Skip to main content

Advertisement

Log in

Chronic Metformin Treatment is Associated with Reduced Myocardial Infarct Size in Diabetic Patients with ST-segment Elevation Myocardial Infarction

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Increased myocardial infarct (MI) size is associated with higher risk of developing left ventricular dysfunction, heart failure and mortality. Experimental studies have suggested that metformin treatment reduces MI size after induced ischaemia but human data is lacking. We aimed to investigate the effect of metformin on MI size in patients presenting with an acute MI.

Methods

All consecutive patients (n = 3,288) presenting to our hospital with ST-segment elevation myocardial infarction (STEMI) undergoing primary PCI between January 2004 and December 2010 were included in this retrospective analysis. Patients with diabetes were divided according to metformin versus non-metformin based pharmacotherapy. MI size was estimated using peak values of serum creatine kinase (CK), myocardial band of CK (CK-MB), and troponin-T.

Results

We identified 677 (20.6 %) patients with diabetes, of whom 189 (27.9 %) were treated with metformin. Chronic metformin treatment was associated with lower peak levels of CK (1,101 vs. 1,422 U/L, P = 0.005), CK-MB (152 vs. 182 U/L, P = 0.018) and troponin-T (2.5 vs. 4.0 ng/L, P = 0.021) compared to non-metformin using diabetics. After adjustment for age, sex, TIMI flow post PCI, and previous MI, the use of metformin treatment remained an independent predictor of smaller MI size. Patient with diabetes treated with metformin had even smaller MI size than patients without diabetes.

Conclusions

Chronic metformin treatment is associated with reduced MI size compared to non-metformin based strategies in diabetic patients presenting with STEMI. Metformin might have additional beneficial effects beyond glucose lowering efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fokkema ML, James SK, Albertsson P, et al. Population trends in percutaneous coronary intervention: 20-year results from the SCAAR (Swedish Coronary Angiography and Angioplasty Registry). J Am Coll Cardiol. 2013;61:1222–30.

    Article  PubMed  Google Scholar 

  2. Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC), Steg PG, James SK, Atar D, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33:2569–619.

    Article  CAS  PubMed  Google Scholar 

  3. Burns RJ, Gibbons RJ, Yi Q, CORE Study Investigators, et al. The relationship of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. J Am Coll Cardiol. 2002;39:30–6.

    Article  PubMed  Google Scholar 

  4. van der Vleuten PA, Rasoul S, Huurnink W, et al. The importance of left ventricular function for long-term outcome after primary percutaneous coronary intervention. BMC Cardiovasc Disord. 2008;8:4.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bailey CJ. Metformin: effects on micro and macrovascular complications in type 2 diabetes. Cardiovasc Drugs Ther. 2008;22:215–24.

    Article  CAS  PubMed  Google Scholar 

  6. UK Prospective Diabetes Study (UKPDS) group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.

    Google Scholar 

  7. Mellbin LG, Malmberg K, Norhammar A, Wedel H, Rydén L, DIGAMI 2 Investigators. Prognostic implications of glucose-lowering treatment in patients with acute myocardial infarction and diabetes: experiences from an extended follow-up of the Diabetes Mellitus Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) 2 study. Diabetologia. 2011;54:1308–17.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao JL, Fan CM, Yang YJ, et al. Chronic pretreatment of metformin is associated with the reduction of the no-reflow phenomenon in patients with diabetes mellitus after primary angioplasty for acute myocardial infarction. Cardiovasc Ther. 2013;31:60–4.

    Article  PubMed  Google Scholar 

  9. Yin M, van der Horst IC, van Melle JP, et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol. 2011;301:H459–68.

    Article  CAS  PubMed  Google Scholar 

  10. Gundewar S, Calvert JW, Jha S, et al. Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res. 2009;104:403–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Paiva M, Riksen NP, Davidson SM, et al. Metformin prevents myocardial reperfusion injury by activating the adenosine receptor. J Cardiovasc Pharmacol. 2009;53:373–8.

    Article  CAS  PubMed  Google Scholar 

  12. Solskov L, Løfgren B, Kristiansen SB, et al. Metformin induces cardioprotection against ischaemia/reperfusion injury in the rat heart 24 h after administration. Basic Clin Pharmacol Toxicol. 2008;103:82–7.

    Article  CAS  PubMed  Google Scholar 

  13. Calvert JW, Gundewar S, Jha S, et al. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes. 2008;57:696–705.

    Article  CAS  PubMed  Google Scholar 

  14. Whittington HJ, Hall AR, McLaughlin CP, Hausenloy DJ, Yellon DM, Mocanu MM. Chronic metformin associated cardioprotection against infarction: not just a glucose lowering phenomenon. Cardiovasc Drugs Ther. 2013;27:5–15.

    Article  CAS  PubMed  Google Scholar 

  15. Cittadini A, Napoli R, Monti MG, et al. Metformin prevents the development if chronic heart failure in the SHHF rat model. Diabetes. 2012;61:944–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Standards of medical care. Diabetes Care. 2011;34(S1):S11–61.

    Google Scholar 

  17. Austen WG, Edwards JE, Frye RL, et al. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation. 1975;51:5–40.

    Article  CAS  PubMed  Google Scholar 

  18. Chesebro JH, Knatterud G, Roberts R, et al. Thrombolyis in myocardial infarction (TIMI) trial, phase I: a comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Clinical findings through hospital discharge. Circulation. 1987;76:142–54.

    Article  CAS  PubMed  Google Scholar 

  19. van’t Hof AW, Liem A, Suryapranata H, Hoorntje JC, de Boer MJ, Zijlstra F. Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Circulation. 1998;97:2302–6.

    Article  Google Scholar 

  20. Ingkanisorn WP, Rhoads KL, Aletras AH, Kellman P, Arai AE. Gadolineum delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction. J Am Coll Cardiol. 2004;43:2253–9.

    Article  PubMed  Google Scholar 

  21. Whittington HJ, Babu GG, Mocanu MM, et al. The diabetic heart: too sweet for its own good? Cardiol Res Pract. 2012;2012:845698.

    PubMed Central  PubMed  Google Scholar 

  22. Timmer JR, van der Horst IC, Ottervanger JP, et al. Prognostic value of admission glucose in non-diabetic patients myocardial infarction. Am Heart J. 2004;148:399–404.

    Article  CAS  PubMed  Google Scholar 

  23. Timmer JR, Hoekstra M, Nijsten MW, et al. Prognostic value of admission glycosylated hemoglobin and glucose in nondiabetic patients with ST-segment-elevation myocardial infarction treated with percutaneous coronary intervention. Circulation. 2011;124:704–11.

    Article  CAS  PubMed  Google Scholar 

  24. Mather AN, Creab A, Abidin N, et al. Relationship of dysglycemia to acute myocardial infarct size and cardiovascular outcome as determined by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:61.

    Article  PubMed Central  PubMed  Google Scholar 

  25. El Messaoudi S, Rongen GA, de Boer RA, Riksen NP. The cardioprotective effects of metformin. Curr Opin Lipidol. 2011;22:445–53.

    Article  PubMed  Google Scholar 

  26. Jalving M, Gietema JA, Lefrandt JD, et al. Metformin: taking away the candy for cancer? Eur J Cancer. 2010;46:2369–80.

    Article  CAS  PubMed  Google Scholar 

  27. Bhamra GS, Hausenloy DJ, Davidson SM, et al. Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res Cardiol. 2008;103:274–84.

    Article  CAS  PubMed  Google Scholar 

  28. Lexis CP, van der Horst IC, Lipsic E, for the GIPS-III Investigators, et al. Metformin in non-diabetic patients presenting with ST elevation myocardial infarction: rationale and design of the glycometabolic intervention as adjunct to primary percutaneous intervention in ST elevation myocardial infarction (GIPS)-III trial. Cardiovasc Drugs Ther. 2012;26:417–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Cuthbertson J, Patterson S, O’Harte FP, Bell PM. Investigation of the effect of oral metformin on dipeptidylpeptidase-4 (DPP-4) activity in Type 2 diabetes. Diabet Med. 2009;26:649–54.

    Article  CAS  PubMed  Google Scholar 

  30. Timmers L, Henriques JP, de Kleijn DP, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol. 2009;53:501–10.

    Article  CAS  PubMed  Google Scholar 

  31. Lønborg J, Kelbæk H, Vejlstrup N, et al. Exenatide reduces final infarct size in patients with ST-segment-elevation myocardial infarction and short-duration of ischemia. Circ Cardiovasc Interv. 2012;5:288–95.

    Article  PubMed  Google Scholar 

  32. Lexis CP, van der Horst IC, Lipsic E. Effects of metformin on insulin resistance in heart failure. Which came first: the chicken or the egg? Eur J Heart Fail. 2012;14:1197–8.

    Article  CAS  PubMed  Google Scholar 

  33. Tsikouris JP, Suarez JA, Meyerrose GE. Plasminogen activator inhibitor-1: physiologic role, regulation, and the influence of common pharmacologic agents. J Clin Pharmacol. 2002;42:1187–99.

    Article  CAS  PubMed  Google Scholar 

  34. Ersoy C, Kiyici S, Budak F, et al. The effect of metformin treatment on VEGF and PAI-1 levels in obese type 2 diabetic patients. Diabetes Res Clin Pract. 2008;81:56–60.

    Article  CAS  PubMed  Google Scholar 

  35. Protti A, Lecchi A, Fortunato F, et al. Metformin overdose causes platelet mitochondrial dysfunction in humans. Crit Care. 2012;16:R180.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the respiratory chain. Biochem J. 2000;348:607–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Funding Source

This study was supported by grant 95103007 from ZonMW, the Netherlands Organization for Health Research and Development, The Hague, the Netherlands.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris P. H. Lexis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lexis, C.P.H., Wieringa, W.G., Hiemstra, B. et al. Chronic Metformin Treatment is Associated with Reduced Myocardial Infarct Size in Diabetic Patients with ST-segment Elevation Myocardial Infarction. Cardiovasc Drugs Ther 28, 163–171 (2014). https://doi.org/10.1007/s10557-013-6504-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-013-6504-7

Keywords

Navigation