Skip to main content
Log in

Molecular Mechanisms of Cross-talk between Thyroid Hormone and Peroxisome Proliferator Activated Receptors: Focus on the Heart

  • Review
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Thyroid hormone receptors (TR) and peroxisome proliferator activated receptors (PPAR) regulate cardiac metabolism. Numerous studies have examined TR and PPAR function since PPAR was first discovered in the early 1990s, however few have evaluated TR and PPAR interactions. Although ligands for these members of the nuclear steroid receptor family are under evaluation for treatment of congestive heart failure and various metabolic diseases, their interactions have not been investigated in detail in heart. These interactions are remarkably complicated. Nevertheless, their identification and elucidation is extremely important for further development of specific drugs. We review here the fundamental ways TRs and PPARs are regulated and how their cross-talk patterns mediate transcription of their target genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama TE, Lambert G, Nicol CJ, Matsusue K, Peters JM, Brewer HB, Jr., et al. Peroxisome proliferator-activated receptor beta/delta regulates very low density lipoprotein production and catabolism in mice on a Western diet. J Biol Chem 2004;279:20874–81.

    Article  PubMed  CAS  Google Scholar 

  2. Araki O, Ying H, Furuya F, Zhu X, Cheng SY. Thyroid hormone receptor beta mutants: Dominant negative regulators of peroxisome proliferator-activated receptor gamma action. Proc Natl Acad Sci U S A 2005;102:16251–6.

    Article  PubMed  CAS  Google Scholar 

  3. Bogazzi F, Hudson LD, Nikodem VM. A novel heterodimerization partner for thyroid hormone receptor. Peroxisome proliferator-activated receptor. J Biol Chem 1994;269:11683–6.

    PubMed  CAS  Google Scholar 

  4. Buroker NE, Young ME, Wei C, Serikawa K, Ge M, Ning XH, et al. The dominant negative thyroid hormone receptor {beta} mutant {Delta}337T alters peroxisome proliferator-activated receptor {alpha} signaling in heart. Am J Physiol Endocrinol Metab 2006.

  5. Chassande O, Fraichard A, Gauthier K, Flamant F, Legrand C, Savatier P, et al. Identification of transcripts initiated from an internal promoter in the c-erbA alpha locus that encode inhibitors of retinoic acid receptor-alpha and triiodothyronine receptor activities. Mol Endocrinol 1997;11:1278–90.

    Article  PubMed  CAS  Google Scholar 

  6. Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA. Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 1994;135:798–800.

    Article  PubMed  CAS  Google Scholar 

  7. Chu R, Madison LD, Lin Y, Kopp P, Rao MS, Jameson JL, et al. Thyroid hormone (T3) inhibits ciprofibrate-induced transcription of genes encoding beta-oxidation enzymes: cross talk between peroxisome proliferator and T3 signaling pathways. Proc Natl Acad Sci U S A 1995;92:11593–7.

    Article  PubMed  CAS  Google Scholar 

  8. Desvergne B. How do thyroid hormone receptors bind to structurally diverse response elements? Mol Cell Endocrinol 1994;100:125–31.

    Article  PubMed  CAS  Google Scholar 

  9. Dillmann WH. Cellular action of thyroid hormone on the heart. Thyroid 2002;12:447–52.

    Article  PubMed  CAS  Google Scholar 

  10. Di-Poi N, Tan NS, Michalik L, Wahli W, Desvergne B. Antiapoptotic role of PPARbeta in keratinocytes via transcriptional control of the Akt1 signaling pathway. Mol Cell 2002;10:721–33.

    Article  PubMed  CAS  Google Scholar 

  11. Djouadi F, Riveau B, Merlet-Benichou C, Bastin J. Tissue-specific regulation of medium-chain acyl-CoA dehydrogenase gene by thyroid hormones in the developing rat. Biochem J 1997;324 Pt 1:289–94.

    PubMed  CAS  Google Scholar 

  12. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 2002;109:121–30.

    Article  PubMed  CAS  Google Scholar 

  13. Gearing KL, Gottlicher M, Teboul M, Widmark E, Gustafsson JA. Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor. Proc Natl Acad Sci U S A 1993;90:1440–4.

    Article  PubMed  CAS  Google Scholar 

  14. Goldenthal MJ, Ananthakrishnan R, Marin-Garcia J. Nuclear-mitochondrial cross-talk in cardiomyocyte T3 signaling: a time-course analysis. J Mol Cell Cardiol 2005;39:319–26.

    Article  PubMed  CAS  Google Scholar 

  15. Gulick T, Cresci S, Caira T, Moore DD, Kelly DP. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci U S A 1994;91:11012–6.

    Article  PubMed  CAS  Google Scholar 

  16. Gupta RA, Wang D, Katkuri S, Wang H, Dey SK, DuBois RN. Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-delta accelerates intestinal adenoma growth. Nat Med 2004;10:245–7.

    Article  PubMed  CAS  Google Scholar 

  17. Harman FS, Nicol CJ, Marin HE, Ward JM, Gonzalez FJ, Peters JM. Peroxisome proliferator-activated receptor-delta attenuates colon carcinogenesis. Nat Med 2004;10:481–3.

    Article  PubMed  CAS  Google Scholar 

  18. Hashimoto K, Cohen RN, Yamada M, Markan KR, Monden T, Satoh T, et al. Cross-talk between thyroid hormone receptor and liver X receptor regulatory pathways is revealed in a thyroid hormone resistance mouse model. J Biol Chem 2006;281:295–302.

    Article  PubMed  CAS  Google Scholar 

  19. Hesselink MK, Schrauwen P. Towards comprehension of the physiological role of UCP3. Horm Metab Res 2005;37:550–4.

    Article  PubMed  CAS  Google Scholar 

  20. Holness MJ, Bulmer K, Smith ND, Sugden MC. Investigation of potential mechanisms regulating protein expression of hepatic pyruvate dehydrogenase kinase isoforms 2 and 4 by fatty acids and thyroid hormone. Biochem J 2003;369:687–95.

    Article  PubMed  CAS  Google Scholar 

  21. Hunter J, Kassam A, Winrow CJ, Rachubinski RA, Capone JP. Crosstalk between the thyroid hormone and peroxisome proliferator-activated receptors in regulating peroxisome proliferator-responsive genes. Mol Cell Endocrinol 1996;116:213–21.

    Article  PubMed  CAS  Google Scholar 

  22. Hyyti OM, Ning XH, Buroker NE, Ge M, Portman MA. Thyroid hormone controls myocardial substrate metabolism through nuclear receptor mediated and rapid post-transcriptional mechanisms. Am J Physiol Endocrinol Metab 2006;290(2):E372-9.

    Article  PubMed  CAS  Google Scholar 

  23. Hyyti OM, Ning XH, Ge M, Portman MA. Effect of the cardioselective delta337T thyroid receptor (TR)beta1 mutation on cardiac substrate fluxes and work efficiency. FASEB J 2006;20:741.

    Google Scholar 

  24. Iemitsu M, Miyauchi T, Maeda S, Tanabe T, Takanashi M, Matsuda M, et al. Exercise training improves cardiac function-related gene levels through thyroid hormone receptor signaling in aged rats. Am J Physiol, Heart Circ Physiol 2004;286:H1696–705.

    Article  CAS  Google Scholar 

  25. Kamiya Y, Zhang XY, Ying H, Kato Y, Willingham MC, Xu J, et al. Modulation by steroid receptor coactivator-1 of target-tissue responsiveness in resistance to thyroid hormone. Endocrinology 2003;144:4144–53.

    Article  PubMed  CAS  Google Scholar 

  26. Kaneshige M, Kaneshige K, Zhu X, Dace A, Garrett L, Carter TA, et al. Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci U S A 2000;97:13209–14.

    Article  PubMed  CAS  Google Scholar 

  27. Kern PA, Ranganathan G, Yukht A, Ong JM, Davis RC. Translational regulation of lipoprotein lipase by thyroid hormone is via a cytoplasmic repressor that interacts with the 3′ untranslated region. J Lipid Res 1996;37:2332–40.

    PubMed  CAS  Google Scholar 

  28. Kinugawa K, Jeong MY, Bristow MR, Long CS. Thyroid hormone induces cardiac myocyte hypertrophy in a thyroid hormone receptor alpha1-specific manner that requires TAK1 and p38 mitogen-activated protein kinase. Mol Endocrinol 2005;19:1618–28.

    Article  PubMed  CAS  Google Scholar 

  29. Kinugawa K, Long CS, Bristow MR. Expression of TR isoforms in failing human heart. J Clin Endocrinol Metab 2001;86:5089–90.

    Article  PubMed  CAS  Google Scholar 

  30. Kinugawa K, Minobe WA, Wood WM, Ridgway EC, Baxter JD, Ribeiro RC, et al. Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation 2001;103:1089–94.

    PubMed  CAS  Google Scholar 

  31. Kliewer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, Mangelsdorf DJ, et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A 1994;91:7355–9.

    Article  PubMed  CAS  Google Scholar 

  32. Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 1992;358:771–4.

    Article  PubMed  CAS  Google Scholar 

  33. Ladenson PW, Sherman SI, Baughman KL, Ray PE, Feldman AM. Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci U S A 1992;89:5251–5.

    Article  PubMed  CAS  Google Scholar 

  34. Long X, Boluyt MO, O’Neill L, Zheng JS, Wu G, Nitta YK, et al. Myocardial retinoid X receptor, thyroid hormone receptor, and myosin heavy chain gene expression in the rat during adult aging. J Gerontol A, Biol Sci Med Sci 1999;54:B23–7.

    CAS  Google Scholar 

  35. Mandard S, Muller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. Cell Mol Life Sci 2004;61:393–416.

    Article  PubMed  CAS  Google Scholar 

  36. Marcus SL, Miyata KS, Zhang B, Subramani S, Rachubinski RA, Capone JP. Diverse peroxisome proliferator-activated receptors bind to the peroxisome proliferator-responsive elements of the rat hydratase/dehydrogenase and fatty acyl-CoA oxidase genes but differentially induce expression. Proc Natl Acad Sci U S A 1993;90:5723–7.

    Article  PubMed  CAS  Google Scholar 

  37. Mascaro C, Acosta E, Ortiz JA, Marrero PF, Hegardt FG, Haro D. Control of human muscle-type carnitine palmitoyltransferase I gene transcription by peroxisome proliferator-activated receptor. J Biol Chem 1998;273:8560–3.

    Article  PubMed  CAS  Google Scholar 

  38. McClure TD, Young ME, Taegtmeyer H, Ning XH, Buroker NE, Lopez-Guisa J, et al. Thyroid hormone interacts with PPARalpha and PGC-1 during mitochondrial maturation in sheep heart. Am J Physiol, Heart Circ Physiol 2005;289:H2258–64.

    Article  CAS  Google Scholar 

  39. Miyamoto T, Kaneko A, Kakizawa T, Yajima H, Kamijo K, Sekine R, et al. Inhibition of peroxisome proliferator signaling pathways by thyroid hormone receptor. Competitive binding to the response element. J Biol Chem 1997;272:7752–8.

    Article  PubMed  CAS  Google Scholar 

  40. Mukherjee R, Jow L, Noonan D, McDonnell DP. Human and rat peroxisome proliferator activated receptors (PPARs) demonstrate similar tissue distribution but different responsiveness to PPAR activators. J Steroid Biochem Mol Biol 1994;51:157–66.

    Article  PubMed  CAS  Google Scholar 

  41. Mynatt RL, Park EA, Thorngate FE, Das HK, Cook GA. Changes in carnitine palmitoyltransferase-I mRNA abundance produced by hyperthyroidism and hypothyroidism parallel changes in activity. Biochem Biophys Res Commun 1994;201:932–7.

    Article  PubMed  CAS  Google Scholar 

  42. Nakagawa S, Kawashima Y, Hirose A, Kozuka H. Regulation of hepatic level of fatty-acid-binding protein by hormones and clofibric acid in the rat. Biochem J 1994;297 Pt 3:581–4.

    PubMed  CAS  Google Scholar 

  43. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 1998;395:137–43.

    Article  PubMed  CAS  Google Scholar 

  44. Patsouris D, Mandard S, Voshol PJ, Escher P, Tan NS, Havekes LM, et al. PPARalpha governs glycerol metabolism. J Clin Invest 2004;114:94–103.

    Article  PubMed  CAS  Google Scholar 

  45. Pazos-Moura C, Abel ED, Boers ME, Moura E, Hampton TG, Wang J, et al. Cardiac dysfunction caused by myocardium-specific expression of a mutant thyroid hormone receptor. Circ Res 2000;86:700–6.

    PubMed  CAS  Google Scholar 

  46. Poirier H, Braissant O, Niot I, Wahli W, Besnard P. 9-cis-retinoic acid enhances fatty acid-induced expression of the liver fatty acid-binding protein gene. FEBS Lett 1997;412:480–4.

    Article  PubMed  CAS  Google Scholar 

  47. Ripoli A, Pingitore A, Favilli B, Bottoni A, Turchi S, Osman NF, et al. Does subclinical hypothyroidism affect cardiac pump performance? Evidence from a magnetic resonance imaging study. J Am Coll Cardiol 2005;45:439–45.

    Article  PubMed  Google Scholar 

  48. Robinson-Rechavi M, Carpentier AS, Duffraisse M, Laudet V. How many nuclear hormone receptors are there in the human genome? Trends Genet 2001;17:554–6.

    Article  PubMed  CAS  Google Scholar 

  49. Rodondi N, Newman AB, Vittinghoff E, de Rekeneire N, Satterfield S, Harris TB, et al. Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch Intern Med 2005;165:2460–6.

    Article  PubMed  Google Scholar 

  50. Santalucia T, Moreno H, Palacin M, Yacoub MH, Brand NJ, Zorzano A. A novel functional co-operation between MyoD, MEF2 and TRalpha1 is sufficient for the induction of GLUT4 gene transcription. J Mol Biol 2001;314:195–204.

    Article  PubMed  CAS  Google Scholar 

  51. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 1996;15:5336–48.

    PubMed  CAS  Google Scholar 

  52. Smith CL, O’Malley BW. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 2004;25:45–71.

    Article  PubMed  CAS  Google Scholar 

  53. Sugden MC, Bulmer K, Gibbons GF, Holness MJ. Role of peroxisome proliferator-activated receptor-alpha in the mechanism underlying changes in renal pyruvate dehydrogenase kinase isoform 4 protein expression in starvation and after refeeding. Arch Biochem Biophys 2001;395:246–52.

    Article  PubMed  CAS  Google Scholar 

  54. Teshima Y, Saikawa T, Yonemochi H, Hidaka S, Yoshimatsu H, Sakata T. Alteration of heart uncoupling protein-2 mRNA regulated by sympathetic nerve and triiodothyronine during postnatal period in rats. Biochim Biophys Acta 1999;1448:409–15.

    Article  PubMed  CAS  Google Scholar 

  55. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 1994;8:1224–34.

    PubMed  CAS  Google Scholar 

  56. Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat WL, Green S. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5′ flanking sequence of the rat acyl CoA oxidase gene. EMBO J 1992;11:433–9.

    PubMed  CAS  Google Scholar 

  57. Umesono K, Murakami KK, Thompson CC, Evans RM. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 1991;65:1255–66.

    Article  PubMed  CAS  Google Scholar 

  58. Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 2003;113:159–70.

    Article  PubMed  CAS  Google Scholar 

  59. Way JM, Harrington WW, Brown KK, Gottschalk WK, Sundseth SS, Mansfield TA, et al. Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor gamma activation has coordinate effects on gene expression in multiple insulin-sensitive tissues. Endocrinology 2001;142:1269–77.

    Article  PubMed  CAS  Google Scholar 

  60. Williams GR. Cloning and characterization of two novel thyroid hormone receptor beta isoforms. Mol Cell Biol 2000;20:8329–42.

    Article  PubMed  CAS  Google Scholar 

  61. Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, et al. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 1999;3:397–403.

    Article  PubMed  CAS  Google Scholar 

  62. Young ME, Patil S, Ying J, Depre C, Ahuja HS, Shipley GL, et al. Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor (alpha) in the adult rodent heart. FASEB J 2001;15:833–45.

    Article  PubMed  CAS  Google Scholar 

  63. Zandbergen F, Mandard S, Escher P, Tan NS, Patsouris D, Jatkoe T, et al. The G0/G1 switch gene 2 is a novel PPAR target gene. Biochem J 2005;392:313–24.

    Article  PubMed  CAS  Google Scholar 

  64. Zhang B, Marcus SL, Miyata KS, Subramani S, Capone JP, Rachubinski RA. Characterization of protein-DNA interactions within the peroxisome proliferator-responsive element of the rat hydratase-dehydrogenase gene. J Biol Chem 1993;268:12939–45.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Portman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyyti, O.M., Portman, M.A. Molecular Mechanisms of Cross-talk between Thyroid Hormone and Peroxisome Proliferator Activated Receptors: Focus on the Heart. Cardiovasc Drugs Ther 20, 463–469 (2006). https://doi.org/10.1007/s10557-006-0643-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-006-0643-z

Key words

Navigation