Skip to main content
Log in

Early Myocardial Dysfunction and Benefits of Cardiac Treatment in Young X-Linked Duchenne Muscular Dystrophy Mice

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Context

Duchenne muscular dystrophy (DMD) is associated with a progressive alteration in cardiac function.

Objective

The aim of this study was to detect early cardiac dysfunction using the high sensitive two-dimensional speckle-tracking echocardiography (2D strain) in mdx mouse model and to investigate the potential preventive effects of the S107 ryanodine receptor (RyR2) stabilizer on early onset of DMD-related cardiomyopathy.

Methods and Results

Conventional echocardiography and global and segmental left ventricle (LV) 2D strains were assessed in male mdx mice and control C57/BL10 mice from 2 to 12 months of age. Up to 12 months of age, mdx mice showed preserved myocardial function as assessed by conventional echocardiography. However, global longitudinal, radial, and circumferential LV 2D strains significantly declined in mdx mice compared to controls from the 9 months of age. Segmental 2D strain analysis found a predominant alteration in posterior, inferior, and lateral LV segments, with a more marked impairment with aging. Then, mdx mice were treated with S107 in the drinking water at a dose of 250 mg/L using two different protocols: earlier therapy from 2 to 6 months of age and later therapy from 6 to 9 months of age. The treatment with S107 was efficient only when administered earlier in very young animals (from 2 to 6 months of age) and prevented the segmental alterations seen in non-treated mdx mice.

Conclusions

This is the first animal study to evaluate the therapeutic effect of a drug targeting early onset of DMD-related cardiomyopathy, using 2D strain echocardiography. Speckle-tracking analyses revealed early alterations of LV posterior segments that could be prevented by 4 months of RyR2 stabilization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

2D:

Two-dimensional

DMD:

Duchenne muscular dystrophy

STE:

Speckle-tracking echocardiography

LV:

Left ventricular

SR:

Sarcoplasmic reticulum

WT:

Wild-type

mdx :

X-linked muscular dystrophy

RYR2:

Ryanodine receptor type 2

References

  1. Kamdar F, Garry DJ. Dystrophin-deficient cardiomyopathy. J Am Coll Cardiol. 2016;67:2533–46.

    Article  CAS  Google Scholar 

  2. Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Colvin MK, et al. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol. 2018;17:445–55.

    Article  Google Scholar 

  3. Spurney CF, McCaffrey FM, Cnaan A, Morgenroth LP, Ghelani SJ, Gordish-Dressman H, et al. Feasibility and reproducibility of echocardiographic measures in children with muscular dystrophies. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2015;28:999–1008.

    Article  Google Scholar 

  4. Taqatqa A, Bokowski J, Al-Kubaisi M, Khalil A, Miranda C, Alaksham H, et al. The use of speckle tracking echocardiography for early detection of myocardial dysfunction in patients with Duchenne muscular dystrophy. Pediatr Cardiol. 2016;37:1422–8.

    Article  Google Scholar 

  5. Soslow JH, Xu M, Slaughter JC, Stanley M, Crum K, Markham LW, et al. Evaluation of echocardiographic measures of left ventricular function in patients with Duchenne muscular dystrophy: assessment of reproducibility and comparison to cardiac magnetic resonance imaging. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2016;29:983–91.

    Article  Google Scholar 

  6. Mertens L, Ganame J, Claus P, Goemans N, Thijs D, Eyskens B, et al. Early regional myocardial dysfunction in young patients with Duchenne muscular dystrophy. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2008;21:1049–54.

    Article  Google Scholar 

  7. Takano H, Fujii Y, Yugeta N, Takeda S, Wakao Y. Assessment of left ventricular regional function in affected and carrier dogs with Duchenne muscular dystrophy using speckle tracking echocardiography. BMC Cardiovasc Disord. 2011;11:23.

    Article  Google Scholar 

  8. Li Z, Li Y, Zhang L, Zhang X, Sullivan R, Ai X, et al. Reduced myocardial reserve in young X-linked muscular dystrophy mice diagnosed by two-dimensional strain analysis combined with stress echocardiography. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2017;30:815-827.e9.

    Article  Google Scholar 

  9. Amedro P, Vincenti M, De La Villeon G, Lavastre K, Barrea C, Guillaumont S, et al. Speckle-tracking echocardiography in children with Duchenne muscular dystrophy: a prospective multicenter controlled cross-sectional study. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2019;32:412–22.

    Article  Google Scholar 

  10. McGreevy JW, Hakim CH, McIntosh MA, Duan D. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech. 2015;8:195–213.

    Article  CAS  Google Scholar 

  11. Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, et al. The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature. 1991;352:536–9.

    Article  CAS  Google Scholar 

  12. Fauconnier J, Thireau J, Reiken S, Cassan C, Richard S, Matecki S, et al. Leaky RyR2 trigger ventricular arrhythmias in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2010;107:1559–64.

    Article  CAS  Google Scholar 

  13. Nakamura A, Yoshida K, Takeda S, Dohi N, Ikeda S. Progression of dystrophic features and activation of mitogen-activated protein kinases and calcineurin by physical exercise, in hearts of mdx mice. FEBS Lett. 2002;520:18–24.

    Article  CAS  Google Scholar 

  14. Chakouri N, Farah C, Matecki S, Amedro P, Vincenti M, Saumet L, et al. Screening for in-vivo regional contractile defaults to predict the delayed doxorubicin cardiotoxicity in juvenile rat. Theranostics. 2020;10:8130–42.

    Article  CAS  Google Scholar 

  15. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A. 1993;90:3710–4.

    Article  CAS  Google Scholar 

  16. Johnstone VPA, Viola HM, Hool LC. Dystrophic cardiomyopathy—potential role of calcium in pathogenesis, treatment and novel therapies. Genes. 2017;8.

  17. Andre L, Fauconnier J, Reboul C, Feillet-Coudray C, Meschin P, Farah C, et al. Subendocardial increase in reactive oxygen species production affects regional contractile function in ischemic heart failure. Antioxid Redox Signal. 2013;18:1009–20.

    Article  CAS  Google Scholar 

  18. Spurney C, Yu Q, Nagaraju K. Speckle tracking analysis of the left ventricular anterior wall shows significantly decreased relative radial strain patterns in dystrophin deficient mice after 9 months of age. PLoS Curr. 2011;3:RRN1273.

    Article  Google Scholar 

  19. Li W, Liu W, Zhong J, Yu X. Early manifestation of alteration in cardiac function in dystrophin deficient mdx mouse using 3D CMR tagging. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2009;11:40.

    Google Scholar 

  20. Mori K, Hayabuchi Y, Inoue M, Suzuki M, Sakata M, Nakagawa R, et al. Myocardial strain imaging for early detection of cardiac involvement in patients with Duchenne’s progressive muscular dystrophy. Echocardiogr Mt Kisco N. 2007;24:598–608.

    Article  Google Scholar 

  21. Ogata H, Nakatani S, Ishikawa Y, Negishi A, Kobayashi M, Ishikawa Y, et al. Myocardial strain changes in Duchenne muscular dystrophy without overt cardiomyopathy. Int J Cardiol. 2007;115:190–5.

    Article  Google Scholar 

  22. Ait Mou Y, Lacampagne A, Irving T, Scheuermann V, Blot S, Ghaleh B, et al. Altered myofilament structure and function in dogs with Duchenne muscular dystrophy cardiomyopathy. J Mol Cell Cardiol. 2018;114:345–53.

    Article  CAS  Google Scholar 

  23. Su JB, Cazorla O, Blot S, Blanchard-Gutton N, Ait Mou Y, Barthélémy I, et al. Bradykinin restores left ventricular function, sarcomeric protein phosphorylation, and e/nNOS levels in dogs with Duchenne muscular dystrophy cardiomyopathy. Cardiovasc Res. 2012;95:86–96.

    Article  CAS  Google Scholar 

  24. Modesto K, Sengupta PP. Myocardial mechanics in cardiomyopathies. Prog Cardiovasc Dis. 2014;57:111–24.

    Article  Google Scholar 

  25. Williams IA, Allen DG. Intracellular calcium handling in ventricular myocytes from mdx mice. Am J Physiol Heart Circ Physiol. 2007;292:H846-855.

    Article  CAS  Google Scholar 

  26. Leone M, Magadum A, Engel FB. Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations. Am J Physiol Heart Circ Physiol. 2015;309:H1237-1250.

    Article  CAS  Google Scholar 

  27. Van Erp C, Loch D, Laws N, Trebbin A, Hoey AJ. Timeline of cardiac dystrophy in 3–18-month-old MDX mice. Muscle Nerve. 2010;42:504–13.

    Article  Google Scholar 

  28. Blain A, Greally E, Laval SH, Blamire AM, MacGowan GA, Straub VW. Absence of cardiac benefit with early combination ACE inhibitor and beta blocker treatment in mdx mice. J Cardiovasc Transl Res. 2015;8:198–207.

    Article  Google Scholar 

  29. Spurney CF, Sali A, Guerron AD, Iantorno M, Yu Q, Gordish-Dressman H, et al. Losartan decreases cardiac muscle fibrosis and improves cardiac function in dystrophin-deficient mdx mice. J Cardiovasc Pharmacol Ther. 2011;16:87–95.

    Article  CAS  Google Scholar 

  30. Li Y, Zhang S, Zhang X, Li J, Ai X, Zhang L, et al. Blunted cardiac beta-adrenergic response as an early indication of cardiac dysfunction in Duchenne muscular dystrophy. Cardiovasc Res. 2014;103:60–71.

    Article  CAS  Google Scholar 

  31. Kleopa KA, Drousiotou A, Mavrikiou E, Ormiston A, Kyriakides T. Naturally occurring utrophin correlates with disease severity in Duchenne muscular dystrophy. Hum Mol Genet. 2006;15:1623–8.

    Article  CAS  Google Scholar 

  32. Coley WD, Bogdanik L, Vila MC, Yu Q, Van Der Meulen JH, Rayavarapu S, et al. Effect of genetic background on the dystrophic phenotype in mdx mice. Hum Mol Genet. 2016;25:130–45.

    Article  CAS  Google Scholar 

  33. van Putten M, Putker K, Overzier M, Adamzek WA, Pasteuning-Vuhman S, Plomp JJ, et al. Natural disease history of the D2-mdx mouse model for Duchenne muscular dystrophy. FASEB J Off Publ Fed Am Soc Exp Biol. 2019;33:8110–24.

    Google Scholar 

  34. Pons F, Robert A, Fabbrizio E, Hugon G, Califano JC, Fehrentz JA, et al. Utrophin localization in normal and dystrophin-deficient heart. Circulation. 1994;90:369–74.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Association Française contre les Myopathies (AFM) (AL N°15083).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alain Lacampagne or Olivier Cazorla.

Ethics declarations

Ethics Approval

Experiments were conducted in accordance with the European directive for the protection of animals used for scientific purposes and were approved by the ethical committee (Comité d’éthique pour l’expérimentation animale Languedoc-Roussillon, n° CEEA-LR-12078).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Alain Lacampagne and Olivier Cazorla jointly supervised this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 156 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincenti, M., Farah, C., Amedro, P. et al. Early Myocardial Dysfunction and Benefits of Cardiac Treatment in Young X-Linked Duchenne Muscular Dystrophy Mice. Cardiovasc Drugs Ther 36, 793–803 (2022). https://doi.org/10.1007/s10557-021-07218-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-021-07218-7

Keywords

Navigation