Skip to main content
Log in

Determination of plastic limit load for intersecting shells

  • Published:
Chemical and Petroleum Engineering Aims and scope

Three directions of nonlinear analysis: limit, elastoplastic, and structurally nonlinear, are discussed. Works reporting theoretical and experimental data are reviewed. The current state of this subject is critically analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. * In the tests, the branch pipe was loaded in the transverse plane by transverse force rather than by moment, so the linear displacements may be overestimated in the calculation. For moment load, it is proper to select the turning angle of the end section of the pipe as the deformation (strain) parameter (as combined rather than as linear displacement).

References

  1. ASME, Boiler and Pressure Vessel Code, Secs. II and VIII, New York (2004).

  2. PD 5500:2006, Specification for Unfired Fusion Welded Pressure Vessels, British Standard Institution, London.

  3. EN 13445, Unfired Pressure Vessels, Pt. 3: Design, European Committee for Standardization (CEN), 2002.

  4. GOST R 52857.3−2007, Vessels and Apparatuses. Standards and Methods of Strength Calculations. Strengthening of Holes in Shells and End Plates (Bottoms) under Internal and External Pressures.

  5. V. N. Skopinskii, Stresses in Intersecting Shells [in Russian], FIZMATLIT, Moscow (2008), p. 400.

    Google Scholar 

  6. J. Mackerle, “Finite elements in the analysis of pressure vessels and piping – a bibliography (1976–1996),” Int. J. Press. Vessels and Piping, 69, No. 3, 279–339 (1996).

    Article  Google Scholar 

  7. J. Mackerle, “Finite elements in the analysis of pressure vessels and piping – an addendum (1996–1998),” Int. J. Press. Vessels and Piping, 76, No. 7, 461–485 (1999).

    Article  CAS  Google Scholar 

  8. J. Mackerle, “Finite elements in the analysis of pressure vessels and piping, an addendum: a bibliography (1998–2001),” Int. J. Press. Vessels and Piping, 79, No. 1, 1–26 (2002).

    Article  Google Scholar 

  9. J. Mackerle, “Finite elements in the analysis of pressure vessels and piping, an addendum: a bibliography (2001–2004),” Int. J. Press. Vessels and Piping, 82, No. 7, 571–592 (2005).

    Article  Google Scholar 

  10. F. Z. Xuan, P. N. Li, and S. T. Tu, “Plastic limit load of welded piping branch junctions under internal pressure,” Nucl. Engng. Des., 224, No. 1, 1–9 (2003).

    Article  CAS  Google Scholar 

  11. F. Z. Xuan, P. N. Li, and S. T. Tu, “Limit load analysis for the piping branch junctions under in-plane moment,” Int. J. Mech. Sciences, 48, No. 4, 460–467 (2006).

    Article  Google Scholar 

  12. F. Z. Xuan, P. N. Li, and S. T. Tu, “Evaluation of plastic limit load of piping branch junctions subjected to out-of-plane moment loadings,” J. Strain Analysis, 38, No. 5, 395–404 (2003).

    Article  Google Scholar 

  13. F. Z. Xuan, C. Liu, and P. N. Li, “An approximate solution for limit load of piping branch junctions with circumferential crack and finite element validation,” Nucl. Engng. Des., 235, No. 7, 727–736 (2005).

    Article  CAS  Google Scholar 

  14. F. Z. Xuan and P. N. Li, “Finite element-based limit load of welded piping branch junctions under combined loadings,” Nucl. Engng. Des., 231, No. 2, 141–150 (2004).

    Article  CAS  Google Scholar 

  15. Y. J. Kim, K. H. Leel, and C. Y. Park, “Limit loads for thin-walled piping branch junctions under combined pressure and in-plane bending,” J. Strain Analysis, 43, No. 2, 87–108 (2008).

    Article  CAS  Google Scholar 

  16. F. Z. Fanous and R. Seshadri, “Limit load analysis using the reference volume concept,” Int. J. Press. Vessels and Piping, 86, No. 3, 291–295 (2009).

    Article  CAS  Google Scholar 

  17. Z. F. Sang, L. P. Xue, Y. J. Lin, and G. E. O. Widera, “Limit analysis and burst test for large diameter intersections,” WRC Bull., No. 451, 31–52 (2000).

    Google Scholar 

  18. Z. F. Sang, L. P. Xue, Y. J. Lin, and G. E. O. Widera, “Limit and burst pressures for a cylindrical shell intersection with intermediate diameter ratio,” Int. J. Press. Vessels and Piping, 79, No. 7, 341–349 (2002).

    Article  Google Scholar 

  19. L. P. Xue, G. E. O. Widera, and Z. F. Sang, “Influence of pad reinforcement on the limit and burst pressures of a cylinder-cylinder intersection,” Trans. ASME, Int. J. Press. Vessel Technol., 125, No. 2, 182–187 (2003).

    Article  Google Scholar 

  20. Z. F. Sang, L. P. Xue, and G. E. O. Widera, “Plastic limit pressure of pressurized cylinders with hillside nozzle,” ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conf., July 23–27, 2006, Vol. 3: Design and Analysis, Vancouver, BC, Canada (2006), pp. 227–231.

  21. N. Li, Z. F. Sang, and G. E. O. Widera, “Study of plastic limit load on pressurized cylinders with lateral nozzle,” Trans. ASME, J. Press. Vessel Technol., 130, No. 4, 041210 (7 pages) (2008).

  22. L. P. Xue, C. Cheng, and G. E. O. Widera, “Static and dynamic burst analysis of cylindrical shells,” ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conf., July 23–27, Vol. 3: Design and Analysis, Vancouver, BC, Canada (2006), pp. 275–280.

  23. H. F. Wang, Z. F. Sang, L. P. Xue, and G. E. O. Widera, “Burst pressure of pressurized cylinders with the hillside nozzle,” Trans. ASME, J. Press. Vessel Technol., 131, No. 4, 041204 (6 pages) (2009).

    Article  Google Scholar 

  24. Z. F. Sang, Z. L. Wang, L. P. Xue, and G. E. O. Widera, “Plastic limit loads of nozzles in cylindrical vessels under out-of-plane moment loading,” Int. J. Press. Vessels and Piping, 82, No. 8, 638–648 (2005).

    Article  Google Scholar 

  25. Z. F. Sang, H. F. Wang, L. P. Xue, and G. E. O. Widera, “Plastic limit loads of pad reinforced cylindrical vessels under out-of-plane moment of nozzle,” Int. J. Press. Vessels and Piping, 128, No. 1, 49–56 (2006).

    Google Scholar 

  26. J. Fang, Q. H. Tang, and Z. F. Sang, “A comparative study of usefulness for pad reinforcement in cylindrical vessels under external load on nozzle,” Int. J. Press. Vessels and Piping, 86, No. 4, 273–279 (2009).

    Article  Google Scholar 

  27. Y. H. Liu, B. S. Zhang, M. D. Xue, and Y. Q. Liu, “Limit pressure and design criterion of cylindrical pressure vessels with nozzles,” Int. J. Press. Vessels and Piping, 81, No. 7, 619–624 (2004).

    Article  Google Scholar 

  28. D. G. Moffat, M. F. Hsieh, and M. Lynch, “An assessment of ASME III and CEN TC54 methods of determining plastic and limit loads for pressure system components,” J. Strain Analysis, 36, No. 3, 301–312 (2001).

    Article  Google Scholar 

  29. M. Muscat, D. Mackenzie, and R. Hamilton, “A work criterion for plastic collapse,” Int. J. Press. Vessels and Piping, 80, No. 1, 49–58 (2003).

    Article  Google Scholar 

  30. T. Naruse, D. Mackenzie, and D. Camilleri, “Gross plastic deformation of a hemispherical head with cylindrical nozzle: a comparative study,” ASME 2007 Pressure Vessels and Piping Conf., July 22–26, Vol. 3: Design and Analysis, San Antonio, Texas, USA (2007), pp. 431–438.

  31. A. T. Diamantoudis and T. Kermanidis, “Design by analysis versus design by formula of high strength steel pressure vessels: a comparative study,” Int. J. Press. Vessels and Piping, 82, No. 1, 43–50 (2005).

    Article  CAS  Google Scholar 

  32. M. A. Porter, S. R. Massey, and D. H. Martens, “Comparison of limit load, linear, and nonlinear FE analyses of stresses in a large nozzle-to-shell diameter ratio application,” ASME/JSME 2004 2007 Pressure Vessels and Piping Conf. (PVP2004-2598), July 25–29, San Diego, California, USA (2007), pp. 73–77.

  33. N. A. Berkov and V. N. Skopinskii, “Elastoplastic deformation of intersecting cylindrical shells,” Mashinostr. Inzh. Obraz., No. 4, 44–51 (2008).

    Google Scholar 

  34. N. A. Berkov and V. N. Skopinskii, “Determining limit load in intersecting spherical and cylindrical shells,” Mashinostr. Inzh. Obraz., No. 1, 47–53 (2010).

    Google Scholar 

  35. N. V. Vozhova and B. S. Volfson, “Assessment of static strength of nozzle junction of separator using three-dimensional finite element modeling,” Mashinostr. Inzh. Obraz., No. 4, 45–51 (2009).

    Google Scholar 

  36. J. C. Gerdeen, “A critical evaluation of plastic behavior data and a unified definition of plastic loads for pressure components,” WRC Bull., No. 254, 1–64 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimicheskoe i Neftegazovoe Mashinostroenie, No. 6, pp. 18–21, June, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skopinskii, V.N. Determination of plastic limit load for intersecting shells. Chem Petrol Eng 46, 341–346 (2010). https://doi.org/10.1007/s10556-010-9341-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10556-010-9341-6

Keywords

Navigation