Skip to main content
Log in

Atomic functions: Generalization to the multivariable case and promising applications

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

Main trends in the theory of atomic functions are outlined. These functions have been studied for more than 35 years and gave rise to new research areas in mathematical analysis, approximation theory, numerical methods, etc. Atomic functions are infinitely differentiable solutions with compact support to special functional-differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Rvachev and V. A. Rvachev, “A certain finite function,” Dokl. Akad. Nauk UkrSSR, Ser. A, No. 8, 705–707 (1971).

  2. V. L. Rvachev and V. A. Rvachev, “Atomic functions in mathematical physics,” in: Mathematization of Knowledge and Scientific and Technological Advance, Naukova Dumka, Kiev (1975), pp. 188–199.

    Google Scholar 

  3. V. A. Rvachev, “Atomic functions and their applications,” in: Theory of R-Functions and Topical Problems of Applied Mathematics, Naukova Dumka, Kiev (1986), pp. 45–65.

    Google Scholar 

  4. V. L. Rvachev and V. A. Rvachev, Nonclassical Methods of Approximation Theory in Boundary-Value Problems [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  5. V. A. Rvachev, “Atomic functions and approximation theory,” Trans. of the V. A. Steklov Mat. Inst., 180, 186–187 (1987).

    Google Scholar 

  6. V. A. Rvachev, “Compactly supported solutions of functional-differential equations and their applications,” Usp. Mat. Nauk, 45, No. 1 (271), 77–103 (1990).

    MathSciNet  Google Scholar 

  7. V. A. Rvachev, “Compactly supported solutions of functional-differential equations and their applications,” Russ. Math. Surveys, 45, 87–120 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  8. E. A. Gorin, “On compactly supported solutions for some functional-differential equations,” Usp. Mat. Nauk, 36, No. 4, 211–212 (1981).

    Google Scholar 

  9. M. Z. Berkolaiko and I. Ya. Novikov, “On infinitely smooth compactly supported almost-wavelets,” Dokl. Ross. Acad. Nauk, 326, No. 6, 935–938 (1992).

    Google Scholar 

  10. M. Z. Berkolaiko and I. Ya. Novikov, “On infinitely smooth compactly supported almost-wavelets,” Mat. Zametki, 56, No. 3, 3–12 (1994).

    MathSciNet  Google Scholar 

  11. G. Derfel, N. Dyn, and D. Levin, “Generalized refinement equations and subdivision processes,” J. Approx. Theory, 80, 272–297 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  12. P. G. Lemairie-Rieusset, “Functions d’echelle interpolantes, polynomes de Bernstein et ondelettes non stationnaires,” Revista Matematica Iberoamericana, 13, No. 1, 91–188 (1997).

    MathSciNet  Google Scholar 

  13. N. Dyn and D. Levin, “The subdivision experience,” in: P. J. Lourent, A. Le Mehaute, and L.L. Schumaker (eds), Curves and Surfaces II, AKPeters, Boston (1991), pp. 1–17.

    Google Scholar 

  14. N. Dyn and D. Levin, “Subdivision schemes in geometric modeling,” in: Proc. School of Mat. Sci., Tel-Aviv University, http://cs-structure.inr.ac.ru, pp. 1–66.

  15. J. Shen, “Refinement differential equations and wavelets,” Methods and Appl. of Analysis, 5, No. 5, 283–316 (1998).

    MATH  Google Scholar 

  16. J. Shen, “Combinatorics for wavelets: The umbral refinement equation,” Studies Appl. Math., 102, No. 2, 121–147 (1999).

    Article  Google Scholar 

  17. N. Dyn and A. Ron, “Multiresolution analysis by infinitely differentiable compactly supported Functions,” Appl. and Comput. Harmonic Analysis (1992).

  18. C. De Boor, R. A. DeVore, and A. Ron, “On The construction of multivariate (pre)wavelets,” in: Constructive Approximation, Special Issue on Wavelets, 9, 123–166 (1993).

    Article  MATH  Google Scholar 

  19. G. Strang and D. X. Zhou, Inhomogeneous Refinement Equations, City University of Hong Kong (1998).

  20. R.-Q. Jia, S. L. Lee, and A. Sharma, “Spectral properties of continuous refinement operators,” Proc. AMS, 126, No. 3, 729–737 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  21. R.-Q. Jia, Q. Jiang, and Z. Shen, “Distributional solutions of nonhomogeneous discrete and continuous refinement equations,” SIAM J. Math. Anal., 32, No. 2, 420–434 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Gotovac and V. Kozulic, “FFCM (the Fup Fragment Collocation Method) in elasto-plastic analysis of the torsion of prismatic bars,” in: Proc. Conf. Numerical Methods in Continuum Mechanics (2000).

  23. Computerra, Thematic Issue “Vsplesk,” No. 8, 28–53 (1998).

  24. N. M. Astaf’eva, “Wavelet-analysis: Theoretical foundations and examples of application,” Usp. Mat. Nauk, 166, No. 11, 1145–1170 (1996).

    Google Scholar 

  25. I. Ya. Novikov and S. B. Stechkin, “Basic wavelet theory,” Usp. Mat. Nauk, 53, No. 6 (324), 53–128 (1998).

    MathSciNet  Google Scholar 

  26. I. M. Dremin, O.V. Ivanov, and V. A. Nechitailo, “Wavelets and their application,” Usp. Mat. Nauk, 171, No. 5, 465–501 (2001).

    Article  Google Scholar 

  27. W. Hilberg, “Impulse und Impulsfolgen, die durch Integration oder Differentiation in einem veränderten Zeitmaütab reproduziert warden,” Arkiv für Elektrizität und Übertragung Technik (AEU), Band 25, Heft 1, 39–48 (1971).

    Google Scholar 

  28. W. Hilberg, “Mehrdimensionale Morse-Thue-Folgen,” Mathemat. Physik, Physik in unserer Zeit, 22, No. 1, 24–28 (1991).

    Article  Google Scholar 

  29. V. A. Marchenko, Spectral Theory of Sturm-Liouville Operators [in Russian], Naukova Dumka, Kiev (1972).

    MATH  Google Scholar 

  30. V. L. Rvachev, V. A. Rvachev, V. M. Kolodyazhny, V. V. Organov, and A. A. Dabagyan, “Digital generator of a bell-shaped function,” USSR Inventor’s Certificate No. 2469082, Byull. Izobret., No. 32 (1978).

  31. V. L. Rvachev, V. A. Rvachev, V. M. Kolodyazhny, V.V. Organov, and A. A. Dabagyan, “Digital generator of bell-shaped functions,” USSR Inventor’s Certificate No. 2570213, Byull. Izobret. No. 20 (1978).

  32. V. F. Kravchenko, V. A. Rvachev, and V. L. Rvachev, “Construction of new windows for signal processing on the basis of atomic functions,” Dokl. Akad. Nauk SSSR, 306, No. 1, 78–81 (1989).

    MathSciNet  Google Scholar 

  33. A. S. Gorshkov, V. F. Kravchenko, V. A. Rvachev, and V. L. Rvachev, “Application of atomic functions to digital filter design,” Dokl. Akad. Nauk SSSR, 321, No. 4, 697–700 (1991).

    MathSciNet  Google Scholar 

  34. A. S. Gorshkov, V. F. Kravchenko, V. A. Rvachev, and V. L. Rvachev, “Signal digitization and interpolation method based on the theory of atomic functions,” Dokl. Akad. Nauk SSSR, 321, No. 5, 914–918 (1991).

    MathSciNet  Google Scholar 

  35. V. A. Afanas’ev, V. F. Kravchenko, V. A. Rvachev, and V. L. Rvachev, “Image reconstruction by means of deconvolution windows based on atomic functions,” Dokl. Akad. Nauk SSSR, 321, No. 5, 938–940 (1991).

    MathSciNet  Google Scholar 

  36. A. S. Gorshkov, V. F. Kravchenko, and V. A. Rvachev, “Estimation of the discrete derivative of a signal on the basis of atomic functions,” Izmer. Tekhnika, No. 1, 8–10 (1992).

  37. V.F. Kravchenko, V. L. Rvachev, and V. A. Rvachev, “Mathematical methods of signal processing based on atomic functions,” Radiotekhnika i Elektronika, 40, No. 9, 1385–1406 (1995).

    Google Scholar 

  38. V. F. Kravchenko, V. A. Rvachev, and A. F. Chaplin, “The use of atomic functions in antenna theory,” Radiotekhnika, Nos. 1–2, 8–14 (1995).

  39. V. F. Kravchenko and V. A. Rvachev, “Applications of atomic functions to FIR filter design,” Radiotekhnika, No. 10, 80–82 (1995).

  40. Yu.V. Gulyaev, V. F. Kravchenko, and V. A. Rvachev, “Synthesis of new windows on the basis of atomic functions,” Dokl. Ross. Acad. Nauk, 342, No. 1, 20–31 (1995).

    Google Scholar 

  41. V. F. Kravchenko, V. L. Rvachev, and V. A. Rvachev, “Mathematical methods for signal processing based on atomic functions,” J. of Com. Technology and Electronics, 40(12), 118–137 (1995).

    Google Scholar 

  42. V. F. Kravchenko, V. A. Rvachev, and V. I. Pustovoit, “An algorithm of construction of wavelet systems of signal processing,” Dokl. Ross. Acad. Nauk, 346, No. 1, 31–32 (1996).

    MathSciNet  Google Scholar 

  43. V. F. Kravchenko and V. A. Rvachev, “Wavelet systems and their application to signal processing,” Foreign Radioelectronics: Successes of Modern Radioelectronics, No. 4, 3–20 (1996).

  44. V. F. Kravchenko and V. A. Rvachev, “Application of atomic functions to the solution of boundary-value problems of mathematical physics,” Foreign Radioelectronics: Successes of Modern Radioelectronics, No. 8, 6–22 (1996).

  45. V. F. Kravchenko, V. A. Rvachev, and V. I. Pustovoit, “Orthogonal wavelet system based on atomic functions,” Dokl. Ross. Acad. Nauk, 351, No. 1, 16–18 (1996).

    MathSciNet  Google Scholar 

  46. V. F. Kravchenko, A. A. Kuraev, and V. A. Rvachev, “Atomic functions in problems of optimal control of dynamic systems,” Radiotekhnika, No. 9, 4–8 (1997).

  47. V. F. Kravchenko, A. A. Kuraev, and V. A. Rvachev, “Gradient Iteration Method for Solving Dynamic System Optimal Control Problems Based on Atomic Functions,” Electromagnetic Waves and Electron. Systems, 3, No. 8, 21–25 (1998).

    Google Scholar 

  48. V. F. Kravchenko and M. A. Besarab, “Approximation by atomic functions and numerical methods for solving Fredholm integral equations of the second kind,” Dif. Uravn., 37, No. 10, 1406–1414 (2001).

    Google Scholar 

  49. E. G. Zelkin and V. F. Kravchenko, “Atomic functions in antenna synthesis problems and new synthesized windows,” Radiotekhnika i Electronika, 46, No. 8, 903–931 (2001).

    Google Scholar 

  50. E. G. Zelkin, V. F. Kravchenko, and M. A. Besarab, “Interpolation of signals with a finite spectrum by Fourier transforms of atomic functions and application of this interpolation to antenna synthesis problems,” Radiotekhnika i Electronika, 47, No. 4, 1–8 (2002).

    Google Scholar 

  51. V. F. Kravchenko, Lectures on the Theory of Atomic Functions and Their Applications [in Russian], Radiotekhnika, Moscow (2003).

    Google Scholar 

  52. E. G. Zelkin, V. F. Kravchenko, and V. P. Gusevskii, Constructive Methods of Approximation in the Theory of Antennas [in Russian], Science-Press, Moscow (2005).

    Google Scholar 

  53. Ye. V. Bodyanskii, O. I. Mikhalyov, and I. P. Plise, “Adaptive damage detection in objects of artificial neural networks,” System Technologies, Dnipropetrovs’k (2000).

  54. Y. Meyer, “Principe d’incertitude, bases hilbertiennes en algebre d’operateures,” in: Seminaire BOURBAKI, 1985–1986, No. 662, 209–223, S.M.F. Asterisque (1987), pp. 145–146.

  55. Y. Meyer, “Wavelets and operators,” Cambridge Studies in Advanced Mathematics, 37 (1993).

  56. I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, Penn. (1992).

    MATH  Google Scholar 

  57. A. K. Louis, P. Maaß, and A. Rieder, Wavelets: Theory and Applications, Wiley, Chichester (1997).

    MATH  Google Scholar 

  58. S. G. Malatt, A Wavelet Tour of Signal Processing, Academ. Press, San Diego-London-Boston-New York (1998).

    Google Scholar 

  59. V. M. Kolodiazhny and V. O. Rvachov, “On the Construction of Y. Meyer Wavelets Using up(x) Function,” Dop. NAN Ukr., No. 10, 18–24 (1993).

  60. V. M. Kolodiazhny and V. O. Rvachov, “Wavelet systems based on atomic functions,” in: Proc. Intern. Congr. ICM’94, Zurich (1994), p. 97.

  61. V. M. Kolodyazhny, “Nonlinear Identification Problem Solution Using the Wavelets of the Atomic Functions,” in: Proc. Intern. Congr. ICM’98, Berlin (1998), p. 136.

  62. V. M. Kolodyazhny, “Wavelet-analysis of functions and mathematical aspects of its application,” Visnyk Derzh. Univ. “L’vivs’ka Politekhnika,” Prykl. Mat., No. 337, 38–39 (1998).

  63. V. M. Kolodiazhny and V. O. Rvachov, “On some elementary orthogonal wavelet systems,” Dop. NAN Ukr., No. 2, 20–22 (1995).

  64. T. V. Rvachova, “On a relation between the coefficients and the sum of a generalized Taylor series,” Dop. NAN Ukr., No. 7, 26–30 (2002).

  65. T. V. Rvachova, “On the asymptotics of the basis functions of a generalized Taylor series,” Dop. NAN Ukr., No. 5, 37–41 (2003).

  66. T. V. Rvachova, “On the asymptotics of the basis functions of a generalized Taylor series,” Visn. Kharkiv. National Univ., Ser. Mat., Prikl. Mat. i Mekh., No. 602, 94–104 (2003).

  67. T. V. Rvachova, “Asymptotic development of basis functions of a generalized Taylor series,” Dop. NAN Ukr., No. 10, 35–39 (2005).

  68. T. V. Rvacheva, “On a relation between the coefficients and the sum of the generalized Taylor series,” Mat. Fizika, Analiz, Geometriya, 10, No. 2, 262–268 (2005).

    Google Scholar 

  69. T. V. Rvachova, “Sufficient conditions of the membership of an infinitely differentiable function in a Roumieu space,” Dop. NAN Ukr., No. 2, 35–37 (2004).

  70. T. Rvachova, “Application of a generalized Taylor series to the construction of quadrature formulas,” Visnyk Derzh. Univ. “L’vivs’ka Politekhnika,” Ser. Prykl. Mat., Inform., No. 7, 81–85 (2003).

  71. V. A. Rvachev and V. M. Kuznichenko, “Generalized Taylor series based on splines of infinite smoothness,” Modeling in Mechanics, 5(22), 86–94, SO RAN, Novosibirsk (1994).

    Google Scholar 

  72. V. M. Kuznichenko, “Construction of new basis functions of generalized Taylor series,” in: Prikl. Mat. Tekhn. Kibern., Kharkov (1987), pp. 9–10.

  73. V. M. Kuznichenko, “Estimation of the closeness of functions and their derivatives belonging to classes of functions of finite smoothness,” in: Methods of Mat. Physics and Their Applications, Kharkov (1988), pp. 88–95.

  74. V. M. Kuznichenko, “Spaces of infinitely differentiable functions and generalized Taylor series,” Dokl. Akad Nauk UkrSSR, Ser. A, No. 3, 25–27 (1989).

  75. V. M. Kuznichenko, “Generalized Taylor series for a class of functions,” Mat. Zametki, 46, No. 4, 120–122 (1989).

    MATH  MathSciNet  Google Scholar 

  76. V. M. Kuznichenko, “Numerical characteristics of functions,” in: Methods of Math. Physics in Boundary-Value Problems, KhAI, Kharkov (1991), pp. 3–6.

    Google Scholar 

  77. Yu. A. Ivanov, “Reconstruction of infinitely differentiable functions from the values of derivatives on discrete sets,” in: Methods of Math. Physics in Boundary-Value Problems, KhAI, Kharkov (1991), pp. 13–16.

    Google Scholar 

  78. V. M. Kolodyazhny and V. O. Rvachov, “An approximate method for solving problems of nonstationary heat conduction on the basis of an extended Taylor series,” Dop. NAN Ukr., No. 10, 22–26 (2004).

  79. V. A. Rvachev, “Compactly supported functions,” in: Methods Math. Physics in Boundary-Value Problems, KhAI, Kharkov (1991), pp. 7–9.

    Google Scholar 

  80. V. M. Kolodyazhny and V. O. Rvachov, “Determination of approximation properties of structural solutions in boundary-value problems,” Dop. NAN Ukr., No. 11, 22–26 (2003).

  81. V. M. Kolodyazhny and V. A. Rvachev, “Applications of atomic functions to numerical simulation in electromagnetic theory,” in: Proc. 5th Intern. Kharkov Symposium on Physics and Engineer. of Microwaves, Millimeter and Submillimeter Waves, MSMW’2004, IRE NASU, Kharkov (2004), pp. 916–919.

    Google Scholar 

  82. V. M. Kolodyazhny, V. O. Rvachov, and Ye. P. Tomilova, “An interesting function with compact support,” Dop. NAN Ukr., 8, 14–18 (2005).

    Google Scholar 

  83. V. M. Kolodyazhny, “Generalization of atomic functions to the case of many variables,” in: Development of Numerical Methods of the Theory of R-Functions and Their Application, in: Res. Rep., State Reg. No. 0102U001479, IPMash NANU, Kharkov (2005), pp. 64–109.

    Google Scholar 

  84. V. M. Kolodyazhny, “Geometrically structured atomic functions,” Dop. NAN Ukr., No. 6, 12–15 (2003).

  85. V. A. Zaslawski and V. M. Kolodyazhny, “Functional and algorithmic descriptions of geometric distinctive features of shaped castings in simulating casting processes,” Cybernetics and Systems Analysis, No. 2, 161–169 (2004).

  86. V. M. Kolodyazhny, “Combined approximation of the solution of a nonstationary heat-conduction problem,” Visnyk Zaporiz’k. Univ., No. 3, 45–52 (2002).

  87. V. M. Kolodyazhny and V. O. Rvachov, “Compactly supported functions generated by the Laplace operator,” Dop. NAN Ukr., No. 4, 17–22 (2004).

  88. V. M. Kolodyazhny and V.O. Rvachov, “Compactly supported solutions of functional-differential equations with partial derivatives,” Dop. NAN Ukr., No. 5, 17–22 (2004).

  89. V. M. Kolodyazhny and V. A. Rvachov, “Atomic functions of three variables invariant with respect to a rotation group,” Cybernetics and Systems Analysis, No. 6, 118–130 (2004).

  90. V. M. Kolodyazhny and V. O. Rvachov, “Atomic functions harmonic in a ring domain,” Visnyk Kyiv. Univ., Ser. Mat, Mekhan., Nos. 11–12, 110–114 (2004).

  91. V. M. Kolodyazhny and V.O. Rvachov, “Some properties of atomic functions of many variables,” Dop. NAN Ukr., No. 1, 12–20 (2005).

  92. V. M. Kolodyazhny and V.O. Rvachov, “Compactly supported functions generated by a biharmonic operator,” Dop. NAN Ukr., No. 2, 14–21 (2006).

  93. V. M. Kolodyazhny, “Compactly supported functions generated by a polyharmonic operator,” Cybernetics and Systems Analysis, No. 5, 118–130 (2006).

  94. C. A. M. Duarte, “A review of some meshless methods to solve partial differential equations,” Techn. Rep. 95-06.TICAM, Univ. of Texas at Austin (1995).

  95. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, “Meshless methods: An overview and recent developments,” Comput. Methods Appl. Mech. Engr., 139, 3–47 (1996).

    Article  MATH  Google Scholar 

  96. I. Babuska, U. Banerjee, and J. E. Osborn, “Survey of meshless and generalized finite element methods: A unified approach,” in: Acta Numerica, DOI: 10.1017 / S0962492902000090, Cambridge Univ. Press (2003), pp. 1–125.

  97. M. Griebel and M. A. Schweitzer (eds.), “Meshfree Methods for Partial Differential Equations,” Lecture Notes in Comput. Sci. and Engineering, 26, 161–192 (2002).

  98. S. G. Mikhlin, Numerical Realization of Variational Methods [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  99. M. D. Buhmann, “Radial basis functions,” Acta Numerica, 9, 1–38 (2000).

    Article  MathSciNet  Google Scholar 

  100. M. D. Buhmann, Radial Basis Functions: Theory and Implementations, Cambridge Univ. Press, Cambridge, United Kingdom (2004).

    Google Scholar 

  101. E. J. Kansa, “Motivation for using radial basis functions to solve PDEs,” in: RBF-PDE Web page http://uahtitan.uah.edu/alex, Lawrence Livermore National Laboratory and Embry-Riddle Aeronautical University, Livermore, CA 94551 (1999), pp. 1–8.

    Google Scholar 

  102. G. E. Fasshauer, “Solving differential equations with radial basis functions: Multilevel methods and smoothing,” Advances in Comp. Math., 11, Nos. 2–3, 139–159 (1999).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kolodyazhny.

Additional information

__________

Translated from Kibernetika i Sistemnyi Analiz, No. 6, pp. 155–177, November–December 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolodyazhny, V.M., Rvachov, V.A. Atomic functions: Generalization to the multivariable case and promising applications. Cybern Syst Anal 43, 893–911 (2007). https://doi.org/10.1007/s10559-007-0114-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-007-0114-y

Keywords

Navigation