Skip to main content

Advertisement

Log in

Geminin Interference Facilitates Vascular Smooth Muscle Cell Proliferation by Upregulation of CDK-1

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Geminin has been correlated with vascular smooth muscle cell (VSMC) proliferation, but its mechanism is unclear. We selectively silenced the geminin gene of rat VSMCs by using RNAi technology and examined how geminin regulated VSMC proliferation.

Methods

By using RNA interference in A10 cells and flow cytometry, 3H-thymidine and 5-ethynyl-2’-deoxyuridine (EdU) measurements were used to detect VSMC proliferation. We performed a Western blot, polymerase chain reaction, and immunohistochemistry to detect the expression and location of geminin and cyclin-dependent kinase-1 (CDK1) in VSMCs.

Results

Silencing geminin significantly increased 3H-thymidine and EdU incorporation in VSMCs. We observed a significant increase in 3H-thymidine incorporation 24 h after a serum challenge in the geminin-RNAi-lentiviral vector group (4401.38 ± 438.39 cpm/mg), versus the non-targeting geminin-lentiviral vector (2836.88 ± 476.18 cpm/mg) and control groups (3069.50 ± 508.18 cpm/mg; P < 0.05). In the geminin-RNAi-lentiviral vector group, the EdU-positive cell rate was significantly increased (0.75 ± 0.03; P < 0.05), versus the non-targeting geminin-lentiviral vector (0.41 ± 0.0) or control group (0.40 ± 0.03). Geminin promoted VSMC proliferation, accelerating G0/G1-S cell-cycle progression (G0/G1 cells, 10 % decrease; S-phase cells, approximate 6 % increase) 12 h after serum withdrawal. Both CDK1 protein and mRNA expression were significantly increased in the positive group versus the controls. The immunofluorescence and co-immunoprecipitation results revealed a close interaction existed between CDK1 and the geminin gene in VSMC proliferation.

Conclusions

Geminin gene inhibition could augment VSMC proliferation by increasing CDK1 expression; thus, geminin may be a potential target for treating vascular diseases, specifically VSMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schwartz SM, deBlois D, O’Brien ER. The intima. Soil for atherosclerosis and restenosis. Circ Res. 1995;77(3):445–65.

    Article  PubMed  CAS  Google Scholar 

  2. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    Article  PubMed  CAS  Google Scholar 

  3. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84(3):767–801.

    Article  PubMed  CAS  Google Scholar 

  4. Braun-Dullaeus RC, Mann MJ, Sedding DG, Sherwood SW, von der Leyen HE, Dzau VJ. Cell cycle-dependent regulation of smooth muscle cell activation. Arterioscler Thromb Vasc Biol. 2004;24(5):845–50.

    Article  PubMed  CAS  Google Scholar 

  5. Bell SP. The origin recognition complex: from simple origins to complex functions. Genes Dev. 2002;16(6):659–72.

    Article  PubMed  CAS  Google Scholar 

  6. Nishitani H, Taraviras S, Lygerou Z, Nishimoto T. The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S-phase. J Biol Chem. 2001;276(48):44905–11.

    Article  PubMed  CAS  Google Scholar 

  7. Liu E, Li X, Yan F, Zhao Q, Wu X. Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem. 2004;279(17):17283–8.

    Article  PubMed  CAS  Google Scholar 

  8. McGarry TJ, Kirschner MW. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell. 1998;93(6):1043–53.

    Article  PubMed  CAS  Google Scholar 

  9. Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science. 2000;290(5500):2309–12.

    Article  PubMed  CAS  Google Scholar 

  10. Yanagi K, Mizuno T, You Z, Hanaoka F. Mouse geminin inhibits not only Cdt1-MCM6 interactions but also a novel intrinsic Cdt1 DNA binding activity. J Biol Chem. 2002;277(43):40871–80.

    Article  PubMed  CAS  Google Scholar 

  11. Xouri G, Squire A, Dimaki M, et al. Cdt1 associates dynamically with 325 chromatin throughout G1and recruits Geminin onto chromatin. EMBO J. 2007;26(5):1303–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Tada S, Li A, Maiorano D, Mechali M, Blow JJ. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol. 2001;3(2):107–13.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Li A, Blow JJ. Non-proteolytic inactivation of geminin requires CDK-dependent ubiquitination. Nat Cell Biol. 2004;6(3):260–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Melixetian M, Ballabeni A, Masiero L, et al. Loss of Geminin induces rereplication in the presence of functional p53. J Cell Biol. 2004;165(4):473–82.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Zhu W, Chen Y, Dutta A. Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol Cell Biol. 2004;24(16):7140–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Montanari M, Boninsegna A, Faraglia B, et al. Increased expression of geminin stimulates the growth of mammary epithelial cells and is a frequent event in human tumors. J Cell Physiol. 2005;202(1):215–22.

    Article  PubMed  CAS  Google Scholar 

  17. Obermann EC, Eward KL, Dogan A, et al. DNA replication licensing in peripheral B-cell lymphoma. J Pathol. 2005;205(3):318–28.

    Article  PubMed  CAS  Google Scholar 

  18. Gonzalez MA, Tachibana KE, Chin SF, et al. Geminin predicts adverse clinical outcome in breast cancer by reflecting cell-cycle progression. J Pathol. 2004;204(2):121–30.

    Article  PubMed  CAS  Google Scholar 

  19. Dudderidge TJ, Stoeber K, Loddo M, et al. Mcm2, Geminin, and KI67 define proliferative state and are prognostic markers in renal cell carcinoma. Clin Cancer Res. 2005;11(7):2510–7.

    Article  PubMed  CAS  Google Scholar 

  20. Quinn LM, Herr A, McGarry TJ, Richardson H. The Drosophila Geminin homolog: roles for Geminin in limiting DNA replication, in anaphase and in neurogenesis. Genes Dev. 2001;15(20):2741–54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 347 Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.

    Article  PubMed  CAS  Google Scholar 

  22. Zamore PD. Ancient pathways programmed by small RNAs. Science. 2002;296(5571):1265–9.

    Article  PubMed  CAS  Google Scholar 

  23. Novina CD, Sharp PA. The RNAi revolution. Nature. 2004;430(6996):161–4.

    Article  PubMed  CAS  Google Scholar 

  24. Shanahan CM, Weissberg PL, Metcalfe JC. Isolation of gene markers of differentiated and proliferating vascular smooth muscle cells. Circ Res. 1993;73(1):193–204.

    Article  PubMed  CAS  Google Scholar 

  25. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296(5567):550–3.

    Article  PubMed  CAS  Google Scholar 

  26. Lygerou Z, Nurse P. Cell cycle. License withheld–geminin blocks DNA replication. Science. 2000;290(5500):2271–3.

    PubMed  CAS  Google Scholar 

  27. Vaziri C, Saxena S, Jeon Y, et al. A p53-dependent checkpoint pathway prevents rereplication. Mol Cell. 2003;11(4):997–1008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 30971228). The funder had no role in the study design, data collection, analysis, decision to publish, or preparation of the manuscript. We declare there was no commercial, proprietary, or financial interest in the products or companies described in this article.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoqin Shu.

Additional information

Yuanyuan Zhang and Zhouqin Jiang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jiang, Z., Li, L. et al. Geminin Interference Facilitates Vascular Smooth Muscle Cell Proliferation by Upregulation of CDK-1. Cardiovasc Drugs Ther 28, 407–414 (2014). https://doi.org/10.1007/s10557-014-6550-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-014-6550-9

Keywords

Navigation