Skip to main content

Advertisement

Log in

Methotrexate Therapy Promotes Cell Coverage and Stability in in-Stent Neointima

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Anti-proliferative drugs released from drug-eluting stents delay cell coverage and vascular healing, which increases the risk of late stent thrombosis. We assessed the potential effects of systemic methotrexate (MTX) on cell coverage, vascular healing and inflammation activation in vivo and in vitro.

Methods

We applied MTX in the right common carotid artery in a rabbit stenting model to determine the impact on cell coverage and inflammation activation using a serial optical coherence tomography (OCT) analysis and elucidated the molecular mechanism of MTX in human umbilical vein endothelial cells (HUVECs).

Results

Low-dose MTX promoted the development of cell coverage and vascular healing, which was associated with fewer uncovered struts (%) and cross-sections with any uncovered struts (%) at 4 weeks of stenting. The MTX group also exhibited lower rates of heterogeneity, microvessels and per-strut low-signal-intensity layers, indicating neointimal instability at 12 weeks of stenting. In vitro, low-dose MTX strongly inhibited HUVEC apoptosis, promoted proliferation and inhibited inflammatory activation by targeting the phosphoinositide 3-kinase (PI3K)/AKT signalling pathway.

Conclusion

Low-dose MTX may be a key means of promoting early cell coverage via the inhibition of the inflammatory response and stability of neointima by targeting inflammatory pathways after stent implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. King SB 3rd., Smith SC Jr, Hirshfeld JW Jr, et al. 2007 focused update of the ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2008;51:172–209.

    Article  PubMed  Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–245.

    PubMed  Google Scholar 

  3. Ribichini F, Joner M, Ferrero V, et al. Effects of oral prednisone after stenting in a rabbit model of established atherosclerosis. J Am Coll Cardiol. 2007;50:176–85.

    Article  CAS  PubMed  Google Scholar 

  4. Hou J, Qi H, Zhang M, et al. Development of lipid-rich plaque inside bare metal stent: possible mechanism of late stent thrombosis? An optical coherence tomography study. Heart. 2010;96:1187–90.

    Article  PubMed  Google Scholar 

  5. Hu S, Wang C, Zhe C, et al. Plaque erosion delays vascular healing after drug eluting stent implantation in patients with acute coronary syndrome: an in vivo optical coherence tomography study. Catheter Cardiovasc Interv. 2017;89:592–600.

    Article  PubMed  Google Scholar 

  6. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    Article  CAS  PubMed  Google Scholar 

  7. Tunali-Akbay T, Sehirli O, Ercan F, Sener G. Resveratrol protects against methotrexate-induced hepatic injury in rats. J Pharm Pharm Sci. 2010;13:303–10.

    Article  CAS  PubMed  Google Scholar 

  8. Ridker PM, Luscher TF. Anti-inflammatory therapies for cardiovascular disease. Eur Heart J. 2014;35:1782–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang R, Chen S, Zhang H, et al. Effects of methotrexate in a rabbit model of in-stent neoatherosclerosis: an optical coherence tomography study. Sci Rep. 2016;6:33657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sintek MA, Sparrow CT, Mikuls TR, et al. Repeat revascularisation outcomes after percutaneous coronary intervention in patients with rheumatoid arthritis. Heart. 2016;102:363–9.

    Article  CAS  PubMed  Google Scholar 

  11. Gouveia V, Oliveira DC, Tenorio E, Brito N, Sarinho E. Percutaneous coronary intervention: safety of methotrexate and its possible benefits on restenosis after bare-metal stent deployment. Cardiol Res. 2016;7:104–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hou J, Jia H, Liu H, et al. Neointimal tissue characteristics following sirolimus-eluting stent implantation: OCT quantitative tissue property analysis. Int J Cardiovasc Imaging. 2012;28:1879–86.

    Article  PubMed  Google Scholar 

  13. Kim JS, Hong MK, Shin DH, et al. Quantitative and qualitative changes in DES-related neointimal tissue based on serial OCT. JACC Cardiovasc Imaging. 2012;5:1147–55.

    Article  PubMed  Google Scholar 

  14. Inoue S, Koyama H, Miyata T, Shigematsu H. Cell replication induces in-stent lesion growth in rabbit carotid artery with preexisting intimal hyperplasia. Atherosclerosis. 2002;162:345–53.

    Article  CAS  PubMed  Google Scholar 

  15. Conaghan PG, Ostergaard M, Bowes MA, et al. Comparing the effects of tofacitinib, methotrexate and the combination, on bone marrow oedema, synovitis and bone erosion in methotrexate-naive, early active rheumatoid arthritis: results of an exploratory randomised MRI study incorporating semiquantitative and quantitative techniques. Ann Rheum Dis. 2016;75:1024–33.

    Article  CAS  PubMed  Google Scholar 

  16. Prati F, Zimarino M, Stabile E, et al. Does optical coherence tomography identify arterial healing after stenting? An in vivo comparison with histology, in a rabbit carotid model. Heart. 2008;94:217–21.

    Article  CAS  PubMed  Google Scholar 

  17. Tian J, Hu S, Sun Y, et al. A novel model of atherosclerosis in rabbits using injury to arterial walls induced by ferric chloride as evaluated by optical coherence tomography as well as intravascular ultrasound and histology. J Biomed Biotechnol. 2012;2012:121867.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kang SJ, Mintz GS, Akasaka T, et al. Optical coherence tomographic analysis of in-stent neoatherosclerosis after drug-eluting stent implantation. Circulation. 2011;123:2954–63.

    Article  CAS  PubMed  Google Scholar 

  19. Nakazawa G, Otsuka F, Nakano M, et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol. 2011;57:1314–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim S, Kim JS, Shin DH, et al. Comparison of early strut coverage between zotarolimus- and everolimus-eluting stents using optical coherence tomography. Am J Cardiol. 2013;111:1–5.

    Article  CAS  PubMed  Google Scholar 

  21. Kornowski R, Hong MK, Tio FO, Bramwell O, Wu H, Leon MB. In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol. 1998;31:224–30.

    Article  CAS  PubMed  Google Scholar 

  22. Chin-Quee SL, Hsu SH, Nguyen-Ehrenreich KL, et al. Endothelial cell recovery, acute thrombogenicity, and monocyte adhesion and activation on fluorinated copolymer and phosphorylcholine polymer stent coatings. Biomaterials. 2010;31:648–57.

    Article  CAS  PubMed  Google Scholar 

  23. Joner M, Nakazawa G, Finn AV, et al. Endothelial cell recovery between comparator polymer-based drug-eluting stents. J Am Coll Cardiol. 2008;52:333–42.

    Article  CAS  PubMed  Google Scholar 

  24. Miyake T, Ihara S, Miyake T, et al. Prevention of neointimal formation after angioplasty using nuclear factor-κB decoy oligodeoxynucleotide-coated balloon catheter in rabbit model. Circ Cardiovasc Interv. 2014;7:787–96.

    Article  CAS  PubMed  Google Scholar 

  25. Thornton CC, Al-Rashed F, Calay D, et al. Methotrexate-mediated activation of an AMPK-CREB-dependent pathway: a novel mechanism for vascular protection in chronic systemic inflammation. Ann Rheum Dis. 2016;75:439–48.

    Article  CAS  PubMed  Google Scholar 

  26. Leite AC Jr, Solano TV, Tavares ER, Maranhao RC. Use of combined chemotherapy with etoposide and methotrexate, both associated to lipid nanoemulsions for atherosclerosis treatment in cholesterol-fed rabbits. Cardiovasc Drugs Ther. 2015;29:15–22.

    Article  CAS  PubMed  Google Scholar 

  27. Aday AW, Ridker PM. Targeting residual inflammatory risk: a shifting paradigm for atherosclerotic disease. Front Cardiovasc Med. 2019;6:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kalkman DN, Aquino M, Claessen BE, et al. Residual inflammatory risk and the impact on clinical outcomes in patients after percutaneous coronary interventions. Eur Heart J. 2018;39:4101–8.

    Article  CAS  PubMed  Google Scholar 

  29. Micha R, Imamura F, Wyler von Ballmoos M, et al. Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. Am J Cardiol. 2011;108:1362–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roubille C, Richer V, Starnino T, et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74:480–9.

    Article  CAS  PubMed  Google Scholar 

  31. Moreira DM, Lueneberg ME, da Silva RL, Fattah T, Gottschall CAM. Methotrexate therapy in ST-segment elevation myocardial infarctions: a randomized double-blind, placebo-controlled trial (TETHYS Trial). J Cardiovasc Pharmacol Ther. 2017;22:538–45.

    Article  CAS  PubMed  Google Scholar 

  32. Asanuma H, Sanada S, Ogai A, et al. Methotrexate and MX-68, a new derivative of methotrexate, limit infarct size via adenosine-dependent mechanisms in canine hearts. J Cardiovasc Pharmacol. 2004;43:574–9.

    Article  CAS  PubMed  Google Scholar 

  33. Yang X, Thomas DP, Zhang X, et al. Curcumin inhibits platelet-derived growth factor-stimulated vascular smooth muscle cell function and injury-induced neointima formation. Arterioscler Thromb Vasc Biol. 2006;26:85–90.

    Article  PubMed  CAS  Google Scholar 

  34. Otsuka F, Vorpahl M, Nakano M, et al. Pathology of second-generation everolimus-eluting stents versus first-generation sirolimus- and paclitaxel-eluting stents in humans. Circulation. 2014;129:211–23.

    Article  CAS  PubMed  Google Scholar 

  35. Finn AV, Joner M, Nakazawa G, et al. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation. 2007;115:2435–41.

    Article  PubMed  Google Scholar 

  36. Huang Y, Salu K, Liu X, et al. Methotrexate loaded SAE coated coronary stents reduce neointimal hyperplasia in a porcine coronary model. Heart. 2004;90:195–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chaabane C, Otsuka F, Virmani R, Bochaton-Piallat ML. Biological responses in stented arteries. Cardiovasc Res. 2013;99:353–63.

    Article  CAS  PubMed  Google Scholar 

  38. Wessels JA, Huizinga TW, Guchelaar HJ. Recent insights in the pharmacological actions of methotrexate in the treatment of rheumatoid arthritis. Rheumatology (Oxford). 2008;47:249–55.

    Article  CAS  Google Scholar 

  39. Holliday AC, Moody MN, Berlingeri-Ramos A. Methotrexate: role of treatment in skin disease. Skin Ther Lett. 2013;18:4–9.

    Google Scholar 

  40. Corciulo C, Lendhey M, Wilder T, et al. Endogenous adenosine maintains cartilage homeostasis and exogenous adenosine inhibits osteoarthritis progression. Nat Commun. 2017;8:15019.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Martelli AM, Tazzari PL, Evangelisti C, et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy: from bench to bedside. Curr Med Chem. 2007;14:2009–23.

    Article  CAS  PubMed  Google Scholar 

  42. Shishodia S, Aggarwal BB. Nuclear factor-kappaB activation: a question of life or death. J Biochem Mol Biol. 2002;35:28–40.

    CAS  PubMed  Google Scholar 

  43. Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell. 2004;6:203–8.

    Article  CAS  PubMed  Google Scholar 

  44. Kim JS, Lee JH, Shin DH, et al. Long-term outcomes of neointimal hyperplasia without neoatherosclerosis after drug-eluting stent implantation. JACC Cardiovasc Imaging. 2014;7:788–95.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Key R&D Program of China (Grant No. 2016YFC1301100), the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang Province, China (Grant Nos. KF201811 and KF201916), the General Undergraduate Colleges and Universities Young Innovative Talents Training Plan, Heilongjiang Province, China (Grant No. UNPYSCT-2018075), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ21H020006).

Author information

Authors and Affiliations

Authors

Contributions

Y.B., H.J., Z.R. and L.X. designed the study. L.X. and Z.R. performed literature search, analysed and interpreted the data, and drafted the manuscript. F.G., S.Y. and W.J. contributed to the data collection. Z.M., T.J. and G.X. contributed to the data analysis and interpretation. Z.Y. and S.C. contributed to the literature search and data interpretation. All co-authors edited and reviewed the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Bo Yu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethics approval

The Hospital Scientific Affairs Committee on Animal Research and Ethics approved the study protocol, and the methods were performed in accordance with the ARRIVE guidelines. All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All rabbits were obtained from the animal centre of Harbin Medical University.

Consent to participate

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Xianglan Liu and Ruoxi Zhang have equally contributed for this article.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, R., Fu, G. et al. Methotrexate Therapy Promotes Cell Coverage and Stability in in-Stent Neointima. Cardiovasc Drugs Ther 35, 915–925 (2021). https://doi.org/10.1007/s10557-020-07121-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-07121-7

Keywords

Navigation