Skip to main content
Log in

CMAC Neural Network and Its Use in Problems of Identification and Control of Nonlinear Dynamic Objects

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

Efficient use of CMAC (Cerebellar Model Articulation Controller) for identification and real-time control of nonlinear dynamical systems is demonstrated. An on-line weight training algorithm is proposed. The results of modelling and controlling nonlinear objects with unknown dynamics testify to the efficiency of this network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller (CMAC),” ASME Trans. J. Dynamic Systems, Measurement, and Control, 97, No.3, 220–227 (1975).

    MATH  Google Scholar 

  2. J. S. Albus, “Data storage in cerebellar model articulation controller (CMAC),” ASME Trans. J. Dynamic Systems, Measurement, and Control, 97, No.3, 228–233 (1975.

    MATH  Google Scholar 

  3. W. T. Miller, F. H. Glanz, and L. G. Kraft, “CMAC: An associative neural network alternative to backpropagation,” Proc. IEEE, 78, No.10, 1561–1567 (1990).

    Article  Google Scholar 

  4. W. T. Miller, R. P. Hewes, F. H. Glanz, and L. G. Kraft, “Real-time dynamic control of an industrial manipulator using a neural-network-based learning controller,” IEEE Trans. Robot. Automat., 6, 1–9 (1990).

    Article  Google Scholar 

  5. Y. Iigumi, “Hierarchical image coding via cerebral model arithmetic computers,” IEEE Trans. Image Processing, 5, Oct., 1393–1401 (1996).

  6. F. H. Glanz and W. T. Miller, “Deconvolution and nonlinear inverse filtering using a neural network,” Int. Conf. on Acustics and Signal Processing, 4, 2349–2352 (1989).

    Google Scholar 

  7. J. C. Jan and Sh.-L. Hung, “High-order MS CMAC neural network,” IEEE Trans. Neural Network, 12, No.3, 598–603 (2001).

    Google Scholar 

  8. D. E. Thompson and S. Kwon, “Neighborhood sequential and random training techniques for CMAC,” IEEE Trans. Neural Network, 6, No.1, 196–202 (1995).

    Google Scholar 

  9. S. H. Lane, D. A., Handelman, and J. J. Gelfand, “Theory and development of higher-order CMAC neural networks,” IEEE Trans. Control Systems, 12, No.2, 23–30 (1992).

    Google Scholar 

  10. B. Widrow and M. E. Hoff, “Adaptive switching circuits,” in: IRE WESCON Convention Record, IRE, New York (1960), pp. 96–104.

    Google Scholar 

  11. J. Militzer and P. K. Parks, “Convergence property of associative memory in learning control systems,” AiT, No. 3, 158–184 (1989).

  12. C. He, L. Xu, and Yu. Zhang, “Learning convergence of CMAC algorithm,” Neural Processing Letters, 14(1), 61–74 (2001).

    Article  Google Scholar 

  13. M. T. Wasan, Stochastic Approximation [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  14. E. D. Aved'yan and M. Khormel', “Increasing the rate of convergence of training processes in a special associative memory system,” AiT, No. 12, 100–109 (1991).

  15. L. A. Ishchenko, B. D. Liberol', and O. G. Rudenko, “Projection algorithms of identification of linear objects,” DAN URSR, Ser. A, No. 7, 62–64 (1985).

  16. L. A. Ishchenko, B. D. Liberol', and O. G. Rudenko, “Adaptive estimation of parameters of nonstationary objects,” DAN URSR, Ser. A, No. 12, 70–72 (1985).

  17. L. A. Ishchenko, B. D. Liberol', and O. G. Rudenko, “Properties of a class of multistep adaptive identification algorithms,” Kibernetika, No. 1, 92–96 (1986).

  18. Y. Li, N. Sundararajan, and P. Saratchandran, “Analysis of minimal radial basis function network algorithm for real-time identification of nonlinear dynamic systems,” IEE Proc. Control Theory Appl., 147, No.4, 476–484 (2000).

    Article  Google Scholar 

  19. O. G. Rudenko and A. A. Bessonov, “Real-time identification of nonlinear time-varying systems using radial basis function networks,” Kibern. Sist. Anal., No. 6, 177–185 (2003).

  20. K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Trans. Neural Networks, 1, No. 1, 4–26 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kibernetika i Sistemnyi Analiz, No. 5, pp. 16–28, September–October 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudenko, O.G., Bessonov, A.A. CMAC Neural Network and Its Use in Problems of Identification and Control of Nonlinear Dynamic Objects. Cybern Syst Anal 41, 647–658 (2005). https://doi.org/10.1007/s10559-006-0002-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-006-0002-x

Keywords

Navigation