Skip to main content

Advertisement

Log in

PCSK9Qβ-003 Vaccine Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Our group has developed a therapeutic vaccine targeting proprotein convertase subtilisin/kexin type 9 (PCSK9), named PCSK9Qβ-003. In this study, we investigated the potential effectiveness of the PCSK9Qβ-003 vaccine on atherosclerosis.

Methods

Male ApoE−/− mice were randomly assigned to three groups: a phosphate-buffered saline (PBS) group, Qβ virus-like particles (VLP) group, and PCSK9Qβ-003 vaccine group. Mice in the PCSK9Qβ-003 group were injected with the PCSK9Qβ-003 vaccine four times (100 μg/time) over a period of 18 weeks. The effects of the vaccine on atherosclerotic plaque, cholesterol transport, inflammation and apoptosis were investigated.

Results

The PCSK9Qβ-003 vaccine obviously decreased total cholesterol and low-density lipoprotein cholesterol in ApoE−/− mice. Compared with the other groups, the PCSK9Qβ-003 vaccine significantly reduced the lesion area and promoted the stability of atherosclerotic plaque. The vaccine regulated cholesterol transport in the aorta of ApoE−/− mice by up-regulating the expression level of liver X receptor α and ATP binding cassette transporter A1. Additionally, macrophage infiltration and expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α were significantly decreased in the mice administered the PCSK9Qβ-003 vaccine. The vaccine also markedly reduced apoptosis in the lesion area of the aorta in ApoE−/− mice.

Conclusions

The results demonstrated that the PCSK9Qβ-003 vaccine attenuated the progression of atherosclerosis by modulating reverse cholesterol transport and inhibiting inflammation infiltration and apoptosis, which may provide a novel therapeutic approach for atherosclerosis and greatly improve treatment compliance among patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999;340:115–26.

    CAS  PubMed  Google Scholar 

  2. Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118:620–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232:34–47.

    CAS  PubMed  Google Scholar 

  4. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest. 1993;92:883–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Abifadel M, Varret M, Rabès JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154.

    CAS  PubMed  Google Scholar 

  6. Abifadel M, Rabès JP, Devillers M, et al. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat. 2009;30:520–9.

    CAS  PubMed  Google Scholar 

  7. Lopez D. PCSK9: an enigmatic protease. Biochim Biophys Acta. 2008;1781:184–91.

    CAS  PubMed  Google Scholar 

  8. Zhao Z, Tuakli WY, Lagace TA, et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet. 2006;79:514–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Raal FJ, Stein EA, Dufour R, et al. RUTHERFORD-2 investigators. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385:331–40.

    CAS  PubMed  Google Scholar 

  10. Ginsberg HN, Rader DJ, Raal FJ, et al. Efficacy and safety of Alirocumab in patients with heterozygous familial hypercholesterolemia and LDL-C of 160 mg/dl or higher. Cardiovasc Drugs Ther. 2016;30:473–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kazi DS, Moran AE, Coxson PG, et al. Cost-effectiveness of PCSK9 inhibitor therapy in patients with heterozygous familial hypercholesterolemia or atherosclerotic cardiovascular disease. JAMA. 2016;316:743–53.

    CAS  PubMed  Google Scholar 

  12. Bachmann MF, Dyer MR. Therapeutic vaccination for chronic diseases: a new class of drugs in sight. Nat Rev Drug Discov. 2004;3:81.

    CAS  PubMed  Google Scholar 

  13. Chackerian B, Remaley A. Vaccine strategies for lowering LDL by immunization against proprotein convertase subtilisin/kexin type 9. Curr Opin Lipidol. 2016;27:345–50.

    CAS  PubMed  Google Scholar 

  14. Pan Y, Zhou Y, Wu H, et al. Therapeutic peptide vaccine against PCSK9. Sci Rep. 2017;7:12534.

    PubMed  PubMed Central  Google Scholar 

  15. Daugherty A, Whitman SC. Quantification of atherosclerosis in mice. Methods Mol Biol. 2003;209:293–309.

    PubMed  Google Scholar 

  16. Glass CK, Witztum JL. Atherosclerosis: the road ahead. Cell. 2001;104:503–16.

    CAS  PubMed  Google Scholar 

  17. Vainio S, Ikonen E. Macrophage cholesterol transport: a critical player in foam cell formation. Ann Med. 2003;35:146–55.

    CAS  PubMed  Google Scholar 

  18. Lee SD, Tontonoz P. Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis. 2015;242:29–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pascual GM, Valledor AF. Biological roles of liver X receptors in immune cells. Arch Immunol Ther Exp. 2012;60:235–49.

    Google Scholar 

  20. Oosterveer MH, Grefhorst A, Groen AK, Kuipers F. The liver X receptor: control of cellular lipid homeostasis and beyond implications for drug design. Prog Lipid Res. 2010;49:343–52.

    CAS  PubMed  Google Scholar 

  21. Kolovou V, Marvaki A, Boutsikou M, et al. Effect of ATP-binding cassette transporter A1 (ABCA1) gene polymorphisms on plasma lipid variables and common demographic parameters in Greek nurses. Open Cardiovasc Med J. 2016;10:233–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Costet P, Luo Y, Wang N, Tall AR. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem. 2000;275:28240–5.

    CAS  PubMed  Google Scholar 

  23. Adorni MP, Cipollari E, Favari E, Zanotti I, et al. Inhibitory effect of PCSK9 on Abca1 protein expression and cholesterol efflux in macrophages. Atherosclerosis. 2017;256:1–6.

    CAS  PubMed  Google Scholar 

  24. Tall AR. Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Intern Med. 2008;263(3):256–73.

    CAS  PubMed  Google Scholar 

  25. Sabatine MS, Giugliano RP, Wiviott SD, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–9.

    CAS  PubMed  Google Scholar 

  26. Graham MJ, Lemonidis KM, Whipple CP, et al. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J Lipid Res. 2007;48:763–7.

    CAS  PubMed  Google Scholar 

  27. Chan JC, Piper DE, Cao Q, et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci U S A. 2009;106:9820–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Clarke MC, Figg N, Maguire JJ, et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med. 2006;12:1075–80.

    CAS  PubMed  Google Scholar 

  29. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43.

    CAS  PubMed  Google Scholar 

  30. May P, Bock HH, Nofer JR. Low density receptor-related protein 1 (LRP1) promotes anti-inflammatory phenotype in murine macrophages. Cell Tissue Res. 2013;354:887–9.

    CAS  PubMed  Google Scholar 

  31. Ason B, Van der Hoorn JWA, Chan J, et al. PCSK9 inhibition fails to alter hepatic LDLR, circulating cholesterol, and atherosclerosis in the absence of ApoE. J Lipid Res. 2014;55:2370–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Levy E, Ben Djoudi Ouadda A, Spahis S, et al. PCSK9 plays a significant role in cholesterol homeostasis and lipid transport in intestinal epithelial cells. Atherosclerosis. 2013;227:297–306.

    CAS  PubMed  Google Scholar 

  33. Sharotri V, Collier DM, Olson DR, Zhou R, Snyder PM. Regulation of epithelial sodium channel trafficking by proprotein convertase subtilisin/kexin type 9 (PCSK9). J Biol Chem. 2012;287:19266–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Le MC, Kourimate S, Langhi C, et al. Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol. 2009;29:684–90.

    Google Scholar 

  35. Poirier S, Mayer G, Benjannet S, et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem. 2008;283:2363–72.

    CAS  PubMed  Google Scholar 

  36. Kawakami R, Nozato Y, Nakagami H, et al. Development of vaccine for dyslipidemia targeted to a proprotein convertase subtilisin/kexin type 9 (PCSK9) epitope in mice. PLoS One. 2018;13:e0191895.

    PubMed  PubMed Central  Google Scholar 

  37. Schuster S, Rubil S, Endres M, et al. Anti-PCSK9 antibodies inhibit pro-atherogenic mechanisms in APOE*3Leiden.CETP mice. Sci Rep. 2019;9:1–8.

    Google Scholar 

  38. Galabova G, Brunner S, Winsauer G, et al. Peptide-based anti-PCSK9 vaccines- an approach for long-term LDLc management. PLoS One. 2014;9(12):e114469.

    PubMed  PubMed Central  Google Scholar 

  39. Landlinger C, Pouwer MG, Juno C, et al. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur Heart. 2017;38:2499–507.

    CAS  Google Scholar 

  40. Momtazi-Borojeni AA, Jaafari MR, Badiee A, Banach M, Sahebkar A. Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis. BMC Med. 2019;17:223.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu D, Zhou Y, Pan Y, et al. Vaccine against PCSK9 improved renal fibrosis by regulating fatty acid β-oxidation. J Am Heart Assoc. 2020;9:e014358.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Major Research Plan of the National Natural Science Foundation of China (no. 91439207) and the National Natural Science Foundation of China (nos. 81900401, 81900459, 81670461 and 81500388).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhua Liao or Zhihua Qiu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Pan, Y., Yang, S. et al. PCSK9Qβ-003 Vaccine Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice. Cardiovasc Drugs Ther 35, 141–151 (2021). https://doi.org/10.1007/s10557-020-07041-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-07041-6

Keywords

Navigation