Skip to main content
Log in

Disassociation Between Left Ventricular Mechanical and Electrical Properties in Ischemic Rat Heart After G-CSF Treatment

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Objective

The effect of granulocyte colony-stimulating factor (G-CSF) on post-infarct ventricular remodeling remains controversial. We hypothesized that the timing of G-CSF administration after myocardial ischemia plays an important role in determining its efficacy.

Methods

Rat myocardial ischemia was induced by 60 min coronary ligation and reperfusion. Surviving animals received G-CSF after 1 h (E-G) or 24 h (D-G) of reperfusion randomly at 100μg/kg/d for five consecutive days. 7 days or 3 months post-ischemia, rat hearts were quickly removed for ex vivo electrophysiological measurements or histological analysis (collagen disposition and angiogenesis) and metalloproteinase-2 and −9 activity assays (gelatin zymography). Left ventricular (LV) invasive hemodynamic analysis was performed in 3-month recovery animals before sacrifice.

Results

At 3 months post ischemia, LV mechanical remodeling was further impaired with early G-CSF administration (0.65 ± 0.17%, 13.21 ± 7.36 mmHg, −4,684 ± 1,560 mmHg/s) compared with the control group (0.28 ± 0.12%, 6.45 ± 3.43 mmHg, −6,267 ± 1,111 mmHg/s) and D-G group (0.34 ± 0.12%, 7.90 ± 5.33 mmHg, −6,227 ± 1,075 mmHg/s) as shown by increased expansion index (P < 0.01), deterioration of myocardial function with increased LVDP (P < 0.05), and decreased −dP/dt max (P < 0.05). By contrast, there was a significant increase in electrical properties including monophasic action potential (MAP) 90 dispersion (12.58 ± 4.46 vs. 30.56 ± 6.17 ms at 7 days; 18.54 ± 4.31 vs. 34.78 ± 5.24 ms at 3 months; P < 0.05 for both) and inducibility of ventricular arrhythmias (4.78 ± 1.19 vs. 11.58 ± 2.76 ms at 3 months; P < 0.05) with early G-CSF treatment compared with the control group.

Conclusions

Both early and delayed administrations of G-CSF can improve electrophysiological properties after myocardial ischemia, but have no beneficial effects on LV mechanical remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brunner S, Huber BC, Fischer R, Groebner M, Hacker M, David R, et al. G-CSF treatment after myocardial infarction: impact on bone marrow-derived vs cardiac progenitor cells. Exp Hematol. 2008;36:695–702.

    Article  PubMed  CAS  Google Scholar 

  2. Pasquet S, Sovalat H, Henon P, Bischoff N, Arkam Y, Ojeda-Uribe M, et al. Long-term benefit of intracardiac delivery of autologous granulocyte-colony-stimulating factor-mobilized blood CD34+ cells containing cardiac progenitors on regional heart structure and function after myocardial infarct. Cytotherapy. 2009;11:1002–15.

    Article  PubMed  CAS  Google Scholar 

  3. Harada M, Qin Y, Takano H, Minamino T, Zou Y, Toko H, et al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med. 2005;11:305–11.

    Article  PubMed  CAS  Google Scholar 

  4. Ueda K, Takano H, Hasegawa H, Niitsuma Y, Qin Y, Ohtsuka M, et al. Granulocyte colony stimulating factor directly inhibits myocardial ischemia-reperfusion injury through Akt-endothelial NO synthase pathway. Arterioscler Thromb Vasc Biol. 2006;26:e108–13.

    Article  PubMed  CAS  Google Scholar 

  5. Misao Y, Takemura G, Arai M, Ohno T, Onogi H, Takahashi T, et al. Importance of recruitment of bone marrow-derived CXCR4+ cells in post-infarct cardiac repair mediated by G-CSF. Cardiovasc Res. 2006;71:455–65.

    Article  PubMed  CAS  Google Scholar 

  6. Werneck-de-Castro JP, Costa ESRH, de Oliveira PF, Pinho-Ribeiro V, Mello DB, Pecanha R, et al. G-CSF does not improve systolic function in a rat model of acute myocardial infarction. Basic Res Cardiol. 2006;101:494–501.

    Article  PubMed  CAS  Google Scholar 

  7. Cho SW, Gwak SJ, Kim IK, Cho MC, Hwang KK, Kwon JS, et al. Granulocyte colony-stimulating factor treatment enhances the efficacy of cellular cardiomyoplasty with transplantation of embryonic stem cell-derived cardiomyocytes in infarcted myocardium. Biochem Biophys Res Commun. 2006;340:573–82.

    Article  PubMed  CAS  Google Scholar 

  8. Lehrke S, Mazhari R, Durand DJ, Zheng M, Bedja D, Zimmet JM, et al. Aging impairs the beneficial effect of granulocyte colony-stimulating factor and stem cell factor on post-myocardial infarction remodeling. Circ Res. 2006;99:553–60.

    Article  PubMed  CAS  Google Scholar 

  9. Ohtsuka M, Takano H, Zou Y, Toko H, Akazawa H, Qin Y, et al. Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization. FASEB J. 2004;18:851–3.

    PubMed  CAS  Google Scholar 

  10. Kuhlmann MT, Kirchhof P, Klocke R, Hasib L, Stypmann J, Fabritz L, et al. G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. J Exp Med. 2006;203:87–97.

    Article  PubMed  CAS  Google Scholar 

  11. Deindl E, Zaruba MM, Brunner S, Huber B, Mehl U, Assmann G, et al. G-CSF administration after myocardial infarction in mice attenuates late ischemic cardiomyopathy by enhanced arteriogenesis. FASEB J. 2006;20:956–8.

    Article  PubMed  CAS  Google Scholar 

  12. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA. 2001;98:10344–9.

    Article  PubMed  CAS  Google Scholar 

  13. Yoshioka T, Takahashi M, Shiba Y, Suzuki C, Morimoto H, Izawa A, et al. Granulocyte colony-stimulating factor (G-CSF) accelerates reendothelialization and reduces neointimal formation after vascular injury in mice. Cardiovasc Res. 2006;70:61–9.

    Article  PubMed  CAS  Google Scholar 

  14. Okada H, Takemura G, Li Y, Ohno T, Li L, Maruyama R, et al. Effect of a long-term treatment with a low-dose granulocyte colony-stimulating factor on post-infarction process in the heart. J Cell Mol Med. 2008;12:1272–83.

    Article  PubMed  CAS  Google Scholar 

  15. Louzada RA, Oliveira PF, Cavalcanti-de-Albuquerque JP, Cunha-Carvalho L, Baldanza MR, Kasai-Brunswick TH, et al. Granulocyte-colony stimulating factor treatment of chronic myocardial infarction. Cardiovasc Drugs Ther. 2010;24:121–30.

    Article  PubMed  CAS  Google Scholar 

  16. Sumi S, Kobayashi H, Yasuda S, Iwasa M, Yamaki T, Yamada Y, et al. Postconditioning effect of granulocyte colony-stimulating factor is mediated through activation of risk pathway and opening of the mitochondrial KATP channels. Am J Physiol Heart Circ Physiol. 2010;299:H1174–82.

    Article  PubMed  CAS  Google Scholar 

  17. Cheng Z, Ou L, Liu Y, Liu X, Li F, Sun B, et al. Granulocyte colony-stimulating factor exacerbates cardiac fibrosis after myocardial infarction in a rat model of permanent occlusion. Cardiovasc Res. 2008;80:425–34.

    Article  PubMed  CAS  Google Scholar 

  18. Cheng Z, Liu X, Ou L, Zhou X, Liu Y, Jia X, et al. Mobilization of mesenchymal stem cells by granulocyte colony-stimulating factor in rats with acute myocardial infarction. Cardiovasc Drugs Ther. 2008;22:363–71.

    Article  PubMed  CAS  Google Scholar 

  19. Ripa RS, Jorgensen E, Wang Y, Thune JJ, Nilsson JC, Sondergaard L, et al. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation. 2006;113:1983–92.

    Article  PubMed  CAS  Google Scholar 

  20. Zohlnhofer D, Ott I, Mehilli J, Schomig K, Michalk F, Ibrahim T, et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA. 2006;295:1003–10.

    Article  PubMed  Google Scholar 

  21. Achilli F, Malafronte C, Lenatti L, Gentile F, Dadone V, Gibelli G, et al. Granulocyte colony-stimulating factor attenuates left ventricular remodelling after acute anterior STEMI: results of the single-blind, randomized, placebo-controlled multicentre STem cEll Mobilization in Acute Myocardial Infarction (STEM-AMI) Trial. Eur J Heart Fail. 2010;12:1111–21.

    Article  PubMed  CAS  Google Scholar 

  22. Overgaard M, Ripa RS, Wang Y, Jorgensen E, Kastrup J. Timing of granulocyte-colony stimulating factor treatment after acute myocardial infarction and recovery of left ventricular function: results from the STEMMI trial. Int J Cardiol. 2010;140:351–5.

    Article  PubMed  Google Scholar 

  23. Fan L, Chen L, Chen X, Fu F. A meta-analysis of stem cell mobilization by granulocyte colony-stimulating factor in the treatment of acute myocardial infarction. Cardiovasc Drugs Ther. 2008;22:45–54.

    Article  PubMed  CAS  Google Scholar 

  24. Landazuri N, Taylor WR. Mobilizing bone marrow progenitor cells, a double edge sword. Cardiovasc Drugs Ther. 2008;22:339–41.

    Article  PubMed  Google Scholar 

  25. Baldo MP, Davel AP, Nicoletti-Carvalho JE, Bordin S, Rossoni LV, Mill JG. Granulocyte colony-stimulating factor reduces mortality by suppressing ventricular arrhythmias in acute phase of myocardial infarction in rats. J Cardiovasc Pharmacol. 2008;52:375–80.

    Article  PubMed  CAS  Google Scholar 

  26. Lee TM, Chen CC, Chang NC. Granulocyte colony-stimulating factor increases sympathetic reinnervation and the arrhythmogenic response to programmed electrical stimulation after myocardial infarction in rats. Am J Physiol. 2009;297:H512–22.

    Article  CAS  Google Scholar 

  27. Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res. 2004;94:1543–53.

    Article  PubMed  CAS  Google Scholar 

  28. Zhou X, Li YM, Ji WJ, Jiang TM, Sun XN, Zhu Y, et al. Phenytoin can accelerate the healing process after experimental myocardial infarction? Int J Cardiol. 2006;107:21–9.

    Article  PubMed  Google Scholar 

  29. Li XH, Zhou X, Zeng S, Ye F, Yun JL, Huang TG, et al. Effects of intramyocardial injection of platelet-rich plasma on the healing process after myocardial infarction. Coron Artery Dis. 2008;19:363–70.

    Article  PubMed  Google Scholar 

  30. Fabritz L, Kirchhof P, Franz MR, Eckardt L, Monnig G, Milberg P, et al. Prolonged action potential durations, increased dispersion of repolarization, and polymorphic ventricular tachycardia in a mouse model of proarrhythmia. Basic Res Cardiol. 2003;98:25–32.

    Article  PubMed  Google Scholar 

  31. Franz MR, Kirchhof PF, Fabritz CL, Zabel M. Computer analysis of monophasic action potentials: manual validation and clinically pertinent applications. Pacing Clin Electrophysiol. 1995;18:1666–78.

    Article  PubMed  CAS  Google Scholar 

  32. Koller BS, Karasik PE, Solomon AJ, Franz MR. Relation between repolarization and refractoriness during programmed electrical stimulation in the human right ventricle. Implications for ventricular tachycardia induction. Circulation. 1995;91:2378–84.

    PubMed  CAS  Google Scholar 

  33. Yumoto A, Fukushima Kusano K, Nakamura K, Hashimoto K, Aoki M, Morishita R, et al. Hepatocyte growth factor gene therapy reduces ventricular arrhythmia in animal models of myocardial ischemia. Acta Med Okayama. 2005;59:73–8.

    PubMed  CAS  Google Scholar 

  34. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002;53:31–47.

    Article  PubMed  CAS  Google Scholar 

  35. Angeli FS, Smith C, Amabile N, Shapiro M, Bartlett L, Virmani R, et al. Granulocyte colony stimulating factor in myocardial infarction with low ejection fraction. Cytokine. 2010;51:278–85.

    Article  PubMed  CAS  Google Scholar 

  36. Zbinden S, Zbinden R, Meier P, Windecker S, Seiler C. Safety and efficacy of subcutaneous-only granulocyte-macrophage colony-stimulating factor for collateral growth promotion in patients with coronary artery disease. J Am Coll Cardiol. 2005;46:1636–42.

    Article  PubMed  CAS  Google Scholar 

  37. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101:2981–8.

    PubMed  CAS  Google Scholar 

  38. Whittaker P, Boughner DR, Kloner RA. Role of collagen in acute myocardial infarct expansion. Circulation. 1991;84:2123–34.

    PubMed  CAS  Google Scholar 

  39. Whittaker P, Boughner DR, Kloner RA. Analysis of healing after myocardial infarction using polarized light microscopy. Am J Pathol. 1989;134:879–93.

    PubMed  CAS  Google Scholar 

  40. Cleutjens JP, Verluyten MJ, Smiths JF, Daemen MJ. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol. 1995;147:325–38.

    PubMed  CAS  Google Scholar 

  41. Kovacic JC, Muller DW, Graham RM. Actions and therapeutic potential of G-CSF and GM-CSF in cardiovascular disease. J Mol Cell Cardiol. 2007;42:19–33.

    Article  PubMed  CAS  Google Scholar 

  42. Meier P, Gloekler S, de Marchi SF, Indermuehle A, Rutz T, Traupe T, et al. Myocardial salvage through coronary collateral growth by granulocyte colony-stimulating factor in chronic coronary artery disease: a controlled randomized trial. Circulation. 2009;120:1355–63.

    Article  PubMed  CAS  Google Scholar 

  43. Abraham MR, Henrikson CA, Tung L, Chang MG, Aon M, Xue T, et al. Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res. 2005;97:159–67.

    Article  PubMed  CAS  Google Scholar 

  44. Peters NS, Coromilas J, Severs NJ, Wit AL. Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation. 1997;95:988–96.

    PubMed  CAS  Google Scholar 

  45. Roell W, Lewalter T, Sasse P, Tallini YN, Choi BR, Breitbach M, et al. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature. 2007;450:819–24.

    Article  PubMed  CAS  Google Scholar 

  46. Kuwabara M, Kakinuma Y, Katare RG, Ando M, Yamasaki F, Doi Y, et al. Granulocyte colony-stimulating factor activates Wnt signal to sustain gap junction function through recruitment of beta-catenin and cadherin. FEBS Lett. 2007;581:4821–30.

    Article  PubMed  CAS  Google Scholar 

  47. Benzhi C, Limei Z, Ning W, Jiaqi L, Songling Z, Fanyu M, et al. Bone marrow mesenchymal stem cells upregulate transient outward potassium currents in postnatal rat ventricular myocytes. J Mol Cell Cardiol. 2009;47:41–8.

    Article  PubMed  Google Scholar 

  48. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124:407–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30740010, 30871072 and 81070121), the Tianjin Municipal Science and Technology Committee (09ZCZDSF04200), and intramural research programs from the Medical College of Chinese People’s Armed Police Forces (WJZ2007-3 and WKH2009Z01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ming Li.

Additional information

Hong-Mei Liu and Tao Luo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, HM., Luo, T., Zhou, X. et al. Disassociation Between Left Ventricular Mechanical and Electrical Properties in Ischemic Rat Heart After G-CSF Treatment. Cardiovasc Drugs Ther 25, 203–214 (2011). https://doi.org/10.1007/s10557-011-6294-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-011-6294-8

Key words

Navigation