Skip to main content
Log in

Ranolazine Treatment for Myocardial Infarction? Effects on the Development of Necrosis, Left Ventricular Function and Arrhythmias in Experimental Models

  • REVIEW ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Ranolazine, an inhibitor of the late current of the cardiac action potential (late INa), is a well established clinical treatment for chronic angina. The late INa in cardiac myocytes also plays an important role in the pathophysiology of acute myocardial ischemia and reperfusion, and thus is a potential therapeutic target to ameliorate consequences of myocardial infarction. In experimental animal models, ranolazine has been shown to reduce myocardial infarct size, improve left ventricular function, decrease ischemia/reperfusion-induced arrhythmias and improve outcome in heart failure. Here we focus specifically on data from in vivo animal studies of myocardial ischemia and reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Le Grand B, Vie B, Talmant JM, Coraboeuf E, John GW. Alleviation of contractile dysfunction in ischemic hearts by slowly inactivating Na + current blockers. Am J Physiol. 1995;269:H533–40.

    PubMed  Google Scholar 

  2. Murphy E, Cross H, Steenbergen C. Sodium regulation during ischemia versus reperfusion and its role in injury. Circ Res. 1999;84:1469–70.

    Article  PubMed  CAS  Google Scholar 

  3. Noble D, Noble PJ. Late sodium current in the pathophysiology of cardiovascular disease: consequences of sodium-calcium overload. Heart 2006;92 Suppl 4:iv1-iv5.

  4. Imahashi K, Kusuoka H, Hashimoto K, Yoshioka J, Yamaguchi H, Nishimura T. Intracellular sodium accumulation during ischemia as the substrate for reperfusion injury. Circ Res. 1999;84:1401–6.

    Article  PubMed  CAS  Google Scholar 

  5. Hawwa N, Menon V. Ranolazine: clinical applications and therapeutic basis. Am J Cardiovasc Drugs. 2013;13:5–16.

    Article  PubMed  CAS  Google Scholar 

  6. Jerling M. Clinical pharmacokinetics of ranolazine. Clin Pharmacokinet. 2006;45:469–91.

    Article  PubMed  CAS  Google Scholar 

  7. Antzelevitch C, Belardinelli L, Wu L, et al. Electrophysiologic properties and antiarrhythmic actions of a novel antianginal agent. J Cardiovasc Pharmacol Ther. 2004;9 Suppl 1:S65–83.

    Article  PubMed  CAS  Google Scholar 

  8. Kloner RA, Dow JS, Bhandari A. First direct comparison of the late sodium current blocker ranolazine to established antiarrhythmic agents in an ischemia/reperfusion model. J Cardiovasc Pharmacol Ther. 2011;16:192–6.

    Article  PubMed  CAS  Google Scholar 

  9. Zaza A, Belardinelli L, Shryock JC. Pathophysiology and pharmacology of the cardiac “late sodium current.”. Pharmacol Ther. 2008;119:326–39.

    Article  PubMed  CAS  Google Scholar 

  10. Zaza A, Rocchetti M. The late Na + current–origin and pathophysiological relevance. Cardiovasc Drugs Ther. 2013;27:61–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Belardinelli L, Shryock JC, Fraser H. Inhibition of the late sodium current as a potential cardioprotective principle: effects of the late sodium current inhibitor ranolazine. Heart 2006;92 Suppl 4:iv6-iv14.

  12. Hale SL, Shryock JC, Belardinelli L, Sweeney M, Kloner RA. Late sodium current inhibition as a new cardioprotective approach. J Mol Cell Cardiol. 2008;44:954–67.

    Article  PubMed  CAS  Google Scholar 

  13. Hasenfuss G, Maier LS. Mechanism of action of the new anti-ischemia drug ranolazine. Clin Res Cardiol. 2008;97:222–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Clarke B, Spedding M, Patmore L, McCormack JG. Protective effects of ranolazine in guinea-pig hearts during low-flow ischaemia and their association with increases in active pyruvate dehydrogenase. Br J Pharmacol. 1993;109:748–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Gralinski MR, Black SC, Kilgore KS, Chou AY, McCormack JG, Lucchesi BR. Cardioprotective effects of ranolazine (RS-43285) in the isolated perfused rabbit heart. Cardiovasc Res. 1994;28:1231–7.

    Article  PubMed  CAS  Google Scholar 

  16. Aldakkak M, Camara AK, Heisner JS, Yang M, Stowe DF. Ranolazine reduces Ca2+ overload and oxidative stress and improves mitochondrial integrity to protect against ischemia reperfusion injury in isolated hearts. Pharmacol Res. 2011;64:381–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Hwang H, Arcidi Jr JM, Hale SL, et al. Ranolazine as an adjunct to cardioplegia: a potential new therapeutic application. J Cardiovasc Pharmacol Ther. 2009;14:125–33.

    Article  PubMed  CAS  Google Scholar 

  18. Hwang H, Arcidi Jr JM, Hale SL, et al. Ranolazine as a cardioplegia additive improves recovery of diastolic function in isolated rat hearts. Circulation. 2009;120:S16–21.

    Article  PubMed  CAS  Google Scholar 

  19. Allely MC, Alps BJ. Prevention of myocardial enzyme release by ranolazine in a primate model of ischaemia with reperfusion. Br J Pharmacol. 1990;99:5–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Zacharowski K, Blackburn B, Thiemermann C. Ranolazine, a partial fatty acid oxidation inhibitor, reduces myocardial infarct size and cardiac troponin T release in the rat. Eur J Pharmacol. 2001;418:105–10.

    Article  PubMed  CAS  Google Scholar 

  21. Hale SL, Leeka JA, Kloner RA. Improved left ventricular function and reduced necrosis after myocardial ischemia/reperfusion in rabbits treated with ranolazine, an inhibitor of the late sodium channel. J Pharmacol Exp Ther. 2006;318:418–23.

    Article  PubMed  CAS  Google Scholar 

  22. Hale SL, Kloner RA. The antianginal agent, ranolazine, reduces myocardial infarct size but does not alter anatomic no-reflow or regional myocardial blood flow in ischemia/reperfusion in the rabbit. J Cardiovasc Pharmacol Ther. 2008;13:226–32.

    Article  PubMed  CAS  Google Scholar 

  23. Chi L, Ling H, Phan D, Wang W, Dhalla AK, Belardinelli L. Reduction of LV diastolic wall tension by ranolazine led to improved diastolic coronary blood flow during demand-induced acute myocardial ischemia in anesthetized canine. Circulation 128, A15308. 2013. 2-7-2014. Ref Type: Abstract

  24. Letienne R, Bel L, Bessac AM, Vacher B, Le GB. Myocardial protection by F 15845, a persistent sodium current blocker, in an ischemia-reperfusion model in the pig. Eur J Pharmacol. 2009;624:16–22.

    Article  PubMed  CAS  Google Scholar 

  25. Pelliccia F, Pasceri V, Marazzi G, Rosano G, Greco C, Gaudio C. A pilot randomized study of ranolazine for reduction of myocardial damage during elective percutaneous coronary intervention. Am Heart J. 2012;163:1019–23.

    Article  PubMed  CAS  Google Scholar 

  26. Black SC, Gralinski MR, McCormack JG, Driscoll EM, Lucchesi BR. Effect of ranolazine on infarct size in a canine model of regional myocardial ischemia/reperfusion. J Cardiovasc Pharmacol. 1994;24:921–8.

    Article  PubMed  CAS  Google Scholar 

  27. Grinwald PM. Sodium pump failure in hypoxia and reoxygenation. J Mol Cell Cardiol. 1992;24:1393–8.

    Article  PubMed  CAS  Google Scholar 

  28. McCormack JG, Barr RL, Wolff AA, Lopaschuk GD. Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation. 1996;93:135–42.

    Article  PubMed  CAS  Google Scholar 

  29. Dehina L, Descotes J, Chevalier P, et al. Protective effects of ranolazine and propranolol, alone or combined, on the structural and functional alterations of cardiomyocyte mitochondria in a pig model of ischemia/reperfusion. Fundam Clin Pharmacol 2013.

  30. Hale SL, Kloner RA. Ranolazine, an inhibitor of the late sodium channel current, reduces postischemic myocardial dysfunction in the rabbit. J Cardiovasc Pharmacol Ther. 2006;11:249–55.

    Article  PubMed  CAS  Google Scholar 

  31. Sabbah HN, Chandler MP, Mishima T, et al. Ranolazine, a partial fatty acid oxidation (pFOX) inhibitor, improves left ventricular function in dogs with chronic heart failure. J Card Fail. 2002;8:416–22.

    Article  PubMed  CAS  Google Scholar 

  32. Chandler MP, Stanley WC, Morita H, et al. Short-term treatment with ranolazine improves mechanical efficiency in dogs with chronic heart failure. Circ Res. 2002;91:278–80.

    Article  PubMed  CAS  Google Scholar 

  33. Rastogi S, Sharov VG, Mishra S, et al. Ranolazine combined with enalapril or metoprolol prevents progressive LV dysfunction and remodeling in dogs with moderate heart failure. Am J Physiol Heart Circ Physiol. 2008;295:H2149–55.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Undrovinas AI, Belardinelli L, Undrovinas NA, Sabbah HN. Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol. 2006;17 Suppl 1:S169–77.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Aaker A, McCormack JG, Hirai T, Musch TI. Effects of ranolazine on the exercise capacity of rats with chronic heart failure induced by myocardial infarction. J Cardiovasc Pharmacol. 1996;28:353–62.

    Article  PubMed  CAS  Google Scholar 

  36. Gralinski MR, Chi L, Park JL, Friedrichs GS, Tanhehco EJ, McCormack JG, et al. Protective Effects of Ranolazine on Ventricular Fibrillation Induced by Activation of the ATP-Dependent Potassium Channel in the Rabbit Heart. J Cardiovasc Pharmacol Ther. 1996;1:141–8.

    PubMed  CAS  Google Scholar 

  37. Dow J, Bhandari A, Kloner RA. Ischemic postconditioning’s benefit on reperfusion ventricular arrhythmias is maintained in the senescent heart. J Cardiovasc Pharmacol Ther. 2008;13:141–8.

    Article  PubMed  Google Scholar 

  38. Kloner RA, Dow J, Bhandari A. Postconditioning markedly attenuates ventricular arrhythmias after ischemia-reperfusion. J Cardiovasc Pharmacol Ther. 2006;11:55–63.

    Article  PubMed  Google Scholar 

  39. Dhalla AK, Wang WQ, Dow J, et al. Ranolazine, an antianginal agent, markedly reduces ventricular arrhythmias induced by ischemia and ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2009;297:H1923–9.

    Article  PubMed  CAS  Google Scholar 

  40. Kloner RA, Dow JS, Bhandari A. The antianginal agent ranolazine is a potent antiarrhythmic agent that reduces ventricular arrhythmias: through a mechanism favoring inhibition of late sodium channel. Cardiovasc Ther. 2011;29:e36–41.

    Article  PubMed  Google Scholar 

  41. Pezhouman A, Madahian S. Stepanyan H, et al. Heart Rhythm: Selective inhibition of late sodium current suppresses ventricular tachycardia and fibrillation in intact rat hearts; 2013.

    Google Scholar 

  42. Morrow DA, Scirica BM, Karwatowska-Prokopczuk E, et al. Effects of ranolazine on recurrent cardiovascular events in patients with non-ST-elevation acute coronary syndromes: the MERLIN-TIMI 36 randomized trial. JAMA. 2007;16:1775–83.

    Article  Google Scholar 

Download references

Acknowledgements

RAK has previously been a speaker for and consultant to CV Therapeutics, Inc. and Gilead, Inc. These two companies have provided research support for some of the studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon L Hale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hale, S.L., Kloner, R.A. Ranolazine Treatment for Myocardial Infarction? Effects on the Development of Necrosis, Left Ventricular Function and Arrhythmias in Experimental Models. Cardiovasc Drugs Ther 28, 469–475 (2014). https://doi.org/10.1007/s10557-014-6548-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-014-6548-3

Keywords

Navigation