Skip to main content

Advertisement

Log in

Advanced Interfere Treatment of Diabetic Cardiomyopathy Rats by aFGF-Loaded Heparin-Modified Microbubbles and UTMD Technique

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

This study aims to investigate the preclinical performance and mechanism of a novel strategy of aFGF-loaded heparin-modified microbubbles (aFGF-HMB) combined with ultrasound-targeted microbubble destruction (UTMD) technique for diabetic cardiomyopathy (DCM) prevention. Type 1 diabetic rats were induced by streptozotocin. Twelve weeks after intervention, indexes from transthoracic echocardiography and cardiac catheterization showed that the left ventricular function in the aFGF-HMB/UTMD group was significantly improved compared with diabetes control (DM). From Picrosirius Red staining and TUNEL staining, the aFGF-HMB/UTMD group showed significant difference from the other groups. The cardiac collagen volume fraction (CVF) and myocardial cell apoptosis index (AI) in aFGF-HMB/UTMD group decreased to 7.2 % and 7.11 % respectively, compared with the DM group (CVF = 24.5 % and AI =20.3 % respectively). The results of myocardial microvascular density (MCD) also proved the strongest inhibition of aFGF-HMB/UTMD group on DCM progress. CD31 staining of aFGF-HMB/UTMD group reached 22 n/hrp, much higher than that of DM group (9 n/hrp). These results confirmed that the abnormalities including left ventricular dysfunction, myocardial fibrosis, cardiomyocytes apoptosis and microvascular rarefaction could be suppressed by twice weekly aFGF treatments for 12 consecutive weeks (free aFGF or aFGF-HMB+/−UTMD), with the strongest improvements observed in the aFGF-HMB/UTMD group (P < 0.05 vs free aFGF or aFGF-HMB). Western blot analyses of heart tissue further revealed the highest aFGF, anti-apoptosis protein (Bcl-2), VEGF-C, pAkt, pFoxo-3a levels and strongest reduction in pro-apoptosis proteins (Bax) level in aFGF-HMB/UTMD group. Overall, aFGF-HMB combined with UTMD technique might be developed as an effective strategy to prevent DCM in future clinical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DM:

Diabetes

DCM:

Diabetic cardiomyopathy

MB:

Microbubbles

HMB:

Heparin-modified microbubbles

aFGF or FGF-1:

acid fibroblast growth factor

bFGF:

basic fibroblast growth factor

aFGF-HMB:

aFGF-loaded heparin-modified microbubbles

UTMD:

Ultrasound-targeted microbubble destruction

aFGF-HMB/UTMD:

aFGF-loaded heparin-modified Microbubbles combined with ultrasound- targeted microbubble destruction

CVF:

Collagen volume fraction

AI:

Apoptosis index

MCD:

Myocardial capillary density

QDs:

Quantum dots

LVEF:

Left ventricle ejection fraction

LVFS:

Left ventricle fractional shortening

Vs:

Peak systolic radial velocity

Sc:

Systolic circumferential strain

SRc:

Systolic circumferential strain rate

Sr:

Systolic radial strain

SRr:

Systolic radial strain rate

LV:

Left ventricle

LVESP:

Left ventricle end-systolic pressure

LVEDP:

end-diastolic pressure

±dp/dt max:

The maximum rising and dropping rates of left ventricle pressure

References

  1. Grundy SM. Pre-diabetes, metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol. 2012;59(7):635–43.

    Article  CAS  PubMed  Google Scholar 

  2. Fowlkes V, Clark J, Fix C, Law BA, Morales MO, Qiao X, Ako-Asare K, Goldsmith JG, Carver W, Murray DB, Goldsmith EC. Type II diabetes promotes a myofibroblast phenotype in cardiac fibroblasts. Life Sci. 2013;92(11):669–76.

    Article  CAS  PubMed  Google Scholar 

  3. Mishra PK, Chavali V, Metreveli N, Tyagi SC. Ablation of MMP9 induces survival and differentiation of cardiac stem cells into cardiomyocytes in the heart of diabetics: a role of extracellular matrix. Can J Physiol Pharmacol. 2012;90(3):353–60.

    Article  CAS  PubMed  Google Scholar 

  4. Mishra PK, Givvimani S, Metreveli N, Tyagi SC. Attenuation of beta2-adrenergic receptors and homocysteine metabolic enzymes cause diabetic cardiomyopathy. Biochem Biophys Res Commun. 2010;401(2):175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zou MH, Xie Z. Regulation of interplay between autophagy and apoptosis in the diabetic heart: new role of AMPK. Autophagy. 2013;9(4):624–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Papa G, Degano C, Iurato MP, Licciardello C, Maiorana R, Finocchiaro C. Macrovascular complication phenotypes in type 2 diabetic patients. Cardiovasc Diabetol. 2013;12:20.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang H, Zhang Y, Li Z, Liu C, Hou R, Zhu S, Ma N, Zhou L, Liu Y. Left ventricular radial systolic dysfunction in diabetic patients assessed by myocardial acceleration derived from velocity vector imaging. J Ultrasound Med. 2012;31(8):1179–86.

    PubMed  Google Scholar 

  8. Fischer C, Schneider M, Carmeliet P: Principles and therapeutic implications of angiogenesis, vasculogenesis and arteriogenesis. Handb Exp Pharmacol 2006(176 Pt 2):157–212.

  9. Casscells W, Speir E, Sasse J, Klagsbrun M, Allen P, Lee M, Calvo B, Chiba M, Haggroth L, Folkman J. Isolation, characterization, and localization of heparin-binding growth factors in the heart. J Clin Invest. 1990;85(2):433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cochain C, Channon KM, Silvestre JS. Angiogenesis in the infarcted myocardium. Antioxid Redox Signal. 2013;18(9):1100–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao YZ, Lu CT, Li XK, Tang QQ, Tian XQ, Zhao YP, Zhang Y, Tian JL, Yang W, Ge S, Nair CK, Shen X. Improving the cardio protective effect of aFGF in ischemic myocardium with ultrasound-mediated cavitation of heparin modified microbubbles: preliminary experiment. J Drug Target. 2012;20(7):623–31.

    Article  CAS  PubMed  Google Scholar 

  12. Suh JM, Jonker JW, Ahmadian M, Goetz R, Lackey D, Osborn O, Huang Z, Liu W, Yoshihara E, van Dijk TH, Havinga R, Fan W, Yin YQ, Yu RT, Liddle C, Atkins AR, Olefsky JM, Mohammadi M, Downes M, Evans RM. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature. 2014;513(7518):436–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang C, Zhang L, Chen S, Feng B, Lu X, Bai Y, Liang G, Tan Y, Shao M, Skibba M, Jin L, Li X, Chakrabarti S, Cai L. The prevention of diabetic cardiomyopathy by non-mitogenic acidic fibroblast growth factor is probably mediated by the suppression of oxidative stress and damage. PLoS One. 2013;8(12):e82287.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Unger E, Porter T, Lindner J, Grayburn P. Cardiovascular drug delivery with ultrasound and microbubbles. Adv Drug Deliv Rev. 2014;72:110–26.

    Article  CAS  PubMed  Google Scholar 

  15. Fujii H, Li SH, Wu J, Miyagi Y, Yau TM, Rakowski H, Egashira K, Guo J, Weisel RD, Li RK. Repeated and targeted transfer of angiogenic plasmids into the infarcted rat heart via ultrasound targeted microbubble destruction enhances cardiac repair. Eur Heart J. 2011;32(16):2075–84.

    Article  CAS  PubMed  Google Scholar 

  16. Lentacker I, De Cock I, Deckers R, De Smedt SC, Moonen CT. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev. 2014;72:49–64.

    Article  CAS  PubMed  Google Scholar 

  17. VanBavel E. Effects of shear stress on endothelial cells: possible relevance for ultrasound applications. Prog Biophys Mol Biol. 2007;93(1–3):374–83.

    Article  CAS  PubMed  Google Scholar 

  18. Guzman HR, Nguyen DX, Khan S, Prausnitz MR. Ultrasound-mediated disruption of cell membranes. II. Heterogeneous effects on cells. J Acoust Soc Am. 2001;110(1):597–606.

    Article  CAS  PubMed  Google Scholar 

  19. Forbes MM, Steinberg RL, O'Brien Jr WD. Examination of inertial cavitation of optison in producing sonoporation of Chinese hamster ovary cells. Ultrasound Med Biol. 2008;34(12):2009–18.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Forbes MM, Steinberg RL, O'Brien Jr WD. Frequency-dependent evaluation of the role of definity in producing sonoporation of Chinese hamster ovary cells. J Ultrasound Med. 2011;30(1):61–9.

    PubMed  PubMed Central  Google Scholar 

  21. Zhao YZ, Tian XQ, Zhang M, Cai L, Ru A, Shen XT, Jiang X, Jin RR, Zheng L, Hawkins K, Charkrabarti S, Li XK, Lin Q, Yu WZ, Ge S, Lu CT, Wong HL. Functional and pathological improvements of the hearts in diabetes model by the combined therapy of bFGF-loaded nanoparticles with ultrasound-targeted microbubble destruction. J Control Release. 2014;186:22–31.

    Article  CAS  PubMed  Google Scholar 

  22. Tian JL, Zhao YZ, Jin Z, Lu CT, Tang QQ, Xiang Q, Sun CZ, Zhang L, Xu YY, Gao HS, Zhou ZC, Li XK, Zhang Y. Synthesis and characterization of poloxamer 188-grafted heparin copolymer. Drug Dev Ind Pharm. 2010;36(7):832–8.

    Article  CAS  PubMed  Google Scholar 

  23. Kang NN, Fu L, Xu J, Han Y, Cao JX, Sun JF, Zheng M. Testosterone improves cardiac function and alters angiotensin II receptors in isoproterenol-induced heart failure. Arch Cardiovasc Dis. 2012;105(2):68–76.

    Article  PubMed  Google Scholar 

  24. Meloni M, Descamps B, Caporali A, Zentilin L, Floris I, Giacca M, Emanueli C. Nerve growth factor gene therapy using adeno-associated viral vectors prevents cardiomyopathy in type 1 diabetic mice. Diabetes. 2012;61(1):229–40.

    Article  CAS  PubMed  Google Scholar 

  25. Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham Study Jama. 1979;241(19):2035–8.

    CAS  PubMed  Google Scholar 

  26. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30(6):595–602.

    Article  CAS  PubMed  Google Scholar 

  27. From AM, Leibson CL, Bursi F, Redfield MM, Weston SA, Jacobsen SJ, Rodeheffer RJ, Roger VL. Diabetes in heart failure: prevalence and impact on outcome in the population. Am J Med. 2006;119(7):591–9.

    Article  PubMed  Google Scholar 

  28. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8(3):235–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao YZ, Lv HF, Lu CT, Chen LJ, Lin M, Zhang M, Jiang X, Shen XT, Jin RR, Cai J, Tian XQ, Wong HL. Evaluation of a novel thermosensitive heparin-poloxamer hydrogel for improving vascular anastomosis quality and safety in a rabbit model. PLoS One. 2013;8(8):e73178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chang MY, Yang YJ, Chang CH, Tang AC, Liao WY, Cheng FY, Yeh CS, Lai JJ, Stayton PS, Hsieh PC. Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction. J Control Release. 2013;170(2):287–94.

    Article  CAS  PubMed  Google Scholar 

  31. Islas-Andrade S, Monsalve CR, de la Peña JE, Polanco AC, Palomino MA, Velasco AF. Streptozotocin and alloxan in experimental diabetes: comparison of the two models in rats. Acta Histochemica et Cytochemica. 2000;33:201–8.

    Article  CAS  Google Scholar 

  32. Bugger H, Abel ED. Rodent models of diabetic cardiomyopathy. Dis Models Mech. 2009;2(9–10):454–66.

    Article  CAS  Google Scholar 

  33. Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. 2013;18(2):149–66.

    Article  PubMed  Google Scholar 

  34. Schannwell CM, Schneppenheim M, Perings S, Plehn G, Strauer BE. Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology. 2002;98(1–2):33–9.

    Article  CAS  PubMed  Google Scholar 

  35. Palmieri V, Capaldo B, Russo C, Iaccarino M, Pezzullo S, Quintavalle G, Di Minno G, Riccardi G, Celentano A. Uncomplicated type 1 diabetes and preclinical left ventricular myocardial dysfunction: insights from echocardiography and exercise cardiac performance evaluation. Diabetes Res Clin Pract. 2008;79(2):262–8.

    Article  PubMed  Google Scholar 

  36. Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B, Anversa P. Myocardial cell death in human diabetes. Circ Res. 2000;87(12):1123–32.

    Article  CAS  PubMed  Google Scholar 

  37. Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes. 2002;51(6):1938–48.

    Article  CAS  PubMed  Google Scholar 

  38. Armstrong SC. Protein kinase activation and myocardial ischemia/reperfusion injury. Cardiovasc Res. 2004;61(3):427–36.

    Article  CAS  PubMed  Google Scholar 

  39. Bae S, Zhang L. Gender differences in cardioprotection against ischemia/reperfusion injury in adult rat hearts: focus on Akt and protein kinase C signaling. J Pharmacol Exp Ther. 2005;315(3):1125–35.

    Article  CAS  PubMed  Google Scholar 

  40. Linseman DA, Butts BD, Precht TA, Phelps RA, Le SS, Laessig TA, Bouchard RJ, Florez-McClure ML, Heidenreich KA. Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci. 2004;24(44):9993–10002.

    Article  CAS  PubMed  Google Scholar 

  41. Caporali A, Sala-Newby GB, Meloni M, Graiani G, Pani E, Cristofaro B, Newby AC, Madeddu P, Emanueli C. Identification of the prosurvival activity of nerve growth factor on cardiac myocytes. Cell Death Differ. 2008;15(2):299–311.

    Article  CAS  PubMed  Google Scholar 

  42. Potente M, Urbich C, Sasaki K, Hofmann WK, Heeschen C, Aicher A, Kollipara R, DePinho RA, Zeiher AM, Dimmeler S. Involvement of foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest. 2005;115(9):2382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chang CH, Huang YL, Shyu MK, Chen SU, Lin CH, Ju TK, Lu J, Lee H. Sphingosine-1-phosphate induces VEGF-C expression through a MMP-2/FGF-1/FGFR-1-dependent pathway in endothelial cells in vitro. Acta Pharmacol Sin. 2013;34(3):360–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shimizu M, Umeda K, Sugihara N, Yoshio H, Ino H, Takeda R, Okada Y, Nakanishi I. Collagen remodelling in myocardia of patients with diabetes. J Clin Pathol. 1993;46(1):32–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Devereux RB, Roman MJ, Paranicas M, O'Grady MJ, Lee ET, Welty TK, Fabsitz RR, Robbins D, Rhoades ER, Howard BV. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation. 2000;101(19):2271–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (Grant No. 81301982, 81360195, 81571392 and 81272160). Zhejiang Provincial Foundation for Health Department (Grant No. 2015ZDA023). Key support of high level talent innovation and technology project of Wenzhou (Zhao Ying-Zheng, 2015). Major Scientific Project of Guangdong Province (Grant No. 2012 A080201010). Science and Technology Program of Guangzhou, China (201508020001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Xiao, Ying-Zheng Zhao or Cui-Tao Lu.

Ethics declarations

Disclosure Statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this paper.

Additional information

Ming Zhang, Wen-Ze Yu and Xiao-Tong Shen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Yu, WZ., Shen, XT. et al. Advanced Interfere Treatment of Diabetic Cardiomyopathy Rats by aFGF-Loaded Heparin-Modified Microbubbles and UTMD Technique. Cardiovasc Drugs Ther 30, 247–261 (2016). https://doi.org/10.1007/s10557-016-6639-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-016-6639-4

Keywords

Navigation