Skip to main content

Advertisement

Log in

Genetics of Triglyceride-Rich Lipoproteins Guide Identification of Pharmacotherapy for Cardiovascular Risk Reduction

  • Invited Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Objective: Despite aggressive reduction of low-density lipoprotein cholesterol (LDL-C), there is a residual risk of cardiovascular disease (CVD). Hypertriglyceridemia is known to be associated with increased CVD risk, independently of LDL-C. Triglycerides are one component of the heterogenous class of triglyceride-rich lipoproteins (TGRLs). Methods/Results: Growing evidence from biology, epidemiology, and genetics supports the contribution of TGRLs to the development of CVD via a number of mechanisms, including through proinflammatory, proapoptotic, and procoagulant pathways. Conclusion: New genetics-guided pharmacotherapies to reduce levels of triglycerides and TGRLs and thus reduce risk of CVD have been developed and will be discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation. 2020;141(9):e139–596.

    Article  PubMed  Google Scholar 

  2. Jellinger PS, Smith DA, Mehta AE, Ganda O, Handelsman Y, Rodbard HW, et al. American Association of Clinical Endocrinologists' Guidelines for Management of Dyslipidemia and Prevention of Atherosclerosis. Endocr Pract. 2012;18(Suppl 1):1–78.

    Article  PubMed  Google Scholar 

  3. Sampson UK, Fazio S, Linton MF. Residual cardiovascular risk despite optimal LDL cholesterol reduction with statins: the evidence, etiology, and therapeutic challenges. Curr Atheroscler Rep. 2012;14(1):1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boekholdt SM, Arsenault BJ, Mora S, Pedersen TR, LaRosa JC, Nestel PJ, et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. Jama. 2012;307(12):1302–9.

    Article  CAS  PubMed  Google Scholar 

  5. Marston NA, Giugliano RP, Im K, Silverman MG, O'Donoghue ML, Wiviott SD, et al. Association Between Triglyceride Lowering and Reduction of Cardiovascular Risk Across Multiple Lipid-Lowering Therapeutic Classes: A Systematic Review and Meta-Regression Analysis of Randomized Controlled Trials. Circulation. 2019;140(16):1308–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Davidson MH. Triglyceride-rich lipoprotein cholesterol (TRL-C): the ugly stepsister of LDL-C. Eur Heart J. 2018;39(7):620–2.

    Article  PubMed  Google Scholar 

  7. Nordestgaard BG. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights From Epidemiology, Genetics, and Biology. Circ Res. 2016;118(4):547–63.

    Article  CAS  PubMed  Google Scholar 

  8. Rosenson RS, Davidson MH, Hirsh BJ, Kathiresan S, Gaudet D. Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardiovascular disease. J Am Coll Cardiol. 2014;64(23):2525–40.

    Article  CAS  PubMed  Google Scholar 

  9. Toth PP. Triglyceride-rich lipoproteins as a causal factor for cardiovascular disease. Vasc Health Risk Manag. 2016;12:171–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feingold KR GC. Introduction to Lipids and Lipoproteins. Endotext; 2018.

  11. Xiao C, Hsieh J, Adeli K, Lewis GF. Gut-liver interaction in triglyceride-rich lipoprotein metabolism. Am J Physiol Endocrinol Metab. 2011;301(3):E429–46.

    Article  CAS  PubMed  Google Scholar 

  12. Ginsberg HN. Lipoprotein physiology. Endocrinol Metab Clin N Am. 1998;27(3):503–19.

    Article  CAS  Google Scholar 

  13. Demignot S, Beilstein F, Morel E. Triglyceride-rich lipoproteins and cytosolic lipid droplets in enterocytes: key players in intestinal physiology and metabolic disorders. Biochimie. 2014;96:48–55.

    Article  CAS  PubMed  Google Scholar 

  14. Cases S, Stone SJ, Zhou P, Yen E, Tow B, Lardizabal KD, et al. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem. 2001;276(42):38870–6.

    Article  CAS  PubMed  Google Scholar 

  15. Siddiqi SA, Mansbach CM. PKCζ-mediated phosphorylation controls budding of the pre-chylomicron transport vesicle. J Cell Sci. 2008;121(14):2327–38.

    Article  CAS  PubMed  Google Scholar 

  16. Desmarchelier C, Borel P, Lairon D, Maraninchi M, Valéro R. Effect of Nutrient and Micronutrient Intake on Chylomicron Production and Postprandial Lipemia. Nutrients. 2019;11(6):1299.

    Article  CAS  PubMed Central  Google Scholar 

  17. Kindel T, Lee DM, Tso P. The mechanism of the formation and secretion of chylomicrons. Atheroscler Suppl. 2010;11(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  18. Bouchoux J, Beilstein F, Pauquai T, Guerrera IC, Chateau D, Ly N, et al. The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics. Biol Cell. 2011;103(11):499–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khetarpal SA, Zeng X, Millar JS, Vitali C, Somasundara AVH, Zanoni P, et al. A human APOC3 missense variant and monoclonal antibody accelerate apoC-III clearance and lower triglyceride-rich lipoprotein levels. Nat Med. 2017;23(9):1086–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Diffenderfer MR, Brousseau ME, Millar JS, Barrett PH, Nartsupha C, Schaefer PM, et al. Effects of CETP inhibition on triglyceride-rich lipoprotein composition and apoB-48 metabolism. J Lipid Res. 2012;53(6):1190–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thompson BR, Lobo S, Bernlohr DA. Fatty acid flux in adipocytes: the in's and out's of fat cell lipid trafficking. Mol Cell Endocrinol. 2010;318(1-2):24–33.

    Article  CAS  PubMed  Google Scholar 

  22. Adiels M, Matikainen N, Westerbacka J, Söderlund S, Larsson T, Olofsson SO, et al. Postprandial accumulation of chylomicrons and chylomicron remnants is determined by the clearance capacity. Atherosclerosis. 2012;222(1):222–8.

    Article  CAS  PubMed  Google Scholar 

  23. Foley EM, Gordts PLSM, Stanford KI, Gonzales JC, Lawrence R, Stoddard N, et al. Hepatic Remnant Lipoprotein Clearance by Heparan Sulfate Proteoglycans and Low-Density Lipoprotein Receptors Depend on Dietary Conditions in Mice. Arterioscler Thromb Vasc Biol. 2013;33(9):2065–74.

    Article  CAS  PubMed  Google Scholar 

  24. Wong H, Schotz MC. The lipase gene family. J Lipid Res. 2002;43(7):993–9.

    Article  CAS  PubMed  Google Scholar 

  25. Larsson M, Allan CM, Jung RS, Heizer PJ, Beigneux AP, Young SG, et al. Apolipoprotein C-III inhibits triglyceride hydrolysis by GPIHBP1-bound LPL. J Lipid Res. 2017;58(9):1893–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Birrane G, Beigneux AP, Dwyer B, Strack-Logue B, Kristensen KK, Francone OL, et al. Structure of the lipoprotein lipase-GPIHBP1 complex that mediates plasma triglyceride hydrolysis. Proc Natl Acad Sci U S A. 2019;116(5):1723–32.

    Article  CAS  PubMed  Google Scholar 

  27. Arora R, Nimonkar AV, Baird D, Wang C, Chiu CH, Horton PA, et al. Structure of lipoprotein lipase in complex with GPIHBP1. Proc Natl Acad Sci U S A. 2019;116(21):10360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta. 2014;1841(7):919–33.

    Article  CAS  PubMed  Google Scholar 

  29. Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, et al. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem. 2000;275(37):28488–93.

    Article  CAS  PubMed  Google Scholar 

  30. Dijk W, Schutte S, Aarts EO, Janssen IMC, Afman L, Kersten S. Regulation of angiopoietin-like 4 and lipoprotein lipase in human adipose tissue. J Clin Lipidol. 2018;12(3):773–83.

    Article  PubMed  Google Scholar 

  31. Sukonina V, Lookene A, Olivecrona T, Olivecrona G. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci U S A. 2006;103(46):17450–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu J, Afroza H, Rader DJ, Jin W. Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases. J Biol Chem. 2010;285(36):27561–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Minicocci I, Santini S, Cantisani V, Stitziel N, Kathiresan S, Arroyo JA, et al. Clinical characteristics and plasma lipids in subjects with familial combined hypolipidemia: a pooled analysis. J Lipid Res. 2013;54(12):3481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ito Y, Azrolan N, O'Connell A, Walsh A, Breslow JL. Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science. 1990;249(4970):790–3.

    Article  CAS  PubMed  Google Scholar 

  35. Pollin TI, Damcott CM, Shen H, Ott SH, Shelton J, Horenstein RB, et al. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science. 2008;322(5908):1702–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ramms B, Gordts PLSM. Apolipoprotein C-III in triglyceride-rich lipoprotein metabolism. Curr Opin Lipidol. 2018;29(3):171–9.

    Article  CAS  PubMed  Google Scholar 

  37. Gaudet D, Brisson D, Tremblay K, Alexander VJ, Singleton W, Hughes SG, et al. Targeting APOC3 in the Familial Chylomicronemia Syndrome. N Engl J Med. 2014;371(23):2200–6.

    Article  PubMed  CAS  Google Scholar 

  38. Ramms B, Patel S, Nora C, Pessentheiner AR, Chang MW, Green CR, et al. ApoC-III ASO promotes tissue LPL activity in the absence of apoE-mediated TRL clearance. J Lipid Res. 2019;60(8):1379–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tomiyasu K, Walsh BW, Ikewaki K, Judge H, Sacks FM. Differential Metabolism of Human VLDL According to Content of ApoE and ApoC-III. Arterioscler Thromb Vasc Biol. 2001;21(9):1494–500.

    Article  CAS  PubMed  Google Scholar 

  40. Mendivil CO, Rimm EB, Furtado J, Sacks FM. Apolipoprotein E in VLDL and LDL with apolipoprotein C-III is associated with a lower risk of coronary heart disease. J Am Heart Assoc. 2013;2(3):e000130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Gusarova V, Brodsky JL, Fisher EA. Apolipoprotein B100 exit from the endoplasmic reticulum (ER) is COPII-dependent, and its lipidation to very low density lipoprotein occurs post-ER. J Biol Chem. 2003;278(48):48051–8.

    Article  CAS  PubMed  Google Scholar 

  42. Hamilton RL, Moorehouse A, Havel RJ. Isolation and properties of nascent lipoproteins from highly purified rat hepatocytic Golgi fractions. J Lipid Res. 1991;32(3):529–43.

    Article  CAS  PubMed  Google Scholar 

  43. Nordestgaard BG, Stender S, Kjeldsen K. Reduced atherogenesis in cholesterol-fed diabetic rabbits. Giant lipoproteins do not enter the arterial wall. Arteriosclerosis. 1988;8(4):421–8.

    Article  CAS  PubMed  Google Scholar 

  44. Rapp JH, Lespine A, Hamilton RL, Colyvas N, Chaumeton AH, Tweedie-Hardman J, et al. Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb. 1994;14(11):1767–74.

    Article  CAS  PubMed  Google Scholar 

  45. Nordestgaard BG, Wootton R, Lewis B. Selective retention of VLDL, IDL, and LDL in the arterial intima of genetically hyperlipidemic rabbits in vivo. Molecular size as a determinant of fractional loss from the intima-inner media. Arterioscler Thromb Vasc Biol. 1995;15(4):534–42.

    Article  CAS  PubMed  Google Scholar 

  46. Batt KV, Patel L, Botham KM, Suckling KE. Chylomicron remnants and oxidised low density lipoprotein have differential effects on the expression of mRNA for genes involved in human macrophage foam cell formation. J Mol Med (Berl). 2004;82(7):449–58.

    Article  CAS  Google Scholar 

  47. Goldstein JL, Ho YK, Brown MS, Innerarity TL, Mahley RW. Cholesteryl ester accumulation in macrophages resulting from receptor-mediated uptake and degradation of hypercholesterolemic canine beta-very low density lipoproteins. J Biol Chem. 1980;255(5):1839–48.

    Article  CAS  PubMed  Google Scholar 

  48. Takahashi S, Sakai J, Fujino T, Hattori H, Zenimaru Y, Suzuki J, et al. The very low-density lipoprotein (VLDL) receptor: characterization and functions as a peripheral lipoprotein receptor. J Atheroscler Thromb. 2004;11(4):200–8.

    Article  CAS  PubMed  Google Scholar 

  49. Takahashi S. Triglyceride Rich Lipoprotein -LPL-VLDL Receptor and Lp(a)-VLDL Receptor Pathways for Macrophage Foam Cell Formation. J Atheroscler Thromb. 2017;24(6):552–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Altenburg M, Johnson L, Wilder J, Maeda N. Apolipoprotein E4 in macrophages enhances atherogenesis in a low density lipoprotein receptor-dependent manner. J Biol Chem. 2007;282(11):7817–24.

    Article  CAS  PubMed  Google Scholar 

  51. Phillips MC. Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life. 2014;66(9):616–23.

    Article  CAS  PubMed  Google Scholar 

  52. Hadi HA, Carr CS, Al SJ. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1(3):183–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shin HK, Kim YK, Kim KY, Lee JH, Hong KW. Remnant lipoprotein particles induce apoptosis in endothelial cells by NAD(P)H oxidase-mediated production of superoxide and cytokines via lectin-like oxidized low-density lipoprotein receptor-1 activation: prevention by cilostazol. Circulation. 2004;109(8):1022–8.

    Article  CAS  PubMed  Google Scholar 

  54. Wang YI, Bettaieb A, Sun C, DeVerse JS, Radecke CE, Mathew S, et al. Triglyceride-rich lipoprotein modulates endothelial vascular cell adhesion molecule (VCAM)-1 expression via differential regulation of endoplasmic reticulum stress. PLoS One. 2013;8(10):e78322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun C, Alkhoury K, Wang YI, Foster GA, Radecke CE, Tam K, et al. IRF-1 and miRNA126 modulate VCAM-1 expression in response to a high-fat meal. Circ Res. 2012;111(8):1054–64.

    Article  CAS  PubMed  Google Scholar 

  56. Gower RM, Wu H, Foster GA, Devaraj S, Jialal I, Ballantyne CM, et al. CD11c/CD18 expression is upregulated on blood monocytes during hypertriglyceridemia and enhances adhesion to vascular cell adhesion molecule-1. Arterioscler Thromb Vasc Biol. 2011;31(1):160–6.

    Article  CAS  PubMed  Google Scholar 

  57. Olufadi R, Byrne CD. Effects of VLDL and remnant particles on platelets. Pathophysiol Haemost Thromb. 2006;35(3-4):281–91.

    Article  CAS  PubMed  Google Scholar 

  58. Lin A, Nerlekar N, Rajagopalan A, Yuvaraj J, Modi R, Mirzaee S, et al. Remnant cholesterol and coronary atherosclerotic plaque burden assessed by computed tomography coronary angiography. Atherosclerosis. 2019;284:24–30.

    Article  CAS  PubMed  Google Scholar 

  59. Thomsen M, Varbo A, Tybjærg-Hansen A, Nordestgaard BG. Low nonfasting triglycerides and reduced all-cause mortality: a mendelian randomization study. Clin Chem. 2014;60(5):737–46.

    Article  CAS  PubMed  Google Scholar 

  60. Do R, Willer CJ, Schmidt EM, Sengupta S, Gao C, Peloso GM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45(11):1345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Varbo A, Benn M, Tybjærg-Hansen A, Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61(4):427–36.

    Article  CAS  PubMed  Google Scholar 

  62. Khera AV, Won HH, Peloso GM, O'Dushlaine C, Liu D, Stitziel NO, et al. Association of Rare and Common Variation in the Lipoprotein Lipase Gene With Coronary Artery Disease. Jama. 2017;317(9):937–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat Genet. 2017;49(12):1758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wyler von Ballmoos MC, Haring B, Sacks FM. The risk of cardiovascular events with increased apolipoprotein CIII: A systematic review and meta-analysis. J Clin Lipidol. 2015;9(4):498–510.

    Article  PubMed  Google Scholar 

  65. Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371(1):32–41.

    Article  PubMed  CAS  Google Scholar 

  66. Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, Lange LA, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371(1):22–31.

    Article  PubMed  CAS  Google Scholar 

  67. Folsom AR, Peacock JM, Demerath E, Boerwinkle E. Variation in ANGPTL4 and risk of coronary heart disease: the Atherosclerosis Risk in Communities Study. Metabolism. 2008;57(11):1591–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dewey FE, Gusarova V, Dunbar RL, O'Dushlaine C, Schurmann C, Gottesman O, et al. Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease. N Engl J Med. 2017;377(3):211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Do R, Stitziel NO, Won HH, Jørgensen AB, Duga S, Angelica Merlini P, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518(7537):102–6.

    Article  CAS  PubMed  Google Scholar 

  70. Sarwar N, Sandhu MS, Ricketts SL, Butterworth AS, Di Angelantonio E, Boekholdt SM, et al. Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet. 2010;375(9726):1634–9.

    Article  CAS  PubMed  Google Scholar 

  71. Brahm A, Hegele RA. Hypertriglyceridemia. Nutrients. 2013;5(3):981–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wilkins JT, Seckler HS. HDL modification: recent developments and their relevance to atherosclerotic cardiovascular disease. Curr Opin Lipidol. 2019;30(1):24–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB, et al. Gemfibrozil for the Secondary Prevention of Coronary Heart Disease in Men with Low Levels of High-Density Lipoprotein Cholesterol. N Engl J Med. 1999;341(6):410–8.

    Article  CAS  PubMed  Google Scholar 

  74. Huxley RR, Barzi F, Lam TH, Czernichow S, Fang X, Welborn T, et al. Isolated Low Levels of High-Density Lipoprotein Cholesterol Are Associated With an Increased Risk of Coronary Heart Disease. Circulation. 2011;124(19):2056–64.

    Article  CAS  PubMed  Google Scholar 

  75. Nakazawa M, Arashi H, Yamaguchi J, Ogawa H, Hagiwara N. Lower levels of high-density lipoprotein cholesterol are associated with increased cardiovascular events in patients with acute coronary syndrome. Atherosclerosis. 2020;303:21–8.

    Article  CAS  PubMed  Google Scholar 

  76. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841):572–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Niacin in Patients with Low HDL Cholesterol Levels Receiving Intensive Statin Therapy. N Engl J Med. 2011;365(24):2255–67.

  78. Watts GF, Ooi EM, Chan DC. Demystifying the management of hypertriglyceridaemia. Nat Rev Cardiol. 2013;10(11):648–61.

    Article  CAS  PubMed  Google Scholar 

  79. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98(19):2088–93.

    Article  CAS  PubMed  Google Scholar 

  80. Vega GL, Cater NB, Hadizadeh DR 3rd, Meguro S, Grundy SM. Free fatty acid metabolism during fenofibrate treatment of the metabolic syndrome. Clin Pharmacol Ther. 2003;74(3):236–44.

    Article  CAS  PubMed  Google Scholar 

  81. Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalmi P, Helo P, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med. 1987;317(20):1237–45.

    Article  CAS  PubMed  Google Scholar 

  82. Chang JT, Staffa JA, Parks M, Green L. Rhabdomyolysis with HMG-CoA reductase inhibitors and gemfibrozil combination therapy. Pharmacoepidemiol Drug Saf. 2004;13(7):417–26.

    Article  CAS  PubMed  Google Scholar 

  83. Kyrklund C, Backman JT, Neuvonen M, Neuvonen PJ. Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance. Clin Pharmacol Ther. 2003;73(6):538–44.

    Article  CAS  PubMed  Google Scholar 

  84. Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366(9500):1849–61.

    Article  CAS  PubMed  Google Scholar 

  85. Ginsberg HN, Elam MB, Lovato LC, Crouse JR 3rd, Leiter LA, Linz P, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–74.

    Article  PubMed  Google Scholar 

  86. Rosenson RS. Fenofibrate: treatment of hyperlipidemia and beyond. Expert Rev Cardiovasc Ther. 2008;6(10):1319–30.

    Article  CAS  PubMed  Google Scholar 

  87. Genest JJ, Nguyen N-H, Theroux P, Davignon J, Cohn JS. Effect of Micronized Fenofibrate on Plasma Lipoprotein Levels and Hemostatic Parameters of Hypertriglyceridemic Patients with Low Levels of High-Density Lipoprotein Cholesterol in the Fed and Fasted State. J Cardiovasc Pharmacol. 2000;35(1):164–72.

    Article  CAS  PubMed  Google Scholar 

  88. Lamon-Fava S, Diffenderfer MR, Barrett PH, Buchsbaum A, Nyaku M, Horvath KV, et al. Extended-release niacin alters the metabolism of plasma apolipoprotein (Apo) A-I and ApoB-containing lipoproteins. Arterioscler Thromb Vasc Biol. 2008;28(9):1672–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jin FY, Kamanna VS, Kashyap ML. Niacin accelerates intracellular ApoB degradation by inhibiting triacylglycerol synthesis in human hepatoblastoma (HepG2) cells. Arterioscler Thromb Vasc Biol. 1999;19(4):1051–9.

    Article  CAS  PubMed  Google Scholar 

  90. Effects of Extended-Release Niacin with Laropiprant in High-Risk Patients. N Engl J Med. 2014;371(3):203–12.

  91. Grundy SM, Vega GL, McGovern ME, Tulloch BR, Kendall DM, Fitz-Patrick D, et al. Efficacy, Safety, and Tolerability of Once-Daily Niacin for the Treatment of Dyslipidemia Associated With Type 2 Diabetes: Results of the Assessment of Diabetes Control and Evaluation of the Efficacy of Niaspan Trial. Arch Intern Med. 2002;162(14):1568–76.

    Article  CAS  PubMed  Google Scholar 

  92. Albers JJ, Slee A, O'Brien KD, Robinson JG, Kashyap ML, Kwiterovich PO Jr, et al. Relationship of apolipoproteins A-1 and B, and lipoprotein(a) to cardiovascular outcomes: the AIM-HIGH trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglyceride and Impact on Global Health Outcomes). J Am Coll Cardiol. 2013;62(17):1575–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yanai H, Masui Y, Katsuyama H, Adachi H, Kawaguchi A, Hakoshima M, et al. An Improvement of Cardiovascular Risk Factors by Omega-3 Polyunsaturated Fatty Acids. J Clin Med Res. 2018;10(4):281–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen YJ, Chen CC, Li TK, Wang PH, Liu LR, Chang FY, et al. Docosahexaenoic acid suppresses the expression of FoxO and its target genes. J Nutr Biochem. 2012;23(12):1609–16.

    Article  CAS  PubMed  Google Scholar 

  95. AstraZeneca Epanova Prescribing Information. 2014. http://www.astrazeneca-us.com/pi/epanova.pdf. Accessed Oct 2020.

  96. GlaxoSmithKline. Lovaza Prescribing Information. 2014. https://www.gsksource.com/gskprm/htdocs/documents/LOVAZA-PI-PIL.PDF. Accessed Oct 2020.

  97. Corporation A. Vascepa Prescibing Information. 2014. www.vascepa.com/full-prescribing-information.pdf. Accessed Oct 2020.

  98. Kastelein JJ, Maki KC, Susekov A, Ezhov M, Nordestgaard BG, Machielse BN, et al. Omega-3 free fatty acids for the treatment of severe hypertriglyceridemia: the EpanoVa fOr Lowering Very high triglyceridEs (EVOLVE) trial. J Clin Lipidol. 2014;8(1):94–106.

    Article  PubMed  Google Scholar 

  99. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369(9567):1090–8.

    Article  CAS  PubMed  Google Scholar 

  100. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med. 2019;380(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  101. Harris WS. Understanding why REDUCE-IT was positive - Mechanistic overview of eicosapentaenoic acid. Prog Cardiovasc Dis. 2019;62(5):401–5.

    Article  PubMed  Google Scholar 

  102. Budoff MJ, Bhatt DL, Kinninger A, Lakshmanan S, Muhlestein JB, Le VT, et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial. Eur Heart J. 2020;41:3925–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. AstraZeneca. Update on Phase III STRENGTH trial for Epanova in mixed dyslipidaemia. 2020. https://www.astrazeneca.com/media-centre/press-releases/2020/update-on-phase-iii-strength-trial-for-epanova-in-mixed-dyslipidaemia-13012020.html. Accessed Oct 2020.

  104. Stein EA, Lane M, Laskarzewski P. Comparison of statins in hypertriglyceridemia. Am J Cardiol. 1998;81(4a):66b–9b.

    Article  CAS  PubMed  Google Scholar 

  105. Bakker-Arkema RG, Davidson MH, Goldstein RJ, Davignon J, Isaacsohn JL, Weiss SR, et al. Efficacy and Safety of a New HMG-CoA Reductase Inhibitor, Atorvastatin, in Patients With Hypertriglyceridemia. JAMA. 1996;275(2):128–33.

    Article  CAS  PubMed  Google Scholar 

  106. Hunninghake DB, Stein EA, Bays HE, Rader DJ, Chitra RR, Simonson SG, et al. Rosuvastatin improves the atherogenic and atheroprotective lipid profiles in patients with hypertriglyceridemia. Coron Artery Dis. 2004;15(2):115–23.

    Article  PubMed  Google Scholar 

  107. Chapman MJ, Caslake M, Packard C, McTaggart F. New dimension of statin action on ApoB atherogenicity. Clin Cardiol. 2003;26(1 Suppl 1):I7–10.

    Article  PubMed  Google Scholar 

  108. Jones PH, Hunninghake DB, Ferdinand KC, Stein EA, Gold A, Caplan RJ, et al. Effects of rosuvastatin versus atorvastatin, simvastatin, and pravastatin on non-high-density lipoprotein cholesterol, apolipoproteins, and lipid ratios in patients with hypercholesterolemia: additional results from the STELLAR trial. Clin Ther. 2004;26(9):1388–99.

    Article  CAS  PubMed  Google Scholar 

  109. Basso F, Freeman LA, Ko C, Joyce C, Amar MJ, Shamburek RD, et al. Hepatic ABCG5/G8 overexpression reduces apoB-lipoproteins and atherosclerosis when cholesterol absorption is inhibited. J Lipid Res. 2007;48(1):114–26.

    Article  CAS  PubMed  Google Scholar 

  110. Telford DE, Sutherland BG, Edwards JY, Andrews JD, Barrett PHR, Huff MW. The molecular mechanisms underlying the reduction of LDL apoB-100 by ezetimibe plus simvastatin. J Lipid Res. 2007;48(3):699–708.

    Article  CAS  PubMed  Google Scholar 

  111. Sawayama Y, Maeda S, Ohnishi H, Hayashi S, Hayashi J. Efficacy and safety of ezetimibe for Japanese patients with dyslipidaemia: The ESSENTIAL Study. Clin Drug Investig. 2010;30(3):157–66.

    Article  CAS  PubMed  Google Scholar 

  112. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N Engl J Med. 2015;372(25):2387–97.

    Article  CAS  PubMed  Google Scholar 

  113. Ahmed O, Littmann K, Gustafsson U, Pramfalk C, Öörni K, Larsson L, et al. Ezetimibe in Combination With Simvastatin Reduces Remnant Cholesterol Without Affecting Biliary Lipid Concentrations in Gallstone Patients. J Am Heart Assoc. 2018;7(24):e009876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cuchel M, Meagher EA, du Toit TH, Blom DJ, Marais AD, Hegele RA, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381(9860):40–6.

    Article  CAS  PubMed  Google Scholar 

  115. Sacks FM, Stanesa M, Hegele RA. Severe Hypertriglyceridemia With Pancreatitis: Thirteen Years’ Treatment With Lomitapide. JAMA Intern Med. 2014;174(3):443–7.

    Article  CAS  PubMed  Google Scholar 

  116. Cefalù AB, Giammanco A, Noto D, Spina R, Cabibi D, Barbagallo CM, et al. Effectiveness and safety of lomitapide in a patient with familial chylomicronemia syndrome. Endocrine. 2020;71:344–50.

    Article  PubMed  CAS  Google Scholar 

  117. Thomas GS, Cromwell WC, Ali S, Chin W, Flaim JD, Davidson M. Mipomersen, an apolipoprotein B synthesis inhibitor, reduces atherogenic lipoproteins in patients with severe hypercholesterolemia at high cardiovascular risk: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol. 2013;62(23):2178–84.

    Article  CAS  PubMed  Google Scholar 

  118. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med. 2017;376(18):1713–22.

    Article  CAS  PubMed  Google Scholar 

  119. Giugliano RP, Keech A, Murphy SA, Huber K, Tokgozoglu SL, Lewis BS, et al. Clinical Efficacy and Safety of Evolocumab in High-Risk Patients Receiving a Statin: Secondary Analysis of Patients With Low LDL Cholesterol Levels and in Those Already Receiving a Maximal-Potency Statin in a Randomized Clinical Trial. JAMA Cardiol. 2017;2(12):1385–91.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rosenson RS, Daviglus ML, Handelsman Y, Pozzilli P, Bays H, Monsalvo ML, et al. Efficacy and safety of evolocumab in individuals with type 2 diabetes mellitus: primary results of the randomised controlled BANTING study. Diabetologia. 2019;62(6):948–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rosenson RS, Jacobson TA, Preiss D, Djedjos CS, Dent R, Bridges I, et al. Efficacy and Safety of the PCSK9 Inhibitor Evolocumab in Patients with Mixed Hyperlipidemia. Cardiovasc Drugs Ther. 2016;30(3):305–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med. 2018;379(22):2097–107.

    Article  CAS  PubMed  Google Scholar 

  123. Kereiakes DJ, Lepor NE, Gerber R, Veronica Lee L, Elassal J, Thompson D, et al. Efficacy and safety of alirocumab in patients with or without prior coronary revascularization: Pooled analysis of eight ODYSSEY phase 3 trials. Atherosclerosis. 2018;277:211–8.

    Article  CAS  PubMed  Google Scholar 

  124. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and Safety of Alirocumab in Reducing Lipids and Cardiovascular Events. N Engl J Med. 2015;372(16):1489–99.

    Article  CAS  PubMed  Google Scholar 

  125. Szarek M, Bittner VA, Aylward P, Baccara-Dinet M, Bhatt DL, Diaz R, et al. Lipoprotein(a) lowering by alirocumab reduces the total burden of cardiovascular events independent of low-density lipoprotein cholesterol lowering: ODYSSEY OUTCOMES trial. Eur Heart J. 2020;41:4245–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, et al. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N Engl J Med. 2020;382(16):1507–19.

    Article  CAS  PubMed  Google Scholar 

  127. Raal FJ, Kallend D, Ray KK, Turner T, Koenig W, Wright RS, et al. Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. N Engl J Med. 2020;382(16):1520–30.

    Article  CAS  PubMed  Google Scholar 

  128. Witztum JL, Gaudet D, Freedman SD, Alexander VJ, Digenio A, Williams KR, et al. Volanesorsen and Triglyceride Levels in Familial Chylomicronemia Syndrome. N Engl J Med. 2019;381(6):531–42.

    Article  CAS  PubMed  Google Scholar 

  129. Esan O, Wierzbicki AS. Volanesorsen in the Treatment of Familial Chylomicronemia Syndrome or Hypertriglyceridaemia: Design, Development and Place in Therapy. Drug Des Devel Ther. 2020;14:2623–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gaudet D, Karwatowska-Prokopczuk E, Baum SJ, Hurh E, Kingsbury J, Bartlett VJ, et al. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia. Eur Heart J. 2020;41:3936–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Graham MJ, Lee RG, Brandt TA, Tai LJ, Fu W, Peralta R, et al. Cardiovascular and Metabolic Effects of ANGPTL3 Antisense Oligonucleotides. N Engl J Med. 2017;377(3):222–32.

    Article  CAS  PubMed  Google Scholar 

  132. Raal FJ, Rosenson RS, Reeskamp LF, Hovingh GK, Kastelein JJP, Rubba P, et al. Evinacumab for Homozygous Familial Hypercholesterolemia. N Engl J Med. 2020;383(8):711–20.

    Article  CAS  PubMed  Google Scholar 

  133. Ahmad Z, Banerjee P, Hamon S, Chan KC, Bouzelmat A, Sasiela WJ, et al. Inhibition of Angiopoietin-Like Protein 3 With a Monoclonal Antibody Reduces Triglycerides in Hypertriglyceridemia. Circulation. 2019;140(6):470–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rosenson RS, Burgess LJ, Ebenbichler CF, Baum SJ, Stroes ESG, Ali S, et al. Evinacumab in Patients with Refractory Hypercholesterolemia. N Engl J Med. 2020;383(24):2307–19.

    Article  CAS  PubMed  Google Scholar 

  135. Yamashita S, Masuda D, Matsuzawa Y. Pemafibrate, a New Selective PPARα Modulator: Drug Concept and Its Clinical Applications for Dyslipidemia and Metabolic Diseases. Curr Atheroscler Rep. 2020;22(1):5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Ishibashi S, Yamashita S, Arai H, Araki E, Yokote K, Suganami H, et al. Effects of K-877, a novel selective PPARα modulator (SPPARMα), in dyslipidaemic patients: A randomized, double blind, active- and placebo-controlled, phase 2 trial. Atherosclerosis. 2016;249:36–43.

    Article  CAS  PubMed  Google Scholar 

  137. Yokote K, Yamashita S, Arai H, Araki E, Suganami H, Ishibashi S, et al. Long-Term Efficacy and Safety of Pemafibrate, a Novel Selective Peroxisome Proliferator-Activated Receptor-α Modulator (SPPARMα), in Dyslipidemic Patients with Renal Impairment. Int J Mol Sci. 2019;20(3). https://doi.org/10.3390/ijms20030706.

  138. Pradhan AD, Paynter NP, Everett BM, Glynn RJ, Amarenco P, Elam M, et al. Rationale and design of the Pemafibrate to Reduce Cardiovascular Outcomes by Reducing Triglycerides in Patients with Diabetes (PROMINENT) study. Am Heart J. 2018;206:80–93.

    Article  CAS  PubMed  Google Scholar 

  139. Huang Z, Xu A, Cheung BMY. The Potential Role of Fibroblast Growth Factor 21 in Lipid Metabolism and Hypertension. Curr Hypertens Rep. 2017;19(4):28.

    Article  PubMed  CAS  Google Scholar 

  140. Schlein C, Talukdar S, Heine M, Fischer AW, Krott LM, Nilsson SK, et al. FGF21 Lowers Plasma Triglycerides by Accelerating Lipoprotein Catabolism in White and Brown Adipose Tissues. Cell Metab. 2016;23(3):441–53.

    Article  CAS  PubMed  Google Scholar 

  141. Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18(3):333–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the data acquisition, drafting, and critical revision of the article.

Corresponding author

Correspondence to Robert S. Rosenson.

Ethics declarations

Conflicts of Interest/Competing Interests

Dr. Rosenson reports research funding to the institution from Amgen, Astra Zeneca Medicines Company, National Institutes of Health, Novartis, Regeneron, consulting fees from Amgen, Medicines Company, Novartis, Regeneron and 89 Bio, honoraria for non-promotional speaking fees from Amgen, Kowa and Regeneron, royalties from Wolters Kluwer (UpToDate) and stock holdings in MediMergent, LLC.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Translating genome medicine to treatments

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaik, A., Rosenson, R.S. Genetics of Triglyceride-Rich Lipoproteins Guide Identification of Pharmacotherapy for Cardiovascular Risk Reduction. Cardiovasc Drugs Ther 35, 677–690 (2021). https://doi.org/10.1007/s10557-021-07168-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-021-07168-0

Keywords

Navigation