Skip to main content
Log in

Underappreciated Opportunities for High-Density Lipoprotein Particles in Risk Stratification and Potential Targets of Therapy

  • REVIEW ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

The inverse relationship between high-density lipoprotein cholesterol (HDL-C) concentrations and coronary heart disease risk is well established. As a result, in recent years there have been significant resources focused on identifying therapies that raise HDL-C and ultimately reduce cardiovascular events. Unfortunately, a number of trials aimed at increasing HDL-C have failed to show improved outcomes, and hence, have cast doubt on the importance of HDL-C as a therapeutic target. HDL-C, however, is only one measure of HDL. HDL levels can also been estimated by quantifying apolipoprotein A-I (apoA-I) levels using enzyme immunoassay or by measuring HDL particle number (HDL-P) using nuclear magnetic resonance spectroscopy (NMR) or ion mobility. While these surrogate measures are correlated, they are not comparable. Lipoprotein-altering therapies have been shown to have different effects on HDL-C, apoA-I and HDL-P and several studies have demonstrated that HDL-P is a stronger predictor of coronary heart disease risk than HDL-C and/or apoA-I. This paper will review available evidence supporting the use of HDL-P as the biomarker of choice to assess the contribution of HDL to cardiovascular risk and as the primary goal of HDL-raising therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barr DP, Russ EM, Eder HA. Protein-lipid relationships in human plasma. II. In atherosclerosis and related conditions. Am J Med. 1951;11:480–93.

    Article  CAS  PubMed  Google Scholar 

  2. Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA. 1986;256:2835–8.

    Article  CAS  PubMed  Google Scholar 

  3. Castelli WP. Lipids, risk factors and ischaemic heart disease. Atherosclerosis. 1996;124(Suppl):S1–9.

    Article  CAS  PubMed  Google Scholar 

  4. Gordon DJ, Probstfield JL, Garrison RJ, et al. High density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 1989;79:8–15.

    Article  CAS  PubMed  Google Scholar 

  5. Emerging Risk Factors Collaboration, Di Angelantoni E, Sarwar N, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000.

    Article  Google Scholar 

  6. Grundy SM. Use of emerging lipoprotein risk factors in assessment of cardiovascular risk. JAMA. 2012;307:2540–2.

    Article  CAS  PubMed  Google Scholar 

  7. Stone NJ, Robinson J, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2889–934.

    Article  PubMed  Google Scholar 

  8. Medford R, Rosenson RS, Dagi TF, Offerman M. Biomarkers and sustainable innovation in cardiovascular drug development: lessons learned from near and far afield. Curr Atheroscler Rep. 2013;15:321–9.

    Article  PubMed  Google Scholar 

  9. AIM-HIGH_Investigators, Boden WE, Probstfield JL, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–67.

    Article  Google Scholar 

  10. HPS2-Thrive Collaborative Group. HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, prespecified muscle and liver outcomes, and reasons for stopping study treatment. Eur Heart J. 2013;34:1279–91.

    Article  PubMed Central  Google Scholar 

  11. Inazu A, Koizumi J, Mabuchi H. Cholesteryl ester transfer protein and atherosclerosis. Curr Opin Lipidol. 2000;11:389–96.

    Article  CAS  PubMed  Google Scholar 

  12. Barter PJ, Kastelein JJ. Targeting cholesteryl ester transfer protein for the prevention and management of cardiovascular disease. J Am Coll Cardiol. 2006;47:492–9.

    Article  CAS  PubMed  Google Scholar 

  13. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.

    Article  CAS  PubMed  Google Scholar 

  14. Schwartz GG, Olsson AG, Abt M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–99.

    Article  CAS  PubMed  Google Scholar 

  15. Voight B, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380:572–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Patsch W, Schonfeld G, Gotto A, Patsch J. Characterization of human high-density lipoproteins by zonal ultracentrifugation. J Biol Chem. 1980;255:3178–85.

    CAS  PubMed  Google Scholar 

  17. Rosenson RS, Brewer HB, Chapman MJ, et al. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin Chem. 2011;57:392–410.

    Article  CAS  PubMed  Google Scholar 

  18. Kontush A, Chapman MJ. High density lipoproteins: structure, metabolism, function and therapeutics. New York, NY: Wiley & Sons; 2012.

    Google Scholar 

  19. Dominiczak MH. Apolipoproteins and lipoproteins in human plasma. In: Rifai N, Warnick GR, Dominiczak MH, editors. Handbook of lipoprotein testing. 2nd ed. Washington, DC: AACC Press; 2000. p. 1–29.

    Google Scholar 

  20. Koren E, Puchois P, Alaupovic P, Fesmire J, Kandoussi A, Fruchart JC. Quantification of two different types of apolipoprotein A-I containing lipoprotein particles in plasma by enzyme-linked differential-antibody immunoabsorbent assay. Clin Chem. 1987;33:38–43.

    CAS  PubMed  Google Scholar 

  21. Cheung MC, Albers JJ. Distribution of high density lipoprotein particles with different apoprotein composition: particles with A-I and A-II and particles with A-I but no A-II. J Lipid Res. 1982;23:747–53.

    CAS  PubMed  Google Scholar 

  22. Asztalos BF, Sloop CH, Wong L, Roheim PS. Two-dimensional electrophoresis of plasma lipoproteins: recognition of new apoA-I-containing subpopulations. Biochim Biophys Acta. 1993;1169:291–300.

    Article  CAS  PubMed  Google Scholar 

  23. Asztalos BF, Roheim PS, Milani RL, et al. Distribution of ApoA-I-containing HDL subpopulations in patients with coronary heart disease. Arterioscler Thromb Vasc Biol. 2000;20:2670–6.

    Article  CAS  PubMed  Google Scholar 

  24. Oram JF. The cholesterol mobilizing transporter ABCA1 as a new therapeutic target for cardiovascular disease. Trends Cardiovasc Med. 2002;12:170–5.

    Article  CAS  PubMed  Google Scholar 

  25. Camont L, Chapman MJ, Kontush A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol Med. 2011;17:594–603.

    Article  CAS  PubMed  Google Scholar 

  26. Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antoxidative activities. Curr Opin Lipidol. 2010;21:312–8.

    Article  CAS  PubMed  Google Scholar 

  27. Nobecourt E, Jacqueminet S, Hansel B, et al. Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycemia. Diabetologia. 2005;48:529–38.

    Article  CAS  PubMed  Google Scholar 

  28. Camont L, Lhomme M, Rached F, et al. Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities. Arterioscler Thromb Vasc Biol. 2013;33:2715–23.

    Article  CAS  PubMed  Google Scholar 

  29. Kontush A, Lhomme M, Chapman MJ. Unraveling the complexities of the HDL lipodome. J Lipid Res. 2013;54:2950–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13:423–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Shah AS, Tan L, Long JL, Davidson WS. Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. J Lipid Res. 2013;54:2575–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Nauck M, Wiebe D, Warnick GR. Measurement of high-density-lipoprotein cholesterol. In: Rifai N, Warnick GR, Dominiczak MH, editors. Handbook of lipoprotein testing. 2nd ed. Washington, DC: AACC Press; 2000. p. 227–30.

    Google Scholar 

  33. Caulfield MP, Li S, Lee G, et al. Direct determination of lipoprotein particle sizes and concentrations by ion mobility analysis. Clin Chem. 2008;41:1307–16.

    Article  Google Scholar 

  34. Hutchins PM, Ronsein GE, Monette JS, et al. Quantification of HDL particle concentration by calibrated ion mobility analysis. Clin Chem. 2014;60:1393–401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Otvos JD. Measurement of lipoprotein subclass profiles by NMR spectroscopy. In: Rifai N, Warnick GR, Dominiczak MH, editors. Handbook of lipoprotein testing. 2nd ed. Washington, DC: AACC Press; 2000. p. 609–23.

    Google Scholar 

  36. Ala-Korpela M, Korhonen A, Keisala J, et al. 1H NMR-based absolute quantitation of human lipoproteins and their lipid contents directly from plasma. J Lipid Res. 1994;35:2292–304.

    CAS  PubMed  Google Scholar 

  37. Jeyarajah EJ, Cromwell WC, Otvos JD. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med. 2006;26:847–70.

    Article  PubMed  Google Scholar 

  38. Rosenson RS, Brewer Jr HB, Davidson WS, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transpor. Circulation. 2012;125:1905–19.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Rosenson RS, Brewer Jr HB, Ansell B, et al. Translation of high-density lipoprotein function into practice: current prospects and future challenges. Circulation. 2013;128:1256–67.

    PubMed  Google Scholar 

  40. Mackness MI, Arrol S, Abbott CA, Durrington PN. Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis. 1993;104:129–35.

    Article  CAS  PubMed  Google Scholar 

  41. Kontush A, Chapman MJ. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev. 2006;58:342–74.

    Article  CAS  PubMed  Google Scholar 

  42. Bowry VW, Stanley KK, Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc Natl Acad Sci U S A. 1992;89:10316–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kontush A, Chantepie S, Chapman MJ. Small, dense HDL particles exert a potent protection of atherogenic LDL against oxidative stress. Arterioscler Thromb Vasc Biol. 2003;23:1881–8.

    Article  CAS  PubMed  Google Scholar 

  44. Ansell BJ, Fonarow GC, Fogelman AM. The paradox of dysfunctional high-density lipoprotein. Curr Opin Lipidol. 2007;18:427–34.

    Article  CAS  PubMed  Google Scholar 

  45. Van Lenten BJ, Hama SY, de Beer FC, et al. Anti-inflammatory HDL becomes proinflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J Clin Invest. 1995;96:2758–67.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Barter PJ, Baker PW, Rye KA. Effect of high-density lipoproteins on the expression of adhesion molecules in endothelial cells. Curr Opin Lipidol. 2002;13:285–8.

    Article  CAS  PubMed  Google Scholar 

  47. Nofer JR, Geigenmuller S, Gopgert C, Assmann G, Buddecke E, Schmidt A. High density lipoprotein-associated lysophingolipids reduce E-selectin expression in human endothelial cells. Biochem Biophys Res Commun. 2003;310:98–103.

    Article  CAS  PubMed  Google Scholar 

  48. Yuhanna IS, Zhu Y, Cox BE, et al. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med. 2001;7:853–7.

    Article  CAS  PubMed  Google Scholar 

  49. Nofer JR, Brodde MF, Kehrel BE. High-density lipoproteins, platelets, and the pathogenesis of atherosclerosis. Clin Exp Pharmacol Physiol. 2010;37:726–35.

    Article  CAS  PubMed  Google Scholar 

  50. Griffin JH, Kojima K, Banka CL, Curtiss LK, Fernandez JA. High-density lipoprotein enhancement of anticoagulant activities of plasma protein S and activated protein C. J Clin Invest. 1999;103:219–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Rosenson RS, Brewer HB, Rader DJ. Lipoproteins as biomarkers and therapeutic targets in the setting of acute coronary syndrome. Circ Res. 2014;114:1880–9.

    Article  CAS  PubMed  Google Scholar 

  52. Fielding CJ, Fielding PE. Cholesterol transport between cells and body fluids. Role of plasma lipoproteins and the plasma cholesterol esterification system. Med Clin North Am. 1982;66:363–73.

    CAS  PubMed  Google Scholar 

  53. Rothblat GH, Phillips MC. High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr Opin Lipidol. 2010;21:229–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364:127–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Masson D, Jiang XC, Lagrost L, Tall AR. The role of plasma lipid transfer proteins in lipoprotein metabolism and atherogenesis. J Lipid Res. 2009;50(Suppl):S201–6.

    PubMed Central  PubMed  Google Scholar 

  56. Rye KA, Bursill CA, Lambert G, Tabet F, Barter PJ. The metabolism and antiatherogenic properties of HDL. J Lipid Res. 2009;50(Suppl):S195–200.

    PubMed Central  PubMed  Google Scholar 

  57. Le NA, Gibson JC, Ginsberg HN. Independent regulation of plasma apolipoprotein CII and C-III concentrations in very low density and high density lipoproteins: implications for the regulation of the catabolism of these lipoproteins. J Lipid Res. 1988;29:669–77.

    CAS  PubMed  Google Scholar 

  58. Santos-Gallega CG, Badimon JJ, Rosenson RS. Beginning to understand high-density lipoproteins. Endocrinol Metab Clin North Am. 2014;43:913–47.

    Article  Google Scholar 

  59. Siri-Tarino PW. Effects of diet on high-density lipoprotein cholesterol. Curr Atheroscl Rep. 2011;13:453–60.

    Article  CAS  Google Scholar 

  60. Tighe P, Duthie G, Brittenden J, et al. Effects of wheat and oat-based whole grain foods on serum lipoprotein size and distribution in overweight middle-aged people: a randomised controlled trial. PLoS One. 2013;8:e70436. doi:10.1371/journal.pone.0070436.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Mensik RP, Katan MB. Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler Thromb. 1992;12:911–9.

    Article  Google Scholar 

  62. Volek JS, Phinney SD, Forsythe CE, et al. Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids. 2009;44:297–309.

    Article  CAS  PubMed  Google Scholar 

  63. Yancy WS, Olsen M, Guyton J, Bakst R, Westman E. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. Ann Int Med. 2004;140:767–77.

    Article  Google Scholar 

  64. Westman EC, Yancy Jr WS, Olsen MK, Dudley T, Guyton JR. Effect of a lowcarbohydrate, ketogenic diet program compared to a low-fat diet on fasting lipoprotein subclasses. Int J Cardiol. 2006;110:212–6.

    Article  PubMed  Google Scholar 

  65. Damasceno NR, Sala-Vila A, Cofan M, Perez-Heras A, et al. Mediterranean diet supplemented with nuts reduces waist circumference and shifts lipoprotein subfractions to a less atherogenic pattern in subjects at high cardiovascular risk. Atherosclerosis. 2013;230:347–53.

    Article  CAS  PubMed  Google Scholar 

  66. Kraus WE, Houmard JA, Duscha BD, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med. 2002;347:1483–92.

    Article  CAS  PubMed  Google Scholar 

  67. Sondergaard E, Poulsen MK, Jensen MD, Nielsen S. Acute changes in lipoprotein subclasses during exercise. Metabolism. 2014;63:61–8.

    Article  PubMed  Google Scholar 

  68. Kuvin JT, Dave DM, Sliney KA, et al. Effects of extended-release niacin on lipoprotein particle size, distribution, and inflammatory markers in patients with coronary artery disease. Am J Cardiol. 2006;98:743–5.

    Article  CAS  PubMed  Google Scholar 

  69. Guyton JR, Brown BG, Fazio S, Lin J, Polis A, Tomassini JE, et al. Lipidaltering efficacy and safety of ezetimibe/simvastatin coadministered with extendedrelease niacin in patients with type IIa or type IIb hyperlipidemia. J Am Coll Cardiol. 2008;51:1564–72.

    Article  CAS  PubMed  Google Scholar 

  70. Le NA, Jin R, Tomassini JE, Tershakovec AM, Neff DR, Wilson PW. Changes in lipoprotein particle number with ezetimibe/simvastatin coadministered with extendedrelease niacin in hyperlipidemic patients. J Am Heart Assoc. 2013;2:e000037. doi:10.1161/JAHA.113.000037.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Ballantyne CM, Miller M, Niesor EJ, Burgess T, Kallend D, Stein EA. Effect of dalcetrapib plus pravastatin on lipoprotein metabolism and high-density lipoprotein composition and function in dyslipidemic patients: results of a phase IIb dose-ranging study. Am Heart J. 2012;163:515–21.

    Article  CAS  PubMed  Google Scholar 

  72. Krauss RM, Wojnooski K, Orr J, et al. Changes in lipoprotein subfraction concentration and composition in healthy individuals treated with the CETP inhibitor anacetrapib. J Lipid Res. 2012;53:540–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Bays HE, Braeckman RA, Ballantyne CM, et al. Icosapent ethyl, a pure EPA omega-3 fatty acid: effects on lipoprotein particle concentrations and size in patients with very high triglyceride levels (the MARINE study). J Clin Lipidol. 2012;6:565–72.

    Article  PubMed  Google Scholar 

  74. Maki KC, Bays HE, Dicklin MR, Johnson SL, Shabbout M. Effects of prescription omega-3-acid ethyl esters, coadministered with atorvastatin, on circulating levels of lipoprotein particles, apolipoprotein CIII, and lipoprotein-associated phospholipase A2 mass in men and women with mixed dyslipidemia. J Clin Lipidol. 2011;5:483–92.

    Article  PubMed  Google Scholar 

  75. Rosenson RS, Otvos JD, Hsia J. Effects of rosuvastatin and atorvastatin on LDL and HDL particle concentrations in patients with metabolic syndrome. Diabetes Care. 2009;32:1087–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Otvos JD, Collins D, Freedman DS, et al. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation. 2006;113:1556–63.

    Article  CAS  PubMed  Google Scholar 

  77. Nicholls SJ, Gordon A, Johansson J, et al. Efficacy and safety of a novel oral inducer of apolipoprotein A-I synthesis in statin-treated patients with stable coronary artery disease: a randomized controlled trial. J Am Coll Cardiol. 2011;57:1111–9.

    Article  CAS  PubMed  Google Scholar 

  78. Sacks FM, Rudel LL, Conner A, et al. Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo. J Lipid Res. 2009;50:894–907.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Mackey RH, Greenland P, Goff Jr DC, Lloyd-Jones D, Sibley CT, Mora S. High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events. MESA (multi-ethnic study of atherosclerosis). J Am Coll Cardiol. 2012;60:508–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Parish S, Offer A, Clarke R, et al. Lipids and lipoproteins and risk of different vascular events in the MRC/BHF Heart Protection Study. Circulation. 2012;125:2469–78.

    Article  CAS  PubMed  Google Scholar 

  81. van der Steeg WA, Holme I, Boekholdt SM, et al. High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: significance for cardiovascular risk: the IDEAL and EPIC-Norfolk studies. J Am Coll Cardiol. 2008;51:634–42.

    Article  PubMed  Google Scholar 

  82. El-Harchaoui K, Arsenault BJ, Franssen R, et al. Highdensity lipoprotein particle size and concentration and coronary risk. Ann Int Med. 2009;150:84–93.

    Article  PubMed  Google Scholar 

  83. Kuller LH, Grandits G, Cohen J, et al. Lipoprotein particles, insulin, adiponectin, Creactive protein and risk of coronary heart disease among men with metabolic syndrome. Atherosclerosis. 2007;195:122–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Mora S, Glynn RJ, Ridker PM. High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy. Circulation. 2013;128:1189–97.

    Article  CAS  PubMed  Google Scholar 

  85. Rohatgi A, Khera A, Berry JD, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371:2383–93.

    Article  CAS  PubMed  Google Scholar 

  86. Kempen HJ, Gomaraschi M, Bellibas SE, et al. Effect of repeated apoAI/Milano/POPC infusion on lipids, apolipoproteins, and serum cholesterol efflux capacity in cynomolgus monkeys. J Lipid Res. 2013;54:2341–453.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Kempen HJ, Schranz DB, Asztalos BF, et al. Incubation of MDCO-216 (ApoAIMilano/POPC) with human serum potentiates ABCA1-mediated cholesterol efflux capacity, generates new prebeta-1 HDL, and causes an increase in HDL size. J Lipids. 2014; Article ID 923903.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Rosenson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenson, R.S., Davidson, M.H., Le, NA. et al. Underappreciated Opportunities for High-Density Lipoprotein Particles in Risk Stratification and Potential Targets of Therapy. Cardiovasc Drugs Ther 29, 41–50 (2015). https://doi.org/10.1007/s10557-014-6567-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-014-6567-0

Keywords

Navigation