Skip to main content

Advertisement

Log in

Rationale and Design of Sodium Tanshinone IIA Sulfonate in Left Ventricular Remodeling Secondary to Acute Myocardial Infarction (STAMP-REMODELING) Trial: A Randomized Controlled Study

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Background

Left ventricular (LV) remodeling in ischemic cardiomyopathy is the leading cause of heart failure and is an established prognostic factor for adverse cardiovascular events. Experimental studies suggest that sodium tanshinone IIA sulfonate attenuates cardiac remodeling in animal models of acute myocardial infarction (AMI). However, the effects of this drug in the clinical setting remain unclear. Therefore, the STAMP-REMODELING trial is set up to investigate whether treatment with sodium tanshinone IIA sulfonate would prevent the maladaptive progression to adverse LV remodeling in patients following ST-segment elevation myocardial infarction (STEMI).

Methods

Approximately 80 patients with STEMI successfully treated with primary percutaneous coronary intervention (PCI) will be enrolled and randomized to receive sodium tanshinone IIA sulfonate (80 mg q.d. for 7 days) in addition to standard therapy or the same volume of hydration per day. The primary endpoint is the variation in LV end-diastolic volume index (LVEDVi) assessed with cardiac magnetic resonance imaging (CMR) at baseline and 6 months.

Conclusion

This study will provide important clinical evidence on the efficacy of sodium tanshinone IIA sulfonate treatment in patients with STEMI when used in combination with current therapies that may significantly reduce adverse LV remodeling and potentially improve clinical outcomes.

Trial Registration: Clinical Trials.gov: NCT02524964.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin converting enzyme

AMI:

Acute myocardial infarction

CMR:

Cardiovascular magnetic resonance

EF:

Ejection fraction

LV:

Left ventricular

LVEDV:

Left ventricular end-diastolic volume

LVESV:

Left ventricular end-systolic volume

MACE:

Major adverse cardiac event

MMPs:

Matrix metalloproteinases

NYHA:

New York Heart association functional classification

NSTEACS:

Non-ST elevation acute coronary syndrome

NT-proBNP:

N-terminal pro-brain natriuretic peptide

PCI:

Percutaneous coronary intervention

PMI:

Peri-procedural myocardial injury

SAQ:

Seattle Angina Questionnaire

References

  1. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101:2981–8.

    Article  CAS  PubMed  Google Scholar 

  2. Gaudron P, Eilles C, Kugler I, et al. Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation. 1993;87:755–63.

    Article  CAS  PubMed  Google Scholar 

  3. González A, Ravassa S, Beaumont J, et al. New targets to treat the structural remodeling of the myocardium. J Am Coll Cardiol. 2011;58:1833–43.

    Article  PubMed  Google Scholar 

  4. Weir RA, Murphy CA, Petrie CJ, et al. Microvascular obstruction remains a portent of adverse remodeling in optimally treated patients with left ventricular systolic dysfunction after acute myocardial infarction. Circ Cardiovasc Imaging. 2010;3:360–7.

    Article  PubMed  Google Scholar 

  5. Ishii H, Amano T, Matsubara T, et al. Pharmacological intervention for prevention of left ventricular remodeling and improving prognosis in myocardial infarction. Circulation. 2008;118:2710–8.

    Article  PubMed  Google Scholar 

  6. Abdulla J, Barlera S, Latini R, et al. A systematic review: effect of angiotensin converting enzyme inhibition on left ventricular volumes and ejection fraction in patients with a myocardial infarction and in patients with left ventricular dysfunction. Eur J Heart Fail. 2007;9:129–35.

    Article  CAS  PubMed  Google Scholar 

  7. Bellenger NG, Rajappan K, Rahman SL, et al. Effects of carvedilol on left ventricular remodelling in chronic stable heart failure: a cardiovascular magnetic resonance study. Heart. 2004;90:760–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. JeevananthamV BM, Saad A, et al. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation. 2012;126:551–68.

    Article  Google Scholar 

  9. Bolognese L, Neskovic AN, Parodi G, et al. Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation. 2002;106:2351–7.

    Article  PubMed  Google Scholar 

  10. Springeling T, Kirschbaum SW, Rossi A, et al. Late cardiac remodeling after primary percutaneous coronary intervention-five-year cardiac magnetic resonance imaging follow-up. Circ J. 2012;77:81–8.

    Article  PubMed  Google Scholar 

  11. Xu W, Yang J, Wu LM. Cardioprotective effects of tanshinone IIA on myocardial ischemia injury in rats. Pharmazie. 2009;64:332–6.

    CAS  PubMed  Google Scholar 

  12. Yang F, Li P, Li H, et al. microRNA-29b mediates the antifibrotic effect of tanshinone IIA in postinfarct cardiac remodeling. J Cardiovasc Pharmacol. 2015;65:456–64.

    Article  CAS  PubMed  Google Scholar 

  13. Wang P, Wu X, Bao Y, et al. Tanshinone IIA prevents cardiac remodeling through attenuating NAD(P)H oxidase-derived reactive oxygen species production in hypertensive rats. Pharmazie. 2011;66:517–24.

    CAS  PubMed  Google Scholar 

  14. Qiu X, Miles A, Jiang X, et al. Sulfotanshinone sodium injection for unstable angina pectoris: a systematic review of randomized controlled trials. Evid Based Complement Alternat Med. 2012;2012:715790.

    PubMed Central  PubMed  Google Scholar 

  15. Zhang H, Long M, Wu Z, et al. Sodium tanshinone IIA silate as an add-on therapy in patients with unstable angina pectoris. J Thorac Dis. 2014;6:1794–9.

    PubMed Central  PubMed  Google Scholar 

  16. Mao S, Wang L, Zhao X, et al. Sodium tanshinone IIA sulfonate for reduction of periprocedural myocardial injury during percutaneous coronary intervention (STAMP trial): rationale and design. Int J Cardiol. 2015;182:329–33.

    Article  PubMed  Google Scholar 

  17. Seo WS, Lee JH, Sun X, et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater. 2006;5:971–6.

    Article  CAS  PubMed  Google Scholar 

  18. Hendel RC, Patel MR, Kramer CM, et al. ACCF/ ACR/SCCT/SCMR/ASNC /NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging. J Am Coll Cardiol. 2006;48:1475–97.

    Article  PubMed  Google Scholar 

  19. Soliman OI, Kirschbaum SW, van Dalen BM, et al. Accuracy and reproducibility of quantitation of left ventricular function by real-time three-dimensional echocardiography versus cardiac magnetic resonance. Am J Cardiol. 2008;102:778–83.

    Article  PubMed  Google Scholar 

  20. Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. Circulation. 2012;126:2020–35.

    Article  PubMed  Google Scholar 

  21. Windecker S, Kolh P, Alfonso F, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35:2541–619.

    Article  PubMed  Google Scholar 

  22. Baccouche H, Mahrholdt H, Meinhardt G, et al. Diagnostic synergy of non-invasive cardiovascular magnetic resonance and invasive endomyocardial biopsy in troponin-positive patients without coronary artery disease. Eur Heart J. 2009;30:2869–79.

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki Y, Yeung AC, Yang PC. Cardiovascular MRI for stem cell therapy. Curr Cardiol Rep. 2007;9:45–50.

    Article  PubMed  Google Scholar 

  24. Yan AT, Shayne AJ, Brown KA, et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation. 2006;114:32–9.

    Article  PubMed  Google Scholar 

  25. Orn S, Manhenke C, Greve OJ, et al. Microvascular obstruction is amajor determinant of infarct healing and subsequent left ventricular remod-elling following primary percutaneous coronary intervention. Eur Heart J. 2009;30:1978–85.

    Article  PubMed  Google Scholar 

  26. Iraqi W, Rossignol P, Angioi M, et al. Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) study. Circulation. 2009;119:2471–9.

    Article  CAS  PubMed  Google Scholar 

  27. Fertin M, Hennache B, Hamon M, et al. Usefulness of serial assessment of B-type natriuretic peptide, troponin I, and C-reactive protein to predict left ventricular remodeling after acute myocardial infarction (from the REVE-2 study). Am J Cardiol. 2010;106:1410–6.

    Article  CAS  PubMed  Google Scholar 

  28. Kramer DG, Trikalinos TA, Kent DM, et al. Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: a meta-analytic approach. J Am Coll Cardiol. 2010;56:392–406.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Cerisano G, Buonamici P, Valenti R, et al. Early short-termdoxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur Heart J. 2014;35:184–91.

    Article  CAS  PubMed  Google Scholar 

  30. Mao S, Wang Y, Zhang M, et al. Phytoestrogen, tanshinone IIA diminishes collagen deposition and stimulates elastogenesis in cultures of human cardiac fibroblasts. Exp Cell Res. 2014;10:62–7.

    Google Scholar 

  31. Fang ZY, Lin R, Yuan BX, et al. Tanshinone IIA inhibits atherosclerotic plaque formation by down-regulating MMP-2 and MMP-9 expression in rabbits fed a high-fat diet. Life Sci. 2007;81:1339–45.

    Article  CAS  PubMed  Google Scholar 

  32. Webb CS, Bonnema DD, Ahmed SH, et al. Specific temporal profile of matrix metalloproteinase release occurs in patients after myocardial infarction: relation to left ventricular remodeling. Circulation. 2006;114:1020–7.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Wei L, Sun D, et al. Tanshinone IIA pretreatment protects myocardium against ischaemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway in diabetic rats. Diabetes Obes Metab. 2010;12:316–22.

    Article  CAS  PubMed  Google Scholar 

  34. Wu TW, Zeng LH, Fung KP, et al. Effect of sodium tanshinone IIA sulfonate in the rabbit myocardium and on human cardiomyocytes and vascular endothelial cells. Biochem Pharmacol. 1993;46:2327–32.

    Article  CAS  PubMed  Google Scholar 

  35. Jenkins C, Moir S, Chan J, et al. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J. 2009;30:98–106.

    Article  PubMed  Google Scholar 

  36. Robbers LF, Eerenberg ES, Teunissen PF, et al. Magnetic resonance imaging-defined areas of microvascular obstruction after acute myocardial infarction represent microvascular destruction and haemorrhage. Eur Heart J. 2013;34:2346–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the contributions of all the investigators, and participants of the trial. This work was financially supported by Postdoctoral Science Foundation of China (No.2015 M570701), Science Foundation of Guangdong Province (No.2015A030310437&2015A030306049) and National Science Foundation of China (No.81473471&81202782&81573708). The sponsors have had no role in the project development, in the collection of data, in the preparation of this manuscript, nor the decision to publish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minzhou Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests. None of authors received funding from the relevant drug manufacturers in this research.

Authors’ Contributions

SM and XTL drafted this manuscript; SM, LW and MZZ designed the described study, LW made statistical analysis; PCY made critical revision of the manuscript and contributed to the rationalization of the study. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, S., Li, X., Wang, L. et al. Rationale and Design of Sodium Tanshinone IIA Sulfonate in Left Ventricular Remodeling Secondary to Acute Myocardial Infarction (STAMP-REMODELING) Trial: A Randomized Controlled Study. Cardiovasc Drugs Ther 29, 535–542 (2015). https://doi.org/10.1007/s10557-015-6625-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-015-6625-2

Keywords

Navigation