Skip to main content
Log in

ARB and Cardioprotection

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

A growing body of evidence has suggested that the use of angiotensin II (Ang II) type 1 (AT1) receptor blockers (ARBs) leads to a significant decrease in mortality and morbidity in patients with congestive heart failure. The AT1 receptor is a seven-transmembrane G protein-coupled receptor, and is involved in regulating the physiological and pathological process of the cardiovascular system. Systemically and locally generated Ang II has agonistic action on AT1 receptor. However, recent in vitro studies have demonstrated that AT1 receptor is structurally flexible and instable, and has significant and varying levels of spontaneous activity in an Ang II-independent manner. Furthermore, mechanical stress activates AT1 receptor by inducing conformational switch without the involvement of Ang II. Experimental studies have demonstrated that Ang II-independent activation of AT1 receptor is profoundly relevant to the pathogenesis of cardiac remodeling in vivo, and that these agonist-independent activities of AT1 receptor can be inhibited by inverse agonists, but not by neutral antagonists. Therefore, inverse agonist activity emerges as an important pharmacological parameter that contributes to cardioprotective effects of ARBs through inhibiting both Ang II-dependent and -independent activation of AT1 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Re RN. Mechanisms of disease: local renin-angiotensin-aldosterone systems and the pathogenesis and treatment of cardiovascular disease. Nat Clin Pract Cardiovasc Med. 2004;1:42–7.

    PubMed  CAS  Google Scholar 

  2. Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006;86:747–803.

    Article  PubMed  CAS  Google Scholar 

  3. Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev. 1993;45:205–51.

    PubMed  CAS  Google Scholar 

  4. Gether U, Kobilka BK. G protein-coupled receptors. II. Mechanism of agonist activation. J Biol Chem. 1998;273:17979–82.

    Article  PubMed  CAS  Google Scholar 

  5. Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev. 2000;21:90–113.

    Article  PubMed  CAS  Google Scholar 

  6. Miura S, Saku K, Karnik SS. Molecular analysis of the structure and function of the angiotensin II type 1 receptor. Hypertens Res. 2003;26:937–43.

    Article  PubMed  CAS  Google Scholar 

  7. Zaman MA, Oparil S, Calhoun DA. Drugs targeting the renin-angiotensin-aldosterone system. Nat Rev Drug Discov. 2002;1:621–36.

    Article  PubMed  CAS  Google Scholar 

  8. Dell’italia LJ. Translational success stories: angiotensin receptor 1 antagonists in heart failure. Circ Res. 2011;109:437–52.

    Article  PubMed  Google Scholar 

  9. Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med. 2001;345:1667–75.

    Article  PubMed  CAS  Google Scholar 

  10. Yasuda N, Miura S, Akazawa H, Tanaka T, Qin Y, Kiya Y, et al. Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep. 2008;9:179–86.

    Article  PubMed  CAS  Google Scholar 

  11. Qin Y, Yasuda N, Akazawa H, Ito K, Kudo Y, Liao CH, et al. Multivalent ligand-receptor interactions elicit inverse agonist activity of AT(1) receptor blockers against stretch-induced AT(1) receptor activation. Hypertens Res. 2009;32:875–83.

    Article  PubMed  CAS  Google Scholar 

  12. Akazawa H, Yasuda N, Komuro I. Mechanisms and functions of agonist-independent activation in the angiotensin II type 1 receptor. Mol Cell Endocrinol. 2009;302:140–7.

    Article  PubMed  CAS  Google Scholar 

  13. Yasuda N, Akazawa H, Ito K, Shimizu I, Kudo-Sakamoto Y, Yabumoto C, et al. Agonist-independent constitutive activity of angiotensin II receptor promotes cardiac remodeling in mice. Hypertension. 2012;59:627–33.

    Article  PubMed  CAS  Google Scholar 

  14. Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol. 2004;6:499–506.

    Article  PubMed  CAS  Google Scholar 

  15. Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, et al. Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J. 2008;27:3092–103.

    Article  PubMed  CAS  Google Scholar 

  16. Rakesh K, Yoo B, Kim IM, Salazar N, Kim KS, Rockman HA. beta-Arrestin-biased agonism of the angiotensin receptor induced by mechanical stress. Sci Signal. 2010;3:ra46.

    Article  PubMed  Google Scholar 

  17. Strange PG. Mechanisms of inverse agonism at G-protein-coupled receptors. Trends Pharmacol Sci. 2002;23:89–95.

    Article  PubMed  CAS  Google Scholar 

  18. Milligan G. Constitutive activity and inverse agonists of G protein-coupled receptors: a current perspective. Mol Pharmacol. 2003;64:1271–6.

    Article  PubMed  CAS  Google Scholar 

  19. Bond RA, Ijzerman AP. Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol Sci. 2006;27:92–6.

    Article  PubMed  CAS  Google Scholar 

  20. Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation. 2000;102:470–9.

    Article  PubMed  CAS  Google Scholar 

  21. Dostal DE, Baker KM. Angiotensin II stimulation of left ventricular hypertrophy in adult rat heart. Mediation by the AT1 receptor. Am J Hypertens. 1992;5:276–80.

    PubMed  CAS  Google Scholar 

  22. Hein L, Stevens ME, Barsh GS, Pratt RE, Kobilka BK, Dzau VJ. Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. Proc Natl Acad Sci U S A. 1997;94:6391–6.

    Article  PubMed  CAS  Google Scholar 

  23. Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M. Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci U S A. 2000;97:931–6.

    Article  PubMed  CAS  Google Scholar 

  24. Klingbeil AU, Schneider M, Martus P, Messerli FH, Schmieder RE. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med. 2003;115:41–6.

    Article  PubMed  Google Scholar 

  25. Kjeldsen SE, Dahlof B, Devereux RB, Julius S, Aurup P, Edelman J, et al. Effects of losartan on cardiovascular morbidity and mortality in patients with isolated systolic hypertension and left ventricular hypertrophy: a Losartan Intervention for Endpoint Reduction (LIFE) substudy. JAMA. 2002;288:1491–8.

    Article  PubMed  CAS  Google Scholar 

  26. Ogihara T, Fujimoto A, Nakao K, Saruta T. ARB candesartan and CCB amlodipine in hypertensive patients: the CASE-J trial. Expert Rev Cardiovasc Ther. 2008;6:1195–201.

    Article  PubMed  CAS  Google Scholar 

  27. Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev. 2000;52:11–34.

    PubMed  CAS  Google Scholar 

  28. Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol. 2006;20:953–70.

    Article  PubMed  CAS  Google Scholar 

  29. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizuno T, et al. Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ Res. 1995;77:258–65.

    Article  PubMed  CAS  Google Scholar 

  30. Zou Y, Komuro I, Yamazaki T, Aikawa R, Kudoh S, Shiojima I, et al. Protein kinase C, but not tyrosine kinases or Ras, plays a critical role in angiotensin II-induced activation of Raf-1 kinase and extracellular signal-regulated protein kinases in cardiac myocytes. J Biol Chem. 1996;271:33592–7.

    Article  PubMed  CAS  Google Scholar 

  31. Kudoh S, Komuro I, Mizuno T, Yamazaki T, Zou Y, Shiojima I, et al. Angiotensin II stimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats. Circ Res. 1997;80:139–46.

    Article  PubMed  CAS  Google Scholar 

  32. Nishida M, Tanabe S, Maruyama Y, Mangmool S, Urayama K, Nagamatsu Y, et al. G alpha 12/13- and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes. J Biol Chem. 2005;280:18434–41.

    Article  PubMed  CAS  Google Scholar 

  33. Bueno OF, Molkentin JD. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res. 2002;91:776–81.

    Article  PubMed  CAS  Google Scholar 

  34. Hunyady L, Turu G. The role of the AT1 angiotensin receptor in cardiac hypertrophy: angiotensin II receptor or stretch sensor? Trends Endocrinol Metab. 2004;15:405–8.

    PubMed  CAS  Google Scholar 

  35. Miura S, Fujino M, Hanzawa H, Kiya Y, Imaizumi S, Matsuo Y, et al. Molecular mechanism underlying inverse agonist of angiotensin II type 1 receptor. J Biol Chem. 2006;281:19288–95.

    Article  PubMed  CAS  Google Scholar 

  36. Billet S, Bardin S, Verp S, Baudrie V, Michaud A, Conchon S, et al. Gain-of-function mutant of angiotensin II receptor, type 1A, causes hypertension and cardiovascular fibrosis in mice. J Clin Invest. 2007;117:1914–25.

    Article  PubMed  CAS  Google Scholar 

  37. Suzuki J, Matsubara H, Urakami M, Inada M. Rat angiotensin II (type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circ Res. 1993;73:439–47.

    Article  PubMed  CAS  Google Scholar 

  38. Fujii N, Tanaka M, Ohnishi J, Yukawa K, Takimoto E, Shimada S, et al. Alterations of angiotensin II receptor contents in hypertrophied hearts. Biochem Biophys Res Commun. 1995;212:326–33.

    Article  PubMed  CAS  Google Scholar 

  39. Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest. 1995;95:46–54.

    Article  PubMed  CAS  Google Scholar 

  40. Komuro I, Yazaki Y. Control of cardiac gene expression by mechanical stress. Annu Rev Physiol. 1993;55:55–75.

    Article  PubMed  CAS  Google Scholar 

  41. Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol. 1997;59:551–71.

    Article  PubMed  CAS  Google Scholar 

  42. Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Nieminen MS, et al. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA. 2004;292:2343–9.

    Article  PubMed  CAS  Google Scholar 

  43. Sadoshima J, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993;75:977–84.

    Article  PubMed  CAS  Google Scholar 

  44. Yamano Y, Ohyama K, Chaki S, Guo DF, Inagami T. Identification of amino acid residues of rat angiotensin II receptor for ligand binding by site directed mutagenesis. Biochem Biophys Res Commun. 1992;187:1426–31.

    Article  PubMed  CAS  Google Scholar 

  45. Tanimoto K, Sugiyama F, Goto Y, Ishida J, Takimoto E, Yagami K, et al. Angiotensinogen-deficient mice with hypotension. J Biol Chem. 1994;269:31334–7.

    PubMed  CAS  Google Scholar 

  46. Miura S, Kiya Y, Kanazawa T, Imaizumi S, Fujino M, Matsuo Y, et al. Differential bonding interactions of inverse agonists of angiotensin II type 1 receptor in stabilizing the inactive state. Mol Endocrinol. 2008;22:139–46.

    Article  PubMed  CAS  Google Scholar 

  47. Fujino M, Miura S, Kiya Y, Tominaga Y, Matsuo Y, Karnik SS, et al. A small difference in the molecular structure of angiotensin II receptor blockers induces AT receptor-dependent and -independent beneficial effects. Hypertens Res. 2010;33:1044–52.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Japan Society for the Promotion of Science (KAKENHI 20390218, 21229010, 23390213) and Health and Labor Sciences Research Grants (to I.K. and H.A.), Takeda Science Foundation, The Uehara Memorial Foundation, The Ichiro Kanehara Foundation, and Suzuken Memorial Foundation (to H.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issei Komuro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akazawa, H., Yabumoto, C., Yano, M. et al. ARB and Cardioprotection. Cardiovasc Drugs Ther 27, 155–160 (2013). https://doi.org/10.1007/s10557-012-6392-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-012-6392-2

Key words

Navigation