Skip to main content
Log in

Tree decomposition and discrete optimization problems: A survey

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

The paper considers tree decomposition methods as applied to discrete optimization and presents relevant mathematical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Mikhalevich, I. V. Sergienko, A. I. Kuksa, V. A. Roshchin, and V. A. Trubin, Results of Experimental Study of the Efficiency of Methods included into the DISPRO Software [in Russian], Prepr. AN USSR, IK, 80-47, Kyiv (1980).

  2. Yu. I. Zhuravlyov, Selected Scientific Works [in Russian], Magistr, Moscow (1998).

    Google Scholar 

  3. O. A. Shcherbina, “Application of local algorithms to solving integer linear programming problems,” in: Problems of Cybernetics [in Russian], NSK AN SSSR, Moscow (1989), pp. 19–34.

    Google Scholar 

  4. O. A. Shcherbina, “Nonserial modification of a local decomposition algorithm for discrete optimization problems,” in: Dynamic Systems [in Russian], Issue 19, TNU, Simferopol (2005), pp. 179–190.

    Google Scholar 

  5. B. Courcelle, “The monadic second-order logic of graphs I: Recognizable sets of finite graphs,” Inform. and Comput., 85, 12–75 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Arnborg, D. G. Corneil, and A. Proskurowski, “Complexity of finding embeddings in a k-tree,” SIAM J. Alg. Disc. Math., 8, 277–284 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  7. W. Cook and P. D. Seymour, “An algorithm for the ring-routing problem,” in: Bellcore Techn. Memorandum, Bellcore (1994).

  8. W. Cook and P. D. Seymour, “Tour merging via branch decomposition,” Inform. J. Comput., 15, No. 3, 233–248 (2003).

    Article  MathSciNet  Google Scholar 

  9. A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. van Hoesel, “Treewidth: Computational experiments,” in: Zib-Report-38, Berlin (2001).

  10. M. C. A. Koster, S. P. M van Hoesel, and A. W. J. Kolen, “Solving partial constraint satisfaction problems with tree decomposition,” Networks, 40, 170–180 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  11. V. A. Emelichev, O. I. Mel’nikov, V. I. Sarvanov, and R. I. Tyshkevich, Lectures on Graph Theory [in Russian], Nauka, Moscow (1990).

    MATH  Google Scholar 

  12. V. A. Evstigneev and V. N. Kasyanov, The Explanatory Dictionary on Graph Theory in Computer Science and Programming [in Russian], Nauka, Novosibirsk (1999) (http://pco.iis.nsk.su/grapp).

    Google Scholar 

  13. F. Harary, Graph Theory, Addison-Wesley, Reading, MA (1969).

    Google Scholar 

  14. N. Robertson and P. Seymour, “Graph minors II. Algorithmic aspects of treewidth,” J. Algorithms, 7, 309–322 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  15. H. L. Bodlaender, “Discovering treewidth,” in: Proc. SOFSEM Springer-Verlag, LNCS, 3381 (2006), pp. 1–16.

    MathSciNet  Google Scholar 

  16. H. L. Bodlaender, “Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees,” J. Algorithms, 11, 631–643 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  17. S. J. Lauritzen and D. J. Spiegelhalter, “Local computations with probabilities on graphical structures and their application to expert systems,” J. Roy. Statist. Soc., Ser. B, 50, 157–224 (1988).

    MATH  MathSciNet  Google Scholar 

  18. J. Alber, F. Dorn, and R. Niedermeier, “Experimental evaluation of a tree decomposition-based algorithm for vertex cover on planar graphs,” Disc. Appl. Math., 145, 210–219 (2004).

    MathSciNet  Google Scholar 

  19. M. Commandeur, Solving Vertex Coloring using Tree Decompositions: Master’s Thesis, Univ. Maastricht (2004).

  20. F. Gavril, “The intersection graphs of subtrees in trees are exactly the chordal graphs,” J. Combin. Theory, Ser. B, 16, 47–56 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  21. J. A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall Inc., Englewood Cliffs (1981).

    MATH  Google Scholar 

  22. S. Parter, “The use of linear graphs in Gauss elimination,” SIAM Review, 3, 119–130 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  23. D. J. Rose, “A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations,” in: R. C. Read (ed.), Graph Theory and Computing, Acad. Press, New York (1972), pp. 183–217.

    Google Scholar 

  24. A. Hajnal and J. Surányi, “Über die Ausflösung von Graphen in vollständige Teilgraphen,” Ann. Univ. Sci. Budapest, No. 1, 113–121 (1958).

  25. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, “On the desirability of acyclic database systems,” J. ACM, 30, 479–513 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  26. R. E. Tarjan and M. Yannakakis, “Simple linear-time algorithms to test chordality of graphs, test acyclity of hypergraphs, and selectively reduce acyclic hypergraphs,” SIAM J. Comput., 13, 566–579 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  27. S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with probabilities on graphical structures and their application to expert systems,” J. Roy. Statist. Soc., 50, No. 2, 157–224 (1988).

    MATH  MathSciNet  Google Scholar 

  28. H. L. Bodlaender, “A tourist guide through treewidth,” Acta Cybernetica, 11, 1–21 (1993).

    MATH  MathSciNet  Google Scholar 

  29. M. Yannakakis, “Computing the minimum fill-in is NP-complete,” SIAM J. Alg. Disc. Math., 2, 77–79 (1981).

    MATH  MathSciNet  Google Scholar 

  30. C. E. Shannon, “The zero error capacity of a noisy channel,” IEEE Trans. Inform. Theory, 2, S8–S19 (1956).

    Article  MathSciNet  Google Scholar 

  31. C. Berge “Färbung von Graphen, deren sämtliche bzw deren ungerade Kreise starr sind (Zusammenfassung),” Wiss. Z. Martin-Luther-Univ., Halle-Wittenberg, Math.-Natur. Reihe, 10, 114–115 (1961).

    Google Scholar 

  32. U. Kjaerulff, “A note on triangulated graphs and junction trees,” in: Lecture Note, Aalborg Univ. (1992).

  33. M. Groetschel, L. Lovasz, and A. Schrijver, “Polynomial algorithms for perfect graphs,” Ann. Discrete Math., 21, 325–356 (1984).

    Google Scholar 

  34. M. Groetschel, L. Lovasz, and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, New York (1988).

    MATH  Google Scholar 

  35. M. Gröetschel, L. Lovasz, and A. Schrijver, “The ellipsoid method and its consequences in combinatorial optimization,” Combinatorica, 1, 169–197 (1981).

    Article  MathSciNet  Google Scholar 

  36. T. Emden-Weinert, S. Hougardy, B. Kreuter, H. J. Prömel, and A. Steger, Einfuhrung in Graphen und Algorithmen (http://www.informatik.hu-berlin.de/alkox/lehre/skripte/ga).

  37. A. Berry, “Graph extremities and minimal separation” (http://citeseer.ist.psu.edu/berry03graph.html).

  38. G. A. Dirac, “On rigid circuit graphs,” Anh. Math. Sem. Univ. Hamburg, 25, 71–76 (1961).

    MATH  MathSciNet  Google Scholar 

  39. T. G. Lewis, B. W. Peyton, and A. Pothen, “A fast algorithm for reordering sparse matrices for parallel factorization,” SIAM J. Sci. Stat. Comput., 10, 1146–1173 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  40. D. R. Fulkerson and O. A. Gross, “Incidence matrices and interval graphs,” Pacif. J. Math., 15, 835–855 (1965).

    MATH  MathSciNet  Google Scholar 

  41. D. Rose, R. E. Tarjan, and G. Lueker, “Algorithmic aspects of vertex elimination on graphs,” SIAM J. Comput., 5, 266–283 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  42. E. Dahlhaus, P. L. Hammer, F. Maffray, and S. Olariu, “On domination elimination orderings and domination graphs,” in: Proc. 20th Intern. Workshop WG 94 (Graph-Theoret. Concepts in Comp. Sci.), LNCS, Springer Verlag, (1994), pp. 81–92.

  43. D. G. Corneil, S. Olariu, and L. Stewart, “A linear time algorithm to compute a dominating path in AT-free graphs,” Inf. Proc. Letters, 54, 253–257 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  44. A. Bretscher, D. G. Corneil, M. Habib, and C. Paul, “A simple linear time LexBFS cograph recognition algorithm-extended abstract,” in: Proc. 29th WG Workshop, LNCS, Springer-Verlag, 2880 (2003), pp. 119–130.

  45. A. Berry, J. Blair, P. Heggernes, and B. Peyton, “Maximum cardinality search for computing minimal triangulations of graphs,” Algorithmica, 39, 287–298 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  46. F. Gavril, “Algorithms for minimum coloring, maximum clique, minimum covering by cliques and maximum independent set of a chordal graph,” SIAM J. Comput., 1, 180–187 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  47. J. R. Walter, “Representations of chordal graphs as subtrees of a tree,” J. Graph Theory, 2, 265–267 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  48. P. Buneman, “A characterization of rigid circuit graphs,” Discrete Math., 9, 205–212 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  49. P. A. Bernstein and N. Goodman, “Power of natural semijoins,” SIAM J. Comput., 10, No. 4, 751–771 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  50. Y. Shibata, “On the tree representation of chordal graphs,” J. Graph Theory, 12, 421–428 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  51. C. W. Ho and R. C. T. Lee, “Counting clique trees and computing perfect elimination schemes in parallel,” Inform. Process. Lett., 31, No. 2, 61–68 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  52. J. R. S. Blair, R. E. England, and M. G. Thomason, “Cliques and their separators in triangulated graphs,” Report CS-73-88, Dept. Computer Sci., Univ. Tennessee (1988).

  53. J. R. S. Blair and B. W. Peyton, “An introduction to chordal graphs and clique trees,” in: J. A. George, J. R. Gilbert, and J. W. H. Liu (eds.), Sparse Matrix Computations: Graph Theory Issues and Algorithms, Springer Verlag, New York (1993), pp. 1–29.

    Google Scholar 

  54. Y. Villanger, “Efficient minimal triangulation of graphs by using tree decomposition,” PhD Thesis., Univ. of Bergen (2002).

  55. G. Hajos, “Über eine Art von Graphen,” Internat. Math. Nachr., 47, Problem 65 (1957).

    Google Scholar 

  56. F. S. Roberts, Graph Theory and its Applications to Problems of Society, SIAM, Philadelphia, PA (1978).

    Google Scholar 

  57. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Acad. Press, New York (1980).

    MATH  Google Scholar 

  58. N. Deo, M. S. Krishnamoorthy, and M. A. Langston, “Exact and approximate solutions for the gate matrix layout problem,” IEEE T-CAD, 6, No. 1, 79–84 (1987).

  59. P. C. Gilmore and A. J. Hoffman, “A characterization of comparability graphs and of interval graphs,” Can. J. Math., 16, 539–548 (1964).

    MATH  MathSciNet  Google Scholar 

  60. K. Menger, “Zur allgemeinen Kurventheorie,” Fund. Math., 10, 96–115 (1927).

    MATH  Google Scholar 

  61. C. G. Lekkerkerker and J. C. Boland, “Representation of a finite graph by a set of intervals on the real line,” Fund. Math., 51, 45–64 (1962).

    MATH  MathSciNet  Google Scholar 

  62. A. Berry, P. Heggernes, and Y. Villanger, “A vertex incremental approach for maintaining chordality,” Disc. Math., 306, No. 3, 318–336 (2006) (http://www.ii.uib.no/∼pinar/incremental.pdf).

    Article  MATH  MathSciNet  Google Scholar 

  63. D. Rose, “On simple characterizations of k-trees,” Disc. Math., 7, 317–322 (1974).

    MATH  Google Scholar 

  64. P. Scheffler, Linear-Time Algorithms for NP-Complete Problems Restricted to Partial k-Trees, Report R-MATH 03/87, Prepr., Akad. der Wissenschaften der DDR, Karl Weierstrass Institut für Mathematik (1987).

  65. T. V. Wimer, “Linear algorithms on k-terminal graphs,” PhD Thesis, Clemson Univ., Dept. of Computer Sci. (1987).

  66. G. A. Dirac, “In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen,” Math. Nachr., 22, 61–85 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  67. J. A. Wald and C. J. Colbourn, “Steiner trees, partial 2-trees, and minimum IFI networks,” Networks, 13, 159–167 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  68. N. Robertson and P. Seymour, “Graph minor III. Planar tree-width,” J. Combin. Theory (B), 36, 49–63 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  69. B. Courcelle, “Graph rewriting: An algebraic and logic approach,” in: J. Van Leeuwen (ed.), Handbook of Theoret. Comp. Sci., Elsevier, Amsterdam (1990), pp. 193–242.

    Google Scholar 

  70. R. Borie, R. Parker, and C. Tovey, “Deterministic decomposition of recursive graph classes,” SIAM J. Discrete Math., 4, 481–501 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  71. S. Arnborg, J. Lagergren, and D. Seese, “Easy problems for tree-decomposable graphs,” J. Algorithms, 12, No. 2, 308–340 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  72. B. Courcelle and M. Mosbah, “Monadic second order evaluations on tree-decomposable graphs,” Theor. Comp. Sci., 109, 49–82 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  73. H. L. Bodlaender, “Treewidth: algorithmic techniques and results,” in: I. Privara and P. Ruzicka (eds.), Proc. 22nd Intern. Symp. on Mathematical Foundations of Computer Science, MFCS’97, LNCS, 1295, Springer-Verlag, Berlin (1997), pp. 29–36.

    Google Scholar 

  74. H. M. Markowitz, “The elimination form of the inverse and its application to linear programming,” Manag. Sci., 3, 255–269 (1957).

    MATH  MathSciNet  Google Scholar 

  75. H. L. Bodlaender, “A linear time algorithm for finding tree-decompositions of small treewidth,” SIAM J. Computing, 25, 1305–1317 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  76. H. Röhrig, “Tree decomposition: A feasibility study,” Master’s Thesis, Max-Planck-Institut für Informatik, Saarbrücken (1998).

    Google Scholar 

  77. D. Lapoire, “Treewidth and duality for planar hypergraphs,” Prepr. (2002) (http://citeseer.ifi.unizh.ch/472064.html).

  78. V. Bouchitté, F. Mazoit, and I. Todinca, “Chordal embeddings of planar graphs,” Discrete Math., 273, 85–102 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  79. V. Bouchitté, D. Kratsch, H. Mueller, and I. Todinca, “On treewidth approximations,” Discrete Appl. Math., 136, 183–196 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  80. E. Amir, “Efficient approximations for triangulation of minimum treewidth,” Proc. 17th Conf. on Uncertainty in Artificial Intelligence (2001), pp. 7–15.

  81. G. J. Woeginger, “Exact algorithms for NP-hard problems: A survey,” Combinatorial Optimization: “Eureka, You Shrink!” LNCS, 2570, Springer, Berlin (2003), pp. 185–207.

    Google Scholar 

  82. F. V. Fomin, D. Kratsch, and I. Todinca, “Exact (exponential) algorithms for tree-width and minimum fill-in,” in: Proc. 31st Intern. Colloquium on Automata, Languages and Programming, LNCS, 3124, Springer Verlag, Berlin (2004), pp. 568–580.

    Google Scholar 

  83. S. Arnborg and A. Proskurowski, “Characterization and recognition of partial 3-trees,” SIAM J. Alg. Discrete Math., 7, 305–314 (1986).

    MATH  MathSciNet  Google Scholar 

  84. H. L. Bodlaender, A. M. C. A. Koster, F. van den Eijkhof, and L. C. van der Gaag, “Preprocessing for triangulation of probabilistic networks,” in: J. Breese and D. Koller (eds.), Proc. 17th Conf. on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco (2001), pp. 32–39.

  85. H. L. Bodlaender and A. M. C. A. Koster, “Safe separators for treewidth,” Proc. 6th Workshop on Algorithm Engineering and Experiments ALENEX04 (2004), pp. 70–78.

  86. K. Shoikhet and D. Geiger, “A practical algorithm for finding optimal triangulations,” in: Proc. Nat. Conf. on Artificial Intelligence AAAI’97, Morgan Kaufmann, San Mateo (1997), pp. 185–190.

  87. V. Gogate and R. Dechter, “A complete anytime algorithm for treewidth,” Proc. 20th Conf. on Uncertainty in Artificial Intelligence (2004) (http://citeseer.ist.psu.edu/gogate04complete.html).

  88. P. Heggernes, J. A. Telle, and Y. Villanger, “Computing minimal triangulations in time O(n α log n)=o(n 2.376),” SIAM J. Discrete Math., 19, No. 4, 900–913 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  89. J. R. S. Blair, P. Heggernes, and J. A. Telle, “A practical algorithm for making filled graphs minimal,” Theor. Comp. Sci., 250, 125–141 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  90. E. Dahlhaus, “Minimal elimination ordering inside a given chordal graph,” Proc. 3nd Intern. Workshop on Graph-Theoretic Concepts in Computer Science WG’97, LNCS, 1335, Springer Verlag, Berlin-Heidelberg (1997), pp. 132–143.

    Chapter  Google Scholar 

  91. P. Heggernes and Y. Villanger, “Efficient implementation of a minimal triangulation algorithm,” in: R. Möhring and R. Raman (eds.), Proc. 10th Ann. Eur. Symp. on Algorithms, ESA’2002, LNCS, 2461, Springer Verlag, Berlin-Heidelberg (2002), pp. 550–561.

    Google Scholar 

  92. I. V. Hicks, A. M. C. A. Koster, and E. Kolotoglu, “Branch and tree decomposition techniques for discrete optimization,” Tutorials Oper. Res., INFORMS, New Orleans (2005) (http://ie.tamu.edu/People/faculty/ Hicks/bwtw.pdf).

  93. E. Bachoore and H. L. Bodlaender, “New upper bound heuristics for tree-width,” in: S. E. Nikoletseas (ed.), Proc. 4th Intern. Workshop on Experimental and Efficient Algorithms WEA 2005, LNCS, 3503, Springer-Verlag, Berlin (2005), pp. 217–227.

    Google Scholar 

  94. F. Clautiaux, J. Carlier, A. Moukrim, and S. Negre, “New lower and upper bounds for graph treewidth,” in: J. D. P. Rolim (ed.), Proc. Intern. Workshop on Experimental and Efficient Algorithms, WEA 2003, LNCS, 2647, Springer-Verlag, Berlin (2003), pp. 70–80.

    Google Scholar 

  95. F. Clautiaux, A. Moukrim, S. Négre, and J. Carlier, “Heuristic and meta-heuristic methods for computing graph treewidth,” RAIRO Oper. Res., 38, 13–26 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  96. A. M. C. A. Koster, “Frequency assignment — models and algorithms,” PhD Thesis, Maastricht Univ., Maastricht (1999).

    Google Scholar 

  97. U. Kjaerulff, “Optimal decomposition of probabilistic networks by simulated annealing,” Statistics and Computing, 2, 2–17 (1992).

    Article  Google Scholar 

  98. P. Larranaga, C. M. H. Kuijpers, M. Roza, and R. H. Murga, “Decomposing Bayesian networks: Triangulation of the moral graph with genetic algorithms,” Statistics and Computing, 7, No. 1, 19–34 (1997).

    Article  Google Scholar 

  99. B. Lucena, “A new lower bound for tree-width using maximum cardinality search,” SIAM J. Discrete Math., 16, 345–353 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  100. H. L. Bodlaender, A. M. C. A. Koster, and T. Wolle, “Contraction and treewidth lower bounds,” in: S. Albers and T. Radzik (eds.), Proc. 12th Ann. Eur. Symp. on Algorithms, ESA2004, LNCS, 3221, Springer, Berlin (2004), pp. 628–639.

    Google Scholar 

  101. T. Wolle, A. M. C. A. Koster, and H. L. Bodlaender, “A note on contraction degeneracy,” Techn. Report UU-CS-2004-042, Utrecht Univ., Inst. of Inform. and Comput. Sci., Utrecht (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kibernetika i Sistemnyi Analiz, No. 4, pp. 102–118, July–August 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcherbina, O.A. Tree decomposition and discrete optimization problems: A survey. Cybern Syst Anal 43, 549–562 (2007). https://doi.org/10.1007/s10559-007-0080-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-007-0080-4

Keywords

Navigation