Skip to main content
Log in

What are the Biochemical Mechanisms Responsible for Enhanced Fatty Acid Utilization by Perfused Hearts from Type 2 Diabetic db/db Mice?

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Introduction

It is generally accepted that diabetic hearts have an altered metabolic phenotype, with enhanced fatty acid (FA) utilization. The over-utilization of FA by diabetic hearts can have deleterious functional consequences, contributing to a distinct diabetic cardiomyopathy. The objective of this review will be to examine which biochemical mechanisms are responsible for enhanced FA utilization by diabetic hearts.

Methodology and results

Studies were performed with db/db mice, a monogenic model of type 2 diabetes with extreme obesity and hyperglycemia. Perfused db/db hearts exhibit enhanced FA oxidation and esterification. Hypothesis 1: Cardiac FA uptake is enhanced in db/db hearts. The plasma membrane content of two FA transporters, fatty acid translocase/CD36 (FAT/CD36) and plasma membrane fatty acid binding protein (FABPpm), was increased in db/db hearts, consistent with hypothesis 1. Hypothesis 2: Cardiac FA oxidation is enhanced in db/db hearts due to mitochondrial alterations. However, the activity of carnitine palmitoyl transferase-1 (CPT-1) and sensitivity to inhibition by malonyl CoA was unchanged in mitochondria from db/db hearts. Furthermore, total malonyl CoA content was increased, not decreased as predicted for elevated FA oxidation. Finally, the content of uncoupling protein-3 was unchanged in db/db heart mitochondria.

Conclusion

Increased plasma membrane content of FA transporters (FAT/CD36 and FABPpm) will increase FA uptake into db/db cardiomyocytes and thus increase FA utilization. On the other hand, mitochondrial mechanisms do not contribute to elevated rates of FA oxidation in db/db hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Neely JR, Rovetto MJ, Oram JF. Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis. 1972;15:289–329.

    Article  PubMed  CAS  Google Scholar 

  2. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85:1093–129.

    Article  PubMed  CAS  Google Scholar 

  3. An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2006;291:H1489–506.

    Article  PubMed  CAS  Google Scholar 

  4. Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta. 2005;1734:112–26.

    PubMed  CAS  Google Scholar 

  5. Randle PJ. Fuel selection in animals. Trans Biochem Soc. 1986;14:799–806.

    CAS  Google Scholar 

  6. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106:171–6.

    Article  PubMed  CAS  Google Scholar 

  7. Finck BN. The PPAR regulatory system in cardiac physiology and disease. Cardiovasc Res. 2007;73:269–77.

    Article  PubMed  CAS  Google Scholar 

  8. Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res. 2004;95:568–78.

    Article  PubMed  CAS  Google Scholar 

  9. Gilde AJ, van der Lee KA, Willemsen PH, Chinetti G, van der Leij FR, van der Vusse GJ, Staels B, van Bilsen M. Peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res. 2003;92:518–24.

    Article  PubMed  CAS  Google Scholar 

  10. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak R, Lopaschuk GD, Kelly DP. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest. 2002;109:121–30.

    PubMed  CAS  Google Scholar 

  11. Park S-Y, Cho Y-R, Finck BN, Kim H-J, Higashimori T, Hong E-G, Lee M-K, Danton C, Deshmukh S, Cline GW, Wu JJ, Bennett AM, Rothermel B, Kalinowski A, Russell KS, Kim Y-B, Kelly DP, Kim JK. Cardiac-specific overexpression of peroxisome proliferator-activated receptor-α causes insulin resistance in heart and liver. Diabetes. 2005;54:2514–24.

    Article  PubMed  CAS  Google Scholar 

  12. Carroll R, Carley AN, Dyck JRB, Severson DL. Metabolic effects of insulin on cardiomyocytes from control and diabetic db/db mouse hearts. Am J Physiol Endocrinol Metab. 2005;288:E900–6.

    Article  PubMed  CAS  Google Scholar 

  13. Duncan JG, Fong JL, Medeiros DM, Finck BN, Kelly DP. Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-α/PGC-1α gene regulatory pathway. Circulation. 2007;115:909–17.

    Article  PubMed  CAS  Google Scholar 

  14. Coleman DL. Diabetes-obesity syndromes in mice. Diabetes. 1982;31:1–6.

    Article  PubMed  CAS  Google Scholar 

  15. Belke DD, Larsen TS, Gibbs EM, Severson DL. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab. 2000;279:E1104–13.

    PubMed  CAS  Google Scholar 

  16. Aasum E, Hafstad AD, Severson DL, Larsen TS. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes. 2003;52:434–41.

    Article  PubMed  CAS  Google Scholar 

  17. Hafstad AD, Solevåg GH, Severson DL, Larsen TS, Aasum E. Perfused hearts from Type 2 diabetic (db/db) mice show metabolic responsiveness to insulin. Am J Physiol Heart Circ Physiol. 2006;290:H1763–9.

    Article  PubMed  CAS  Google Scholar 

  18. Carley AN, Atkinson LL, Bonen A, Harper M-E, Kunnathu S, Lopaschuk GD, Severson DL. Mechanisms responsible for enhanced fatty acid utilization by perfused hearts from type 2 diabetic db/db mice. Arch Physiol Biochem. 2007;113:65–75.

    Article  PubMed  CAS  Google Scholar 

  19. Neitzel AS, Carley AN, Severson DL. Chylomicron and palmitate metabolism by perfused hearts from diabetic mice. Am J Physiol Endocrinol Metab. 2003;284:E357–63.

    PubMed  CAS  Google Scholar 

  20. Lee Y, Wang MY, Kakuma T, Wang ZW, Babcock E, McCorkle K, Higa M, Zhou YT, Unger RH. Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia. J Biol Chem 2001;276:5629–35.

    Article  PubMed  CAS  Google Scholar 

  21. Koonen DPY, Glatz JFC, Bonen A, Luiken JJFP. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta. 2005;1736:163–80.

    PubMed  CAS  Google Scholar 

  22. Luiken JJFP, Coort SLM, Koonen DPY, van der Horst DJ, Bonen A, Zorzano A, Glatz JFC. Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch Eur J Physiol. 2004;448:1–15.

    Article  CAS  Google Scholar 

  23. Luiken JJ, Arumugam Y, Dyck DJ, Bell RC, Pelsers MM, Turcotte LP, Tandon NN, Glatz JF, Bonen A. Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J Biol Chem. 2001;276:40567–73.

    Article  PubMed  CAS  Google Scholar 

  24. Luiken JJ, Koonen DP, Willems J, Zorzano A, Becker C, Fischer Y, Tandon NN, van der Vusse GJ, Bonen A, Glatz JF. Insulin stimulates long-chain fatty acid utilization by rat cardiac myocytes through cellular redistribution of FAT/CD36. Diabetes. 2002;51:3113–9.

    Article  PubMed  CAS  Google Scholar 

  25. Chabowski A, Coort SLM, Calles-Escandon J, Tandon NN, Glatz JFC, Luiken JJFP, Bonen A. The subcellular compartmentation of fatty acid transporters is regulated differently by insulin and by AICAR. FEBS Lett. 2005;579:2428–32.

    Article  PubMed  CAS  Google Scholar 

  26. Coort SL, Hasselbaink DM, Koonen DP, Willems J, Coumans WA, Chabowski A, van der Vusse GJ, Bonen A, Glatz JF, Luiken JJ. Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese Zucker rats. Diabetes. 2004;53:1655–63.

    Article  PubMed  CAS  Google Scholar 

  27. Himms-Hagen J, Harper M-E. Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: a hypothesis. Exp Biol Med. 2001;226:78–84.

    CAS  Google Scholar 

  28. Young ME, Patil S, Ying J, Depre C, Ahuja HS, Shipley GL, Stepkowski SM, Davies PJ, Taegtmeyer H. Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor (alpha) in the adult rodent heart. FASEB J. 2001;15:833–45.

    Article  PubMed  CAS  Google Scholar 

  29. Vettor R, Fabris R, Serra R, Lombardi AM, Tonello C, Granzotto M, Marzolo MO, Carruba MO, Ricquier D, Federspil G, Nisoli E. Changes in FAT/CD36, UCP2, UCP3 and GLUT4 gene expression during lipid infusion in rat skeletal and heart muscle. Int J Obes Relat Metab Disord. 2002;26:838–47.

    Article  PubMed  CAS  Google Scholar 

  30. Boss O, Samec S, Desplanches D, Mayet MH, Seydoux J, Muzzin P, Giacobino JP. Effect of endurance training on mRNA expression of uncoupling proteins 1, 2, and 3 in the rat. FASEB J. 1998;12:335–9.

    PubMed  CAS  Google Scholar 

  31. Millet L, Vidal H, Andreelli F, Larrouy D, Riou JP, Ricquier D, Laville M, Langin D. Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans. J Clin Invest. 1997;100:2665–70.

    Article  PubMed  CAS  Google Scholar 

  32. Weigle DS, Selfridge LE, Schwartz MW, Seeley RJ, Cummings DE, Havel PJ, Kuijper JL, BeltrandelRio H. Elevated free fatty acids induce uncoupling protein 3 expression in muscle: a potential explanation for the effect of fasting. Diabetes. 1998;47:298–302.

    Article  PubMed  CAS  Google Scholar 

  33. Depre C, Young ME, Ying J, Ahuja HS, Han Q, Garza N, Davies PJ, Taegtmeyer H. Streptozotocin-induced changes in cardiac gene expression in the absence of severe contractile dysfunction. J Mol Cell Cardiol. 2000;32:985–96.

    Article  PubMed  CAS  Google Scholar 

  34. Hidaka S, Kakuma T, Yoshimatsu H, Sakino H, Fukuchi S, Sakata T. Streptozotocin treatment upregulates uncoupling protein 3 expression in the rat heart. Diabetes. 1999;48:430–5.

    Article  PubMed  CAS  Google Scholar 

  35. Murray AJ, Panagia M, Hauton D, Gibbons GF, Clarke K. Plasma free fatty acids and peroxisome proliferator-activated receptor α in the control of myocardial uncoupling protein levels. Diabetes. 2005;54:3496–502.

    Article  PubMed  CAS  Google Scholar 

  36. Carley AN, Semeniuk LM, Shimoni Y, Aasum E, Larsen TS, Berger JP, Severson DL. Treatment of type 2 diabetic db/db mice with a novel PPARgamma agonist improves cardiac metabolism but not contractile function. Am J Physiol Endocrinol Metab. 2004;286:E449–55.

    Article  PubMed  CAS  Google Scholar 

  37. Boudina S, Sena S, O’Neill BT, Tathireddy P, Young ME, Abel ED. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation. 2005;112:2686–95.

    Article  PubMed  Google Scholar 

  38. Mazumder PK, O’Neill BT, Roberts MW, Buchanan J, Yun UJ, Cooksey RC, Boudina S, Abel ED. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes. 2004;53:2366–74.

    Article  PubMed  CAS  Google Scholar 

  39. Yang J, Sambandam N, Han X, Gross RW, Courtois M, Kovacs A, Febbraio M, Finck BN, Kelly DP. CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res. 2007;100:1208–17.

    Article  PubMed  CAS  Google Scholar 

  40. Chiu H-C, Kovacs A, Blanton RM, Han X, Courtois M, Weinheimer CJ, Yamada KA, Brunet S, Xu H, Nerbonne JM, Welch MJ, Fettig NM, Sharp TL, Sambandam N, Olson KM, Ory DS, Schaffer JE. Transgenic cardiac-specific expression of Fatty Acid Transport Protein 1 in the heart causes lipotoxic cardiomyopathy. Circ Res. 2005;96:225–33.

    Article  PubMed  CAS  Google Scholar 

  41. Oakes ND, Thalén P, Aasum E, Edgley A, Larsen T, Furler SM, Ljung B, Severson D. Cardiac metabolism in mice: tracer method developments and in vivo application revealing profound metabolic inflexibility in diabetes. Am J Physiol Endocrinol Metab. 2006;290:E870–81.

    Article  PubMed  CAS  Google Scholar 

  42. Stowe KA, Burgess SC, Merritt M, Sherry AD, Malloy CR. Storage and oxidation of long-chain fatty acids in the C57/BL6 mouse heart as measured by NMR spectroscopy. FEBS Lett. 2006;580:4282–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Results from the Severson laboratory were enabled by financial support from the Canadian Institutes of Health Research (MT13227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Severson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carley, A.N., Severson, D.L. What are the Biochemical Mechanisms Responsible for Enhanced Fatty Acid Utilization by Perfused Hearts from Type 2 Diabetic db/db Mice?. Cardiovasc Drugs Ther 22, 83–89 (2008). https://doi.org/10.1007/s10557-008-6088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-008-6088-9

Key words

Navigation