826

    CAS  PubMed  Google Scholar 

  • S. Warden D.J. Zaleske J. Glowacki (2004) ArticleTitleFate of a chimeric joint construct in an ectopic site in scid mice Cell Transplant 13 161–168 Occurrence Handle15129762

    PubMed  Google Scholar 

  • S.K. Williams D. Amiel S.T. Ball R.T. Allen V.W. Wong A.C. Chen R.L. Sah W.D. Bugbee (2003) ArticleTitleProlonged storage effects on the articular cartilage of fresh human osteochondral allografts J. Bone Joint Surg. Am. 85-A 2111–2120 Occurrence Handle14630839

    PubMed  Google Scholar 

  • T.B. Woodfield J. Malda J. De Wijn F. Peters J. Riesle C.A. Van Blitterswijk (2004) ArticleTitleDesign of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique Biomaterials 25 4149–4161 Occurrence Handle1:CAS:528:DC%2BD2cXitlWqsLc%3D Occurrence Handle15046905

    CAS  PubMed  Google Scholar 

  • D. Zaleske G. Peretti F. Allemann D. Strongin R. MacLean K.E. Yates J. Glowacki (2003) ArticleTitleEngineering a joint: A chimeric construct with bovine chondrocytes in a devitalized chick knee Tissue Eng. 9 949–956 Occurrence Handle1:CAS:528:DC%2BD3sXotlejtbY%3D Occurrence Handle14633379

    CAS  PubMed  Google Scholar 

  • S. Zhou K.E. Yates J. Glowacki (2004) ArticleTitleDemineralized bone promotes chondrocyte or osteoblast differentiation of human marrow stromal cells cultured in collagen sponges Cell and Tissue Banking 6 33–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Glowacki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yates, K.E., Allemann, F. & Glowacki, J. Phenotypic analysis of bovine chondrocytes cultured in 3D collagen sponges: effect of serum substitutes. Cell Tissue Banking 6, 45–54 (2005). https://doi.org/10.1007/s10561-005-5810-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-005-5810-0

Keywords

Navigation