Skip to main content

Advertisement

Log in

Targeting DNA damage repair pathways in pancreas cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Pancreas ductal adenocarcinoma (PDAC) is the third most common cause of cancer death in the USA. While other cancers with historically poor prognoses have benefited from new immunotherapies and targeted agents, the 5-year survival rate for PDAC patients has remained static. The accessibility to genomic testing has improved in recent years, and it is now clear that PDAC is a heterogenous disease, with a subset of patients harboring actionable mutations. There are several targeted therapies approved by the Food and Drug administration (FDA) in PDAC: EGFR inhibitor erlotinib (combined with gemcitabine) in unselected patients, TRK inhibitors larotrectinib and entrectinib for patients with NTRK fusion mutation, the PD-1 inhibitor pembrolizumab for mismatch repair-deficient patients, and the poly-ADP-ribose polymerase (PARP) inhibitor olaparib in patients with germline BRCA mutation as a maintenance therapy. DNA damage repair (DDR) is paramount to genomic integrity and cell survival. The defective repair of DNA damage is one of the hallmarks of cancer, and abnormalities in DDR pathways are closely linked with the development of malignancies and upregulation of these pathways linked with resistance to treatment. The prevalence of somatic and germline mutations in DDR pathways in metastatic PDAC is reported to be approximately 15–25%. Patients with DDR gene alterations benefit from a personalized approach to treatment. Recently, the POLO trial demonstrated a progression-free survival (PFS) benefit in metastatic PDAC patients with a germline BRCA1/2 mutation treated with maintenance olaparib following platinum-based induction chemotherapy. This was the first phase 3 randomized trial to establish a biomarker-driven approach in the treatment of PDAC and establishes a precedent for maintenance therapy in PDAC. The review herein aims to outline the current treatment landscape for PDAC patients with DDR gene-mutated tumors, highlight novel therapeutic approaches focused on surmounting tumor resistance, and explore new strategies which may lead to an expansion in the number of patients who benefit from these targeted treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7–33. https://doi.org/10.3322/caac.21654

  2. Conroy, T., Desseigne, F., Ychou, M., Bouché, O., Guimbaud, R., Bécouarn, Y., et al. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New England Journal of Medicine, 364(19), 1817–1825. https://doi.org/10.1056/NEJMoa1011923

    Article  CAS  Google Scholar 

  3. Von Hoff, D. D., Ervin, T., Arena, F. P., Chiorean, E. G., Infante, J., Moore, M., et al. (2013). Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. New England Journal of Medicine, 369(18), 1691–1703. https://doi.org/10.1056/NEJMoa1304369

    Article  CAS  Google Scholar 

  4. Prawira, A., Pugh, T. J., Stockley, T. L., & Siu, L. L. (2017). Data resources for the identification and interpretation of actionable mutations by clinicians. Annals of Oncology, 28(5), 946–957. https://doi.org/10.1093/annonc/mdx023

    Article  CAS  PubMed  Google Scholar 

  5. Pishvaian, M. J., Blais, E. M., Brody, J. R., Lyons, E., DeArbeloa, P., Hendifar, A., et al. (2020). Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: A retrospective analysis of the Know Your Tumor registry trial. The Lancet Oncology, 21(4), 508–518. https://doi.org/10.1016/S1470-2045(20)30074-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singhi, A. D., George, B., Greenbowe, J. R., Chung, J., Suh, J., Maitra, A., et al. (2019). Real-time targeted genome profile analysis of pancreatic ductal adenocarcinomas identifies genetic alterations that might be targeted with existing drugs or used as biomarkers. Gastroenterology, 156(8), 2242-2253.e2244. https://doi.org/10.1053/j.gastro.2019.02.037

    Article  CAS  PubMed  Google Scholar 

  7. Heestand, G. M., & Kurzrock, R. (2015). Molecular landscape of pancreatic cancer: Implications for current clinical trials. Oncotarget, 6(7), 4553–4561. https://doi.org/10.18632/oncotarget.2972

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lowery, M. A., Wong, W., Jordan, E. J., Lee, J. W., Kemel, Y., Vijai, J., et al. (2018). Prospective evaluation of germline alterations in patients with exocrine pancreatic neoplasms. Journal of the National Cancer Institute, 110(10), 1067–1074. https://doi.org/10.1093/jnci/djy024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Salo-Mullen, E. E., O’Reilly, E. M., Kelsen, D. P., Ashraf, A. M., Lowery, M. A., Yu, K. H., et al. (2015). Identification of germline genetic mutations in patients with pancreatic cancer. Cancer, 121(24), 4382–4388. https://doi.org/10.1002/cncr.29664

    Article  CAS  PubMed  Google Scholar 

  10. Das, S., & Cardin, D. (2020). Targeting DNA damage repair pathways in pancreatic adenocarcinoma. Current Treatment Options in Oncology, 21(8), 62. https://doi.org/10.1007/s11864-020-00763-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dreyer, S., Paulus-Hock, V., Upstill-Goddard, R., Lampraki, E., Jamieson, N., Cooke, S., et al. (2019). Defining DNA damage repair deficiency and replication stress in pancreatic cancer. Journal of Clinical Oncology, 37(4_suppl), 285–285. https://doi.org/10.1200/JCO.2019.37.4_suppl.285

  12. Heeke, A. L., Pishvaian, M. J., Lynce, F., Xiu, J., Brody, J. R., Chen, W.-J., et al. (2018). Prevalence of homologous recombination–related gene mutations across multiple cancer types. JCO Precision Oncology(2), 1–13. https://doi.org/10.1200/PO.17.00286

  13. Lindahl, T., & Wood, R. D. (1999). Quality control by DNA repair. Science, 286(5446), 1897–1905. https://doi.org/10.1126/science.286.5446.1897

    Article  CAS  PubMed  Google Scholar 

  14. Curtin, N. J. (2012). DNA repair dysregulation from cancer driver to therapeutic target. Nature Reviews Cancer, 12(12), 801–817. https://doi.org/10.1038/nrc3399

    Article  CAS  PubMed  Google Scholar 

  15. Chae, Y. K., Anker, J. F., Carneiro, B. A., Chandra, S., Kaplan, J., Kalyan, A., et al. (2016). Genomic landscape of DNA repair genes in cancer. Oncotarget, 7(17), 23312–23321. https://doi.org/10.18632/oncotarget.8196

    Article  PubMed  PubMed Central  Google Scholar 

  16. Umar, A., Boland, C. R., Terdiman, J. P., Syngal, S., de la Chapelle, A., Rüschoff, J., et al. (2004). Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. Journal of the National Cancer Institute, 96(4), 261–268. https://doi.org/10.1093/jnci/djh034

    Article  CAS  PubMed  Google Scholar 

  17. Le, D. T., Durham, J. N., Smith, K. N., Wang, H., Bartlett, B. R., Aulakh, L. K., et al. (2017). Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science, 357(6349), 409. https://doi.org/10.1126/science.aan6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marabelle, A., Le, D. T., Ascierto, P. A., Di Giacomo, A. M., De Jesus-Acosta, A., Delord, J. P., et al. (2020). Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: Results from the phase II KEYNOTE-158 study. Journal of Clinical Oncology, 38(1), 1–10. https://doi.org/10.1200/jco.19.02105

    Article  CAS  PubMed  Google Scholar 

  19. Beatty, G. L., Eghbali, S., & Kim, R. (2017). Deploying immunotherapy in pancreatic cancer: Defining mechanisms of response and resistance. American Society of Clinical Oncology Educational Book(37), 267–278. https://doi.org/10.1200/EDBK_175232

  20. Balachandran, V. P., Beatty, G. L., & Dougan, S. K. (2019). Broadening the impact of immunotherapy to pancreatic cancer: Challenges and opportunities. Gastroenterology, 156(7), 2056–2072. https://doi.org/10.1053/j.gastro.2018.12.038

    Article  CAS  PubMed  Google Scholar 

  21. Sarantis, P., Koustas, E., Papadimitropoulou, A., Papavassiliou, A. G., & Karamouzis, M. V. (2020). Pancreatic ductal adenocarcinoma: Treatment hurdles, tumor microenvironment and immunotherapy. World journal of gastrointestinal oncology, 12(2), 173–181. https://doi.org/10.4251/wjgo.v12.i2.173

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sahin, I. H., Askan, G., Hu, Z. I., & O’Reilly, E. M. (2017). Immunotherapy in pancreatic ductal adenocarcinoma: An emerging entity? Annals of Oncology, 28(12), 2950–2961. https://doi.org/10.1093/annonc/mdx503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yimit, A., Adebali, O., Sancar, A., & Jiang, Y. (2019). Differential damage and repair of DNA-adducts induced by anti-cancer drug cisplatin across mouse organs. Nature Communications, 10(1), 309. https://doi.org/10.1038/s41467-019-08290-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Plo, I., Liao, Z. Y., Barceló, J. M., Kohlhagen, G., Caldecott, K. W., Weinfeld, M., et al. (2003). Association of XRCC1 and tyrosyl DNA phosphodiesterase (Tdp1) for the repair of topoisomerase I-mediated DNA lesions. DNA Repair (Amst), 2(10), 1087–1100. https://doi.org/10.1016/s1568-7864(03)00116-2

    Article  CAS  Google Scholar 

  25. Hoeijmakers, J. H. J. (2001). Genome maintenance mechanisms for preventing cancer. Nature, 411(6835), 366–374. https://doi.org/10.1038/35077232

    Article  CAS  PubMed  Google Scholar 

  26. Sishc, B. J., & Davis, A. J. (2017). The role of the core non-homologous end joining factors in carcinogenesis and cancer. Cancers, 9(7), 81. https://doi.org/10.3390/cancers9070081

    Article  CAS  PubMed Central  Google Scholar 

  27. Chapman, J. R., Taylor, M. R. G., & Boulton, S. J. (2012). Playing the end game: DNA double-strand break repair pathway choice. Molecular Cell, 47(4), 497–510. https://doi.org/10.1016/j.molcel.2012.07.029

    Article  CAS  PubMed  Google Scholar 

  28. Perkhofer, L., Gout, J., Roger, E., Kude de Almeida, F., Baptista Simões, C., Wiesmüller, L., et al. (2021). DNA damage repair as a target in pancreatic cancer: State-of-the-art and future perspectives. Gut, 70(3), 606–617. https://doi.org/10.1136/gutjnl-2019-319984

    Article  CAS  PubMed  Google Scholar 

  29. Brown, J. S., O’Carrigan, B., Jackson, S. P., & Yap, T. A. (2017). Targeting DNA repair in cancer: Beyond PARP inhibitors. Cancer Discovery, 7(1), 20–37. https://doi.org/10.1158/2159-8290.CD-16-0860

    Article  CAS  PubMed  Google Scholar 

  30. Li, Z., Pearlman, A. H., & Hsieh, P. (2016). DNA mismatch repair and the DNA damage response. DNA Repair, 38, 94–101. https://doi.org/10.1016/j.dnarep.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  31. Cimprich, K. A., & Cortez, D. (2008). ATR: An essential regulator of genome integrity. Nature Reviews Molecular Cell Biology, 9(8), 616–627. https://doi.org/10.1038/nrm2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krejci, L., Altmannova, V., Spirek, M., & Zhao, X. (2012). Homologous recombination and its regulation. Nucleic Acids Research, 40(13), 5795–5818. https://doi.org/10.1093/nar/gks270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dietlein, F., Thelen, L., & Reinhardt, H. C. (2014). Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches. Trends in Genetics, 30(8), 326–339. https://doi.org/10.1016/j.tig.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  34. Knijnenburg, T. A., Wang, L., Zimmermann, M. T., Chambwe, N., Gao, G. F., Cherniack, A. D., et al. (2018). Genomic and molecular landscape of DNA damage repair deficiency across The Cancer Genome Atlas. Cell Reports, 23(1), 239-254.e236. https://doi.org/10.1016/j.celrep.2018.03.076

    Article  CAS  PubMed  Google Scholar 

  35. Shindo, K., Yu, J., Suenaga, M., Fesharakizadeh, S., Cho, C., Macgregor-Das, A., et al. (2017). Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. Journal of clinical oncology : Official journal of the American Society of Clinical Oncology, 35(30), 3382–3390. https://doi.org/10.1200/JCO.2017.72.3502

    Article  CAS  Google Scholar 

  36. Margaret, A. T. (2019). NCCN guidelines updates: Pancreatic cancer. Journal of the National Comprehensive Cancer Network J Natl Compr Canc Netw, 17(5.5), 603–605. https://doi.org/10.6004/jnccn.2019.5007

  37. Goggins, M., Schutte, M., Lu, J., Moskaluk, C. A., Weinstein, C. L., Petersen, G. M., et al. (1996). Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Research, 56(23), 5360–5364.

    CAS  PubMed  Google Scholar 

  38. Roberts, N. J., Norris, A. L., Petersen, G. M., Bondy, M. L., Brand, R., Gallinger, S., et al. (2016). Whole genome sequencing defines the genetic heterogeneity of familial pancreatic cancer. Cancer Discovery, 6(2), 166–175. https://doi.org/10.1158/2159-8290.CD-15-0402

    Article  CAS  PubMed  Google Scholar 

  39. Waddell, N., Pajic, M., Patch, A. M., Chang, D. K., Kassahn, K. S., Bailey, P., et al. (2015). Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 518(7540), 495–501. https://doi.org/10.1038/nature14169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knudsen, E. S., O’Reilly, E. M., Brody, J. R., & Witkiewicz, A. K. (2016). Genetic diversity of pancreatic ductal adenocarcinoma and opportunities for precision medicine. Gastroenterology, 150(1), 48–63. https://doi.org/10.1053/j.gastro.2015.08.056

    Article  PubMed  Google Scholar 

  41. Lucas, A. L., Shakya, R., Lipsyc, M. D., Mitchel, E. B., Kumar, S., Hwang, C., et al. (2013). High prevalence of BRCA1 and BRCA2 germline mutations with loss of heterozygosity in a series of resected pancreatic adenocarcinoma and other neoplastic lesions. Clinical cancer research : An official journal of the American Association for Cancer Research, 19(13), 3396–3403. https://doi.org/10.1158/1078-0432.CCR-12-3020

    Article  CAS  Google Scholar 

  42. Krantz, B. A., Yu, K. H., & O’Reilly, E. M. (2017). Pancreas adenocarcinoma: Novel therapeutics. Chinese Clinical Oncology, 6(3), 30. https://doi.org/10.21037/cco.2017.06.14

    Article  PubMed  Google Scholar 

  43. Lee, K., Yoo, C., Kim, K. P., Park, K. J., Chang, H. M., Kim, T. W., et al. (2018). Germline BRCA mutations in Asian patients with pancreatic adenocarcinoma: A prospective study evaluating risk category for genetic testing. Investigational New Drugs, 36(1), 163–169. https://doi.org/10.1007/s10637-017-0497-1

    Article  CAS  PubMed  Google Scholar 

  44. Yadav, S., Kasi, P. M., Bamlet, W. R., Ho, T. P., Polley, E. C., Hu, C., et al. (2020). Effect of germline mutations in homologous recombination repair genes on overall survival of patients with pancreatic adenocarcinoma. Clinical Cancer Research, 26(24), 6505. https://doi.org/10.1158/1078-0432.CCR-20-1788

    Article  CAS  PubMed  Google Scholar 

  45. Ozçelik, H., Schmocker, B., Di Nicola, N., Shi, X. H., Langer, B., Moore, M., et al. (1997). Germline BRCA2 6174delT mutations in Ashkenazi Jewish pancreatic cancer patients. Nature Genetics, 16(1), 17–18. https://doi.org/10.1038/ng0597-17

    Article  PubMed  Google Scholar 

  46. Lal, G., Liu, G., Schmocker, B., Kaurah, P., Ozcelik, H., Narod, S. A., et al. (2000). Inherited predisposition to pancreatic adenocarcinoma: Role of family history and germ-line p16, BRCA1, and BRCA2 mutations. Cancer Research, 60(2), 409–416.

    CAS  PubMed  Google Scholar 

  47. Ferrone, C. R., Levine, D. A., Tang, L. H., Allen, P. J., Jarnagin, W., Brennan, M. F., et al. (2009). BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma. Journal of Clinical Oncology, 27(3), 433–438. https://doi.org/10.1200/jco.2008.18.5546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stadler, Z. K., Salo-Mullen, E., Patil, S. M., Pietanza, M. C., Vijai, J., Saloustros, E., et al. (2012). Prevalence of BRCA1 and BRCA2 mutations in Ashkenazi Jewish families with breast and pancreatic cancer. Cancer, 118(2), 493–499. https://doi.org/10.1002/cncr.26191

    Article  CAS  PubMed  Google Scholar 

  49. Chaffee, K. G., Oberg, A. L., McWilliams, R. R., Majithia, N., Allen, B. A., Kidd, J., et al. (2018). Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genetics in Medicine, 20(1), 119–127. https://doi.org/10.1038/gim.2017.85

    Article  CAS  PubMed  Google Scholar 

  50. Grant, R. C., Selander, I., Connor, A. A., Selvarajah, S., Borgida, A., Briollais, L., et al. (2015). Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology, 148(3), 556–564. https://doi.org/10.1053/j.gastro.2014.11.042

    Article  CAS  PubMed  Google Scholar 

  51. Hu, Z. I., Shia, J., Stadler, Z. K., Varghese, A. M., Capanu, M., Salo-Mullen, E., et al. (2018). Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: Challenges and recommendations. Clinical Cancer Research, 24(6), 1326. https://doi.org/10.1158/1078-0432.CCR-17-3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Golan, T., Kindler, H. L., Park, J. O., Reni, M., Macarulla, T., Hammel, P., et al. (2020). Geographic and ethnic heterogeneity of germline BRCA1 or BRCA2 mutation prevalence among patients with metastatic pancreatic cancer screened for entry into the POLO trial. Journal of Clinical Oncology, 38(13), 1442–1454. https://doi.org/10.1200/JCO.19.01890

    Article  CAS  PubMed  Google Scholar 

  53. Golan, T., & Brody, J. R. (2020). Targeting homologous recombination addicted tumors: Challenges and opportunities. Annals of Pancreatic Cancer, 3, 6.

    Article  Google Scholar 

  54. Lord, C. J., & Ashworth, A. (2016). BRCAness revisited. Nature Reviews Cancer, 16(2), 110–120. https://doi.org/10.1038/nrc.2015.21

    Article  CAS  PubMed  Google Scholar 

  55. Kondo, T., Kanai, M., Kou, T., Sakuma, T., Mochizuki, H., Kamada, M., et al. (2018). Association between homologous recombination repair gene mutations and response to oxaliplatin in pancreatic cancer. Oncotarget, 9(28), 19817–19825. https://doi.org/10.18632/oncotarget.24865

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gulhan, D. C., Lee, J. J., Melloni, G. E. M., Cortés-Ciriano, I., & Park, P. J. (2019). Detecting the mutational signature of homologous recombination deficiency in clinical samples. Nature Genetics, 51(5), 912–919. https://doi.org/10.1038/s41588-019-0390-2

    Article  CAS  PubMed  Google Scholar 

  57. Davies, H., Glodzik, D., Morganella, S., Yates, L. R., Staaf, J., Zou, X., et al. (2017). HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nature Medicine, 23(4), 517–525. https://doi.org/10.1038/nm.4292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Telli, M. L., Timms, K. M., Reid, J., Hennessy, B., Mills, G. B., Jensen, K. C., et al. (2016). Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clinical Cancer Research, 22(15), 3764–3773. https://doi.org/10.1158/1078-0432.Ccr-15-2477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Takaya, H., Nakai, H., Takamatsu, S., Mandai, M., & Matsumura, N. (2020). Homologous recombination deficiency status-based classification of high-grade serous ovarian carcinoma. Scientific Reports, 10(1), 2757. https://doi.org/10.1038/s41598-020-59671-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Abkevich, V., Timms, K. M., Hennessy, B. T., Potter, J., Carey, M. S., Meyer, L. A., et al. (2012). Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. British journal of cancer, 107(10), 1776–1782. https://doi.org/10.1038/bjc.2012.451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Popova, T., Manié, E., Rieunier, G., Caux-Moncoutier, V., Tirapo, C., Dubois, T., et al. (2012). Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Research, 72(21), 5454. https://doi.org/10.1158/0008-5472.CAN-12-1470

    Article  CAS  PubMed  Google Scholar 

  62. Birkbak, N. J., Wang, Z. C., Kim, J.-Y., Eklund, A. C., Li, Q., Tian, R., et al. (2012). Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discovery, 2(4), 366. https://doi.org/10.1158/2159-8290.CD-11-0206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Golan, T., O’Kane, G. M., Denroche, R. E., Raitses-Gurevich, M., Grant, R. C., Holter, S., et al. (2021). Genomic features and classification of homologous recombination deficient pancreatic ductal adenocarcinoma. Gastroenterology. https://doi.org/10.1053/j.gastro.2021.01.220

    Article  PubMed  Google Scholar 

  64. O’Kane, G. M., Denroche, R., Picardo, S. L., Zhang, A., Holter, S., Grant, R. C., et al. (2020). Homologous recombination deficiency (HRD) scoring in pancreatic ductal adenocarcinoma (PDAC) and response to chemotherapy. Journal of Clinical Oncology, 38(4_suppl), 741–741. https://doi.org/10.1200/JCO.2020.38.4_suppl.741

  65. Park, W., Chen, J., Chou, J. F., Varghese, A. M., Yu, K. H., Wong, W., et al. (2020). Genomic methods identify homologous recombination deficiency in pancreas adenocarcinoma and optimize treatment selection. Clinical cancer research : An official journal of the American Association for Cancer Research, 26(13), 3239–3247. https://doi.org/10.1158/1078-0432.CCR-20-0418

    Article  CAS  Google Scholar 

  66. Golan, T., Hammel, P., Reni, M., Van Cutsem, E., Macarulla, T., Hall, M. J., et al. (2021). Overall survival from the phase 3 POLO trial: Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. Journal of Clinical Oncology, 39(3_suppl), 378–378. https://doi.org/10.1200/JCO.2021.39.3_suppl.378

  67. Yurgelun, M. B., Chittenden, A. B., Morales-Oyarvide, V., Rubinson, D. A., Dunne, R. F., Kozak, M. M., et al. (2019). Germline cancer susceptibility gene variants, somatic second hits, and survival outcomes in patients with resected pancreatic cancer. Genetics in Medicine, 21(1), 213–223. https://doi.org/10.1038/s41436-018-0009-5

    Article  CAS  PubMed  Google Scholar 

  68. Javle, M., Shacham-Shmueli, E., Xiao, L., Varadhachary, G., Halpern, N., Fogelman, D., et al. (2021). Olaparib monotherapy for previously treated pancreatic cancer with DNA damage repair genetic alterations other than germline BRCA variants: Findings from 2 phase 2 nonrandomized clinical trials. JAMA oncology. https://doi.org/10.1001/jamaoncol.2021.0006

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: Molecular mechanisms of action. European Journal of Pharmacology, 740, 364–378. https://doi.org/10.1016/j.ejphar.2014.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Farmer, H., McCabe, N., Lord, C. J., Tutt, A. N., Johnson, D. A., Richardson, T. B., et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 434(7035), 917–921. https://doi.org/10.1038/nature03445

    Article  CAS  PubMed  Google Scholar 

  71. Pokataev, I., Fedyanin, M., Polyanskaya, E., Popova, A., Agafonova, J., Menshikova, S., et al. (2020). Efficacy of platinum-based chemotherapy and prognosis of patients with pancreatic cancer with homologous recombination deficiency: Comparative analysis of published clinical studies. ESMO Open, 5(1), e000578. https://doi.org/10.1136/esmoopen-2019-000578

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lowery, M. A., Kelsen, D. P., Stadler, Z. K., Yu, K. H., Janjigian, Y. Y., Ludwig, E., et al. (2011). An emerging entity: Pancreatic adenocarcinoma associated with a known BRCA mutation: Clinical descriptors, treatment implications, and future directions. The Oncologist, 16(10), 1397–1402. https://doi.org/10.1634/theoncologist.2011-0185

    Article  PubMed  PubMed Central  Google Scholar 

  73. Golan, T., Kanji, Z. S., Epelbaum, R., Devaud, N., Dagan, E., Holter, S., et al. (2014). Overall survival and clinical characteristics of pancreatic cancer in BRCA mutation carriers. British journal of cancer, 111(6), 1132–1138. https://doi.org/10.1038/bjc.2014.418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lowery, M. A., Jordan, E. J., Basturk, O., Ptashkin, R. N., Zehir, A., Berger, M. F., et al. (2017). Real-time genomic profiling of pancreatic ductal adenocarcinoma: Potential actionability and correlation with clinical phenotype. Clinical Cancer Research, 23(20), 6094–6100. https://doi.org/10.1158/1078-0432.Ccr-17-0899

    Article  CAS  PubMed  Google Scholar 

  75. Mateo, J., Lord, C. J., Serra, V., Tutt, A., Balmaña, J., Castroviejo-Bermejo, M., et al. (2019). A decade of clinical development of PARP inhibitors in perspective. Annals of Oncology, 30(9), 1437–1447. https://doi.org/10.1093/annonc/mdz192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ashworth, A. (2008). A synthetic lethal therapeutic approach: Poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. Journal of Clinical Oncology, 26(22), 3785–3790. https://doi.org/10.1200/JCO.2008.16.0812

    Article  CAS  PubMed  Google Scholar 

  77. Moore, K., Colombo, N., Scambia, G., Kim, B.-G., Oaknin, A., Friedlander, M., et al. (2018). Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. New England Journal of Medicine, 379(26), 2495–2505. https://doi.org/10.1056/NEJMoa1810858

    Article  CAS  Google Scholar 

  78. Golan, T., Hammel, P., Reni, M., Van Cutsem, E., Macarulla, T., Hall, M. J., et al. (2019). Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. New England Journal of Medicine, 381(4), 317–327. https://doi.org/10.1056/NEJMoa1903387

    Article  CAS  Google Scholar 

  79. Hall, M. J., Golan, T., Hammel, P., Reni, M., Van Cutsem, E., Macarulla, T., et al. (2020). Pancreatic cancer (PaC)-specific health-related quality of life (HRQoL) with maintenance olaparib (O) in patients (pts) with metastatic (m) PaC and a germline BRCA mutation (gBRCAm): Phase III POLO trial. Journal of Clinical Oncology, 38(4_suppl), 648–648. https://doi.org/10.1200/JCO.2020.38.4_suppl.648

  80. Mirza, M. R., Monk, B. J., Herrstedt, J., Oza, A. M., Mahner, S., Redondo, A., et al. (2016). Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. New England Journal of Medicine, 375(22), 2154–2164. https://doi.org/10.1056/NEJMoa1611310

    Article  CAS  Google Scholar 

  81. Binder, K. A. R., Mick, R., Hara, M., Teitelbaum, U., Karasic, T., Schneider, C., et al. (2019). Abstract CT234: A Phase II, single arm study of maintenance rucaparib in patients with platinum-sensitive advanced pancreatic cancer and a pathogenic germline or somatic mutation in <em>BRCA1, BRCA2</em> or <em>PALB2</em&gt. Cancer Research, 79(13 Supplement), CT234. https://doi.org/10.1158/1538-7445.AM2019-CT234

  82. Kaufman, B., Shapira-Frommer, R., Schmutzler, R. K., Audeh, M. W., Friedlander, M., Balmaña, J., et al. (2015). Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. Journal of Clinical Oncology, 33(3), 244–250. https://doi.org/10.1200/jco.2014.56.2728

    Article  CAS  PubMed  Google Scholar 

  83. Shroff, R. T., Hendifar, A., McWilliams, R. R., Geva, R., Epelbaum, R., Rolfe, L., et al. (2018). Rucaparib monotherapy in patients with pancreatic cancer and a known deleterious BRCA mutation. JCO Precision Oncology, 2018.https://doi.org/10.1200/po.17.00316

  84. Lowery, M. A., Kelsen, D. P., Capanu, M., Smith, S. C., Lee, J. W., Stadler, Z. K., et al. (2018). Phase II trial of veliparib in patients with previously treated BRCA-mutated pancreas ductal adenocarcinoma. European Journal of Cancer, 89, 19–26. https://doi.org/10.1016/j.ejca.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  85. O’Reilly, E. M., Lowery, M. A., Segal, M. F., Smith, S. C., Moore, M. J., Kindler, H. L., et al. (2014). Phase IB trial of cisplatin (C), gemcitabine (G), and veliparib (V) in patients with known or potential BRCA or PALB2-mutated pancreas adenocarcinoma (PC). Journal of Clinical Oncology, 32(15_suppl), 4023–4023. https://doi.org/10.1200/jco.2014.32.15_suppl.4023

  86. Yarchoan, M., Myzak, M. C., Johnson, B. A., 3rd., De Jesus-Acosta, A., Le, D. T., Jaffee, E. M., et al. (2017). Olaparib in combination with irinotecan, cisplatin, and mitomycin C in patients with advanced pancreatic cancer. Oncotarget, 8(27), 44073–44081. https://doi.org/10.18632/oncotarget.17237

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chiorean, E. G., Guthrie, K. A., Philip, P. A., Swisher, E. M., Jalikis, F., Pishvaian, M. J., et al. (2019). Randomized phase II study of second-line modified FOLFIRI with PARP inhibitor ABT-888 (Veliparib) (NSC-737664) versus FOLFIRI in metastatic pancreatic cancer (mPC): SWOG S1513. Journal of Clinical Oncology, 37(15_suppl), 4014–4014. https://doi.org/10.1200/JCO.2019.37.15_suppl.4014

  88. Moffat, G. T., & O’Reilly, E. M. (2020). The role of PARP inhibitors in germline BRCA-associated pancreatic ductal adenocarcinoma. Clinical Advances in Hematology & Oncology, 18(3), 168–179.

    Google Scholar 

  89. Pishvaian, M. J., Wang, H., He, A. R., Hwang, J. J., Smaglo, B. G., Kim, S. S., et al. (2020). A phase I/II study of veliparib (ABT-888) in combination with 5-fluorouracil and oxaliplatin in patients with metastatic pancreatic cancer. Clinical Cancer Research, 26(19), 5092. https://doi.org/10.1158/1078-0432.CCR-20-1301

    Article  CAS  PubMed  Google Scholar 

  90. O’Reilly, E. M., Lee, J. W., Zalupski, M., Capanu, M., Park, J., Golan, T., et al. (2020). Randomized, multicenter, phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adenocarcinoma and a germline BRCA/PALB2 mutation. Journal of Clinical Oncology, 38(13), 1378–1388. https://doi.org/10.1200/jco.19.02931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tuli, R., Shiao, S. L., Nissen, N., Tighiouart, M., Kim, S., Osipov, A., et al. (2019). A phase 1 study of veliparib, a PARP-1/2 inhibitor, with gemcitabine and radiotherapy in locally advanced pancreatic cancer. eBioMedicine, 40, 375–381. https://doi.org/10.1016/j.ebiom.2018.12.060

    Article  PubMed  PubMed Central  Google Scholar 

  92. Li, H., Liu, Z.-Y., Wu, N., Chen, Y.-C., Cheng, Q., & Wang, J. (2020). PARP inhibitor resistance: The underlying mechanisms and clinical implications. Molecular Cancer, 19(1), 107–107. https://doi.org/10.1186/s12943-020-01227-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. D’Andrea, A. D. (2018). Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair, 71, 172–176. https://doi.org/10.1016/j.dnarep.2018.08.021

    Article  CAS  PubMed  Google Scholar 

  94. Gupta, R., Somyajit, K., Narita, T., Maskey, E., Stanlie, A., Kremer, M., et al. (2018). DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity. Cell, 173(4), 972-988.e923. https://doi.org/10.1016/j.cell.2018.03.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kaplan, A. R., Gueble, S. E., Liu, Y., Oeck, S., Kim, H., Yun, Z., et al. (2019). Cediranib suppresses homology-directed DNA repair through down-regulation of BRCA1/2 and RAD51. Sci Transl Med, 11(492). https://doi.org/10.1126/scitranslmed.aav4508

  96. Bindra, R. S., Gibson, S. L., Meng, A., Westermark, U., Jasin, M., Pierce, A. J., et al. (2005). Hypoxia-induced down-regulation of <em>BRCA1</em> expression by E2Fs. Cancer Research, 65(24), 11597. https://doi.org/10.1158/0008-5472.CAN-05-2119

    Article  CAS  PubMed  Google Scholar 

  97. Hegan, D. C., Lu, Y., Stachelek, G. C., Crosby, M. E., Bindra, R. S., & Glazer, P. M. (2010). Inhibition of poly(ADP-ribose) polymerase down-regulates BRCA1 and RAD51 in a pathway mediated by E2F4 and p130. Proceedings of the National Academy of Sciences, 107(5), 2201. https://doi.org/10.1073/pnas.0904783107

    Article  Google Scholar 

  98. Ray-Coquard, I. L., Pautier, P., Pignata, S., Pérol, D., González-Martín, A., Sevelda, P., et al. (2019). LBA2_PR - Phase III PAOLA-1/ENGOT-ov25 trial: Olaparib plus bevacizumab (bev) as maintenance therapy in patients (pts) with newly diagnosed, advanced ovarian cancer (OC) treated with platinum-based chemotherapy (PCh) plus bev. Annals of Oncology, 30, v894–v895. https://doi.org/10.1093/annonc/mdz394.053

    Article  Google Scholar 

  99. Lheureux, S., Oaknin, A., Garg, S., Bruce, J. P., Madariaga, A., Dhani, N. C., et al. (2020). EVOLVE: A multicenter open-label single-arm clinical and translational phase II trial of cediranib plus olaparib for ovarian cancer after PARP inhibition progression. Clinical Cancer Research, 26(16), 4206. https://doi.org/10.1158/1078-0432.CCR-19-4121

    Article  CAS  PubMed  Google Scholar 

  100. Liu, J. F., Brady, M. F., Matulonis, U. A., Miller, A., Kohn, E. C., Swisher, E. M., et al. (2020). A phase III study comparing single-agent olaparib or the combination of cediranib and olaparib to standard platinum-based chemotherapy in recurrent platinum-sensitive ovarian cancer. Journal of Clinical Oncology, 38(15_suppl), 6003–6003. https://doi.org/10.1200/JCO.2020.38.15_suppl.6003

  101. Vénéreau, E., Ceriotti, C., & Bianchi, M. E. (2015). DAMPs from cell death to new life. Frontiers in Immunology, 6, 422–422. https://doi.org/10.3389/fimmu.2015.00422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gay, C. M., & Byers, L. A. (2019). PARP inhibition combined with immune checkpoint blockade in SCLC: Oasis in an immune desert or mirage? Journal of Thoracic Oncology, 14(8), 1323–1326. https://doi.org/10.1016/j.jtho.2019.05.004

    Article  PubMed  Google Scholar 

  103. Vikas, P., Borcherding, N., Chennamadhavuni, A., & Garje, R. (2020). Therapeutic potential of combining PARP inhibitor and immunotherapy in solid tumors. Frontiers in Oncology, 10, 570–570. https://doi.org/10.3389/fonc.2020.00570

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ho, S. S., Zhang, W. Y., Tan, N. Y., Khatoo, M., Suter, M. A., Tripathi, S., et al. (2016). The DNA structure-specific endonuclease MUS81 mediates DNA sensor STING-dependent host rejection of prostate cancer cells. Immunity, 44(5), 1177–1189. https://doi.org/10.1016/j.immuni.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  105. Mouw, K. W., Goldberg, M. S., Konstantinopoulos, P. A., & D’Andrea, A. D. (2017). DNA Damage and repair biomarkers of immunotherapy response. Cancer Discovery, 7(7), 675–693. https://doi.org/10.1158/2159-8290.CD-17-0226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jiao, S., Xia, W., Yamaguchi, H., Wei, Y., Chen, M. K., Hsu, J. M., et al. (2017). PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clinical Cancer Research, 23(14), 3711–3720. https://doi.org/10.1158/1078-0432.Ccr-16-3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sato, H., Niimi, A., Yasuhara, T., Permata, T. B. M., Hagiwara, Y., Isono, M., et al. (2017). DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nature Communications, 8(1), 1751. https://doi.org/10.1038/s41467-017-01883-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Domchek, S. M., Postel-Vinay, S., Im, S. A., Park, Y. H., Delord, J. P., Italiano, A., et al. (2020). Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): An open-label, multicentre, phase 1/2, basket study. The Lancet Oncology, 21(9), 1155–1164. https://doi.org/10.1016/s1470-2045(20)30324-7

    Article  CAS  PubMed  Google Scholar 

  109. Drew, Y., Kaufman, B., Banerjee, S., Lortholary, A., Hong, S. H., Park, Y. H., et al. (2019). 1190PD—Phase II study of olaparib + durvalumab (MEDIOLA): Updated results in germline BRCA-mutated platinum-sensitive relapsed (PSR) ovarian cancer (OC). Annals of Oncology, 30, v485–v486. https://doi.org/10.1093/annonc/mdz253.016

    Article  Google Scholar 

  110. Kim, H., Xu, H., George, E., Hallberg, D., Kumar, S., Jagannathan, V., et al. (2020). Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nature Communications, 11(1), 3726. https://doi.org/10.1038/s41467-020-17127-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sun, C., Fang, Y., Yin, J., Chen, J., Ju, Z., Zhang, D., et al. (2017). Rational combination therapy with PARP and MEK inhibitors capitalizes on therapeutic liabilities in RAS mutant cancers. Science translational medicine, 9(392), eaal5148. https://doi.org/10.1126/scitranslmed.aal5148

  112. Johnson, S. F., Cruz, C., Greifenberg, A. K., Dust, S., Stover, D. G., Chi, D., et al. (2016). CDK12 inhibition reverses de novo and acquired PARP inhibitor resistance in BRCA wild-type and mutated models of triple-negative breast cancer. Cell Reports, 17(9), 2367–2381. https://doi.org/10.1016/j.celrep.2016.10.077

    Article  CAS  PubMed  Google Scholar 

  113. Rundle, S., Bradbury, A., Drew, Y., & Curtin, N. J. (2017). Targeting the ATR-CHK1 axis in cancer therapy. Cancers, 9(5). https://doi.org/10.3390/cancers9050041

  114. Fokas, E., Prevo, R., Hammond, E. M., Brunner, T. B., McKenna, W. G., & Muschel, R. J. (2014). Targeting ATR in DNA damage response and cancer therapeutics. Cancer Treatment Reviews, 40(1), 109–117. https://doi.org/10.1016/j.ctrv.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  115. Karnitz, L. M., Flatten, K. S., Wagner, J. M., Loegering, D., Hackbarth, J. S., Arlander, S. J. H., et al. (2005). Gemcitabine-induced activation of checkpoint signaling pathways that affect tumor cell survival. Molecular Pharmacology, 68(6), 1636. https://doi.org/10.1124/mol.105.012716

    Article  CAS  PubMed  Google Scholar 

  116. Parsels, L. A., Morgan, M. A., Tanska, D. M., Parsels, J. D., Palmer, B. D., Booth, R. J., et al. (2009). Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells. Molecular Cancer Therapeutics, 8(1), 45. https://doi.org/10.1158/1535-7163.MCT-08-0662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ha, D.-H., Min, A., Kim, S., Jang, H., Kim, S. H., Kim, H.-J., et al. (2020). Antitumor effect of a WEE1 inhibitor and potentiation of olaparib sensitivity by DNA damage response modulation in triple-negative breast cancer. Scientific Reports, 10(1), 9930. https://doi.org/10.1038/s41598-020-66018-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cuneo, K. C., Morgan, M. A., Sahai, V., Schipper, M. J., Parsels, L. A., Parsels, J. D., et al. (2019). Dose escalation trial of the Wee1 inhibitor adavosertib (AZD1775) in combination with gemcitabine and radiation for patients with locally advanced pancreatic cancer. Journal of Clinical Oncology, 37(29), 2643–2650. https://doi.org/10.1200/JCO.19.00730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Guney Eskiler, G. (2019). The interaction of PI3K inhibition with homologous recombination repair in triple negative breast cancer cells. Journal of Pharmacy & Pharmaceutical Sciences, 22(1), 599–611. https://doi.org/10.18433/jpps30684

    Article  Google Scholar 

  120. Mo, W., Liu, Q., Lin, C. C., Dai, H., Peng, Y., Liang, Y., et al. (2016). mTOR inhibitors suppress homologous recombination repair and synergize with PARP inhibitors via regulating SUV39H1 in BRCA-proficient triple-negative breast cancer. Clinical Cancer Research, 22(7), 1699–1712. https://doi.org/10.1158/1078-0432.Ccr-15-1772

    Article  CAS  PubMed  Google Scholar 

  121. De, P., Sun, Y., Carlson, J. H., Friedman, L. S., Leyland-Jones, B. R., & Dey, N. (2014). Doubling down on the PI3K-AKT-mTOR pathway enhances the antitumor efficacy of PARP inhibitor in triple negative breast cancer model beyond BRCA-ness. Neoplasia, 16(1), 43–72. https://doi.org/10.1593/neo.131694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Cancer Center Support Grant P30 CA0008748, David M. Rubinstein Center for Pancreas Research, Paul Calabresi Career Development Award K12 CA184746, Parker Institute for Immunotherapy Pilot Grant, and Society of Immunotherapy for Cancer (SITC)—TimIOs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen M. O’Reilly.

Ethics declarations

Conflict of interest

FC: No conflicts of interest to declare.

WP: Research funding to institution: Merck, Astellas, Gossamerbio.

EOR: Research funding to MSK: Genentech/Roche, Celgene/BMS, BioNTech, BioAtla, AstraZeneca, Arcus, Elicio. Consulting Role: Cytomx Therapeutics (DSMB), Rafael Therapeutics (DSMB), Sobi, Silenseed, Molecular Templates, Boehringer Ingelheim, BioNTech, Ipsen, Polaris, Tyme, Seagen, Merck, AstraZeneca, Noxxon, BioSapien, Bayer (spouse), Genentech-Roche (spouse), Celgene-BMS (spouse), Eisai (spouse).

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crowley, F., Park, W. & O’Reilly, E.M. Targeting DNA damage repair pathways in pancreas cancer. Cancer Metastasis Rev 40, 891–908 (2021). https://doi.org/10.1007/s10555-021-09983-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-021-09983-1

Keywords

Navigation