Skip to main content
Log in

Galectin-3: A Modifiable Risk Factor in Heart Failure

  • REVIEW ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Myocardial galectin-3 is upregulated upon cardiac stressors such as angiotensin II and pressure overload leading to cardiac remodeling and heart failure. The expression level of galectin-3 mirrors the progression and severity of heart failure and therefore, galectin-3 is being used as a biomarker for heart failure. However, as galectin-3 is causally involved in pathological myocardial fibrosis it has been suggested that galectin-3 also actively contributes to heart failure development. In this review we discuss how galectin-3 could be a target for therapy in heart failure. Currently, attempts are being made to target or inhibit galectin-3 using natural or pharmaceutical inhibitors with the aim to ameliorate heart failure. Available experimental evidence suggests that galectin-3 inhibition indeed may represent a novel tool to treat heart failure. A strong interaction with aldosterone, another strong pro-fibrotic factor, has been described. Clinical studies are needed to prove if galectin-3 may be used to install specific treatment regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting-enzyme

ac-SDKP:

N-acetyl-seryl-aspartyl-lysyl-proline

AngII:

Angiotensin II

ANP:

Atrial natriuretic peptide

CAD:

Coronary artery disease

CRD:

Carbohydrate recognition domain

CRT:

Cardiac resynchronization therapy

CV:

Cardiovascular

HF:

Heart failure

HF-PEF:

Heart failure with preserved ejection fraction

ICD:

Implantable cardioverter defibrillator

KO:

Knock-out

LV:

Left ventricle

LVEDP:

Left ventricular end diastolic pressure

MCP:

Modified citrus pectin

MRA:

Mineralocorticoid receptor antagonist

N-Lac:

N-acetyllactosamine

NTproBNP:

N-terminal pro B-type natriuretic peptide

RAS:

Renin–angiotensin-system

Ren2:

TGR(mREN2)27

RNA:

Ribonucleic acid

SD:

Sprague–Dawley

SNS:

Sympathetic nervous system

TAC:

Transverse aortic constriction

VSMC:

Vascular smooth muscle cell

WT:

Wild-type

References

  1. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14:803–69.

    Article  CAS  PubMed  Google Scholar 

  2. Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol. 2011;8:30–41.

    Article  PubMed Central  PubMed  Google Scholar 

  3. von Lueder TG, Krum H. RAAS inhibitors and cardiovascular protection in large scale trials. Cardiovasc Drugs Ther. 2013;27:171–9.

    Article  CAS  Google Scholar 

  4. Parikh R, Kadowitz PJ. A review of current therapies used in the treatment of congestive heart failure. Expert Rev Cardiovasc Ther. 2013;11:1171–8.

    Article  CAS  PubMed  Google Scholar 

  5. Shah AM, Mann DL. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet. 2011;378:704–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Krum H, Tonkin A. Why do phase III trials of promising heart failure drugs often fail? The contribution of “regression to the truth”. J Card Fail. 2003;9:364–7.

    Article  PubMed  Google Scholar 

  7. Voors AA, van Veldhuisen DJ. Why do drugs for acute heart failure fail? Eur J Heart Fail. 2012;14:955–6.

    Article  PubMed  Google Scholar 

  8. Roubille F, Busseuil D, Merlet N, et al. Investigational drugs targeting cardiac fibrosis. Expert Rev Cardiovasc Ther. 2014;12:111–25.

    Article  CAS  PubMed  Google Scholar 

  9. van Kimmenade RR, Januzzi Jr JL, Ellinor PT, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48:1217–24.

    Article  PubMed  Google Scholar 

  10. Lok DJ, Lok SI, Bruggink-Andre de la Porte PW, et al. Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol. 2013;102:103–10.

    Article  CAS  PubMed  Google Scholar 

  11. de Boer RA, Edelmann F, Cohen-Solal A, et al. Galectin-3 in heart failure with preserved ejection fraction. Eur J Heart Fail. 2013;15:1095–101.

    Article  PubMed  Google Scholar 

  12. Carrasco-Sanchez FJ, Aramburu-Bodas O, Salamanca-Bautista P, et al. Predictive value of serum galectin-3 levels in patients with acute heart failure with preserved ejection fraction. Int J Cardiol. 2013;169:177–82.

    Article  PubMed  Google Scholar 

  13. de Boer RA, Lok DJ, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43:60–8.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Shah RV, Chen-Tournoux AA, Picard MH, et al. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Fail. 2010;12:826–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ho MK, Springer TA. Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies. J Immunol. 1982;128:1221–8.

    CAS  PubMed  Google Scholar 

  16. Raz A, Carmi P, Raz T, et al. Molecular cloning and chromosomal mapping of a human galactoside-binding protein. Cancer Res. 1991;51:2173–8.

    CAS  PubMed  Google Scholar 

  17. de Boer RA, Voors AA, Muntendam P, et al. Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail. 2009;11:811–7.

    Article  PubMed  Google Scholar 

  18. Henderson NC, Sethi T. The regulation of inflammation by galectin-3. Immunol Rev. 2009;230:160–71.

    Article  CAS  PubMed  Google Scholar 

  19. Dhirapong A, Lleo A, Leung P, et al. The immunological potential of galectin-1 and -3. Autoimmun Rev. 2009;8:360–3.

    Article  CAS  PubMed  Google Scholar 

  20. Newlaczyl AU, Yu LG. Galectin-3—a jack-of-all-trades in cancer. Cancer Lett. 2011;313:123–8.

    Article  CAS  PubMed  Google Scholar 

  21. de Boer RA, Yu L, van Veldhuisen DJ. Galectin-3 in cardiac remodeling and heart failure. Curr Heart Fail Rep. 2010;7:1–8.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Sherwi N, Merali S, Wong K. Personalizing biomarker strategies in heart failure with galectin-3. Futur Cardiol. 2012;8:885–94.

    Article  CAS  Google Scholar 

  23. Sharma UC, Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121–8.

    Article  CAS  PubMed  Google Scholar 

  24. Liu YH, D’Ambrosio M, Liao TD, et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol. 2009;296:H404–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Yu L, Ruifrok WP, Meissner M, et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail. 2013;6:107–17.

    Article  CAS  PubMed  Google Scholar 

  26. Rabinovich GA, Baum LG, Tinari N, et al. Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 2002;23:313–20.

    Article  CAS  PubMed  Google Scholar 

  27. Ahmad N, Gabius HJ, Andre S, et al. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem. 2004;279:10841–7.

    Article  CAS  PubMed  Google Scholar 

  28. Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A. 2006;103:5060–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol. 2008;172:288–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. van den Borne SW, Diez J, Blankesteijn WM, et al. Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol. 2010;7:30–7.

    Article  PubMed  Google Scholar 

  31. Meijers WC, van der Velde AR, de Boer RA. The ARCHITECT galectin-3 assay: comparison with other automated and manual assays for the measurement of circulating galectin-3 levels in heart failure. Exp Rev Mol Diagn. 2014;14:257--66.

  32. de Boer RA, van Veldhuisen DJ, Gansevoort RT, et al. The fibrosis marker galectin-3 and outcome in the general population. J Intern Med. 2012;272:55–64.

    Article  PubMed  Google Scholar 

  33. Ho JE, Liu C, Lyass A, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60:1249–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Lok DJ, Van Der Meer P, de la Porte PW, et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol. 2010;99:323–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Tang WH, Shrestha K, Shao Z, et al. Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival. Am J Cardiol. 2011;108:385–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ueland T, Aukrust P, Broch K, et al. Galectin-3 in heart failure: high levels are associated with all-cause mortality. Int J Cardiol. 2011;150:361–4.

    Article  PubMed  Google Scholar 

  37. Gullestad L, Ueland T, Kjekshus J, et al. Galectin-3 predicts response to statin therapy in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). Eur Heart J. 2012;33:2290–6.

    Article  CAS  PubMed  Google Scholar 

  38. Felker GM, Fiuzat M, Shaw LK, et al. Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION study. Circ Heart Fail. 2012;5:72–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Baig MK, Mahon N, McKenna WJ, et al. The pathophysiology of advanced heart failure. Am Heart J. 1998;135:S216–30.

    Article  CAS  PubMed  Google Scholar 

  40. Sathisha UV, Jayaram S, Harish Nayaka MA, et al. Inhibition of galectin-3 mediated cellular interactions by pectic polysaccharides from dietary sources. Glycoconj J. 2007;24:497–507.

    Article  CAS  PubMed  Google Scholar 

  41. Pienta KJ, Naik H, Akhtar A, et al. Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. J Natl Cancer Inst. 1995;87:348–53.

    Article  CAS  PubMed  Google Scholar 

  42. Nangia-Makker P, Hogan V, Honjo Y, et al. Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst. 2002;94:1854–62.

    Article  CAS  PubMed  Google Scholar 

  43. Glinskii OV, Huxley VH, Glinsky GV, et al. Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia. 2005;7:522–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Kolatsi-Joannou M, Price KL, Winyard PJ, et al. Modified citrus pectin reduces galectin-3 expression and disease severity in experimental acute kidney injury. PLoS ONE. 2011;6:e18683.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Schols H, Voragen A. The chemical structure of pectins. In: Seymour G, editor. Pectins and their manipulation. Oxford: Blackwell Publishing Ltd; 2002. p. 1–29.

    Google Scholar 

  46. Zannad F, Alla F, Dousset B, et al. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation. 2000;102:2700–6.

    Article  CAS  PubMed  Google Scholar 

  47. Calvier L, Miana M, Reboul P, et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol. 2013;33:67–75.

    Article  CAS  PubMed  Google Scholar 

  48. van der Velde AR, Gullestad L, Ueland T, et al. Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Fail. 2013;6:219–26.

    Article  PubMed  Google Scholar 

  49. Fiuzat M, Schulte PJ, Felker M, et al. Relationship between galectin-3 levels and mineralocorticoid receptor antagonist use in heart failure: analysis from HF-ACTION. J Card Fail. 2014;20:38–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

Rudolf A. de Boer has received research grants from Abbott, BG Medicine, and Netherlands Organisation for Scientific Research, NWO VIDI grant (No. 917.13.350); consultancy and/or speaker fees from Abbott, AstraZeneca, Biomérieux, BG Medicine, Pfizer, Baxter, and Novartis; and ownership interest in Pectacea. Christian Mueller has received research grants from Swiss National Science Foundation, the Swiss Heart Foundation, the Cardiovascular Research Foundation Basel, Abbott, Alere, Brahms, Critical Diagnostics, Nanosphere, Roche, Siemens, the University Basel, and the University Hospital Basel; and consultancy and/or speaker fees from Abbott, Alere, Brahms, BG Medicine, Novartis, AstraZeneca, Bristol-Myers Squibb, Roche, and Siemens. Dirk J. van Veldhuisen has received research grants from BG Medicine and consultancy and/or speaker fees from BG Medicine. Stefan D. Anker has received research grants from BRAHMS GmbH, EU FP7 Programme, and consultancy and/or speaker fees from BG Medicine, BRAHMS GmbH, and Vifor Int. W. Frank Peacock has received research grants from Abbott, Alere, Brahms, Novartis, Roche, and The Medicines Company; consultancy and/or speaker fees from Abbott, Alere, AstraZeneca, BG Medicine, Cardiorentis, Daiichi-Sankyo, GE, Janssen, Lilly, The Medicines Company, Singulex, and Verathon; and ownership interest in Comprehensive Research Associates LLC, Vital Sensors, and Emergencies in Medicine LLC. Kirkwood F. Adams has received research grants from Roche Diagnostics and Critical Diagnostics, and consultancy and/or speaker fees from BG Medicine, Roche Diagnostics, and Critical Diagnostics. Alan Maisel has received research grants from Alere, Abbott, BG Medical, and Brahms; consultancy and/or speaker fees from Alere, Critical Diagnostics, Sphingotec, BG Medicine, and EFG Diagnostics; and is co-founder of Cardero Therapeutics and MyLife Diagnostics. The authors have no other funding, financial relationships, or conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf A. de Boer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Boer, R.A., van der Velde, A.R., Mueller, C. et al. Galectin-3: A Modifiable Risk Factor in Heart Failure. Cardiovasc Drugs Ther 28, 237–246 (2014). https://doi.org/10.1007/s10557-014-6520-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-014-6520-2

Keywords

Navigation