Skip to main content

Advertisement

Log in

Signaling pathways in Rhabdomyosarcoma invasion and metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Rhabdomyosarcoma (RMS) is an aggressive childhood mesenchymal tumor with two major molecular and histopathologic subtypes: fusion-positive (FP)RMS, characterized by the PAX3-FOXO1 fusion protein and largely of alveolar histology, and fusion-negative (FN)RMS, the majority of which exhibit embryonal tumor histology. Metastatic disease continues to be associated with poor overall survival despite intensive treatment strategies. Studies on RMS biology have provided some insight into autocrine as well as paracrine signaling pathways that contribute to invasion and metastatic propensity. Such pathways include those driven by the PAX3-FOXO1 fusion oncoprotein in FPRMS and signaling pathways such as IGF/RAS/MEK/ERK, PI3K/AKT/mTOR, cMET, FGFR4, and PDGFR in both FP and FNRMS. In addition, specific cytoskeletal proteins, G protein coupled receptors, Hedgehog, Notch, Wnt, Hippo, and p53 pathways play a role, as do specific microRNA. Paracrine factors, including secreted proteins and RMS-derived exosomes that carry cargo of protein and miRNA, have also recently emerged as potentially important players in RMS biology. This review summarizes the known factors contributing to RMS invasion and metastasis and their implications on identifying targets for treatment and a better understanding of metastatic RMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sultan, I., Qaddoumi, I., Yaser, S., Rodriguez-Galindo, C., & Ferrari, A. (2009). Comparing adult and pediatric rhabdomyosarcoma in the surveillance, epidemiology and end results program, 1973 to 2005: an analysis of 2,600 patients. Journal of Clinical Oncology. https://doi.org/10.1200/JCO.2008.19.7483.

  2. Saab, R., Spunt, S. L., & Skapek, S. X. (2011). Myogenesis and rhabdomyosarcoma. In Current topics in developmental biology (Vol. 94, pp. 197–234). doi:https://doi.org/10.1016/B978-0-12-380916-2.00007-3.

  3. Ries, L. A. G., Smith, M. A., Gurney, J. G., Linet, M., Tamra, T., Young, J. L., & Bunin, G. R. (1999). Cancer incidence and survival among children and adolescents: United States SEER Program 1975-1995. NIH Pub. No. 99-4649, 179 pp.

  4. Mai, P. L., Best, A. F., Peters, J. A., DeCastro, R. M., Khincha, P. P., Loud, J. T., et al. (2016). Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer. https://doi.org/10.1002/cncr.30248.

  5. Sung, L., Anderson, J. R., Arndt, C., Raney, R. B., Meyer, W. H., & Pappo, A. S. (2004). Neurofibromatosis in children with rhabdomyosarcoma: a report from the intergroup rhabdomyosarcoma study IV. The Journal of Pediatrics. https://doi.org/10.1016/j.jpeds.2004.02.026.

  6. Jongmans, M. C. J., Van Der Burgt, I., Hoogerbrugge, P. M., Noordam, K., Yntema, H. G., Nillesen, W. M., et al. (2011). Cancer risk in patients with Noonan syndrome carrying a PTPN11 mutation. European Journal of Human Genetics, 19, 870–874. https://doi.org/10.1038/ejhg.2011.37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith, A. C., Squire, J. A., Thorner, P., Zielenska, M., Shuman, C., Grant, R., Chitayat, D., Nishikawa, J. L., & Weksberg, R. (2001). Association of alveolar rhabdomyosarcoma with the Beckwith-Wiedemann syndrome. Pediatric and Developmental Pathology, 4, 550–558. https://doi.org/10.1007/s10024001-0110-6.

    Article  CAS  PubMed  Google Scholar 

  8. Breneman, J. C., Lyden, E., Pappo, A. S., Link, M. P., Anderson, J. R., Parham, D. M., et al. (2003). Prognostic factors and clinical outcomes in children and adolescents with metastatic rhabdomyosarcoma-a report from the intergroup rhabdomyosarcoma study IV. Journal of Clinical Oncology. https://doi.org/10.1200/JCO.2003.06.129.

  9. Rudzinski, E. R., Anderson, J. R., Hawkins, D. S., Skapek, S. X., Parham, D. M., & Teot, L. A. (2015). The world health organization classification of skeletal muscle tumors in pediatric rhabdomyosarcoma a report from the children’s oncology group. Archives of Pathology & Laboratory Medicine. https://doi.org/10.5858/arpa.2014-0475-OA.

  10. Ognjanovic, S., Linabery, A. M., Charbonneau, B., & Ross, J. A. (2009). Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975-2005. Cancer. https://doi.org/10.1002/cncr.24465.

  11. Parham, D. M., & Barr, F. G. (2013). Classification of Rhabdomyosarcoma and its molecular basis. Advances in Anatomic Pathology. https://doi.org/10.1097/PAP.0b013e3182a92d0d.

  12. Oberlin, O., Rey, A., Lyden, E., Bisogno, G., Stevens, M. C. G., Meyer, W. H., et al. (2008). Prognostic factors in metastatic rhabdomyosarcomas: results of a pooled analysis from United States and European Cooperative Groups. Journal of Clinical Oncology. https://doi.org/10.1200/JCO.2007.14.7207.

  13. Davicioni, E., Anderson, M. J., Finckenstein, F. G., Lynch, J. C., Qualman, S. J., Shimada, H., et al. (2009). Molecular classification of rhabdomyosarcoma - genotypic and phenotypic determinants of diagnosis: a report from the Children’s Oncology Group. The American Journal of Pathology. https://doi.org/10.2353/ajpath.2009.080631.

  14. Scrable, H., Witte, D., Shimada, H., Seemayer, T., Wang-Wuu, S., Soukup, S., et al. (1989). Molecular differential pathology of rhabdomyosarcoma. Genes, Chromosomes & Cancer. https://doi.org/10.1002/gcc.2870010106.

  15. Anderson, J., Gordon, A., McManus, A., Shipley, J., & Pritchard-Jones, K. (1999). Disruption of imprinted genes at chromosome region 11p15.5 in paediatric rhabdomyosarcoma. Neoplasia, 1(4), 340–348. https://doi.org/10.1038/sj.neo.7900052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anderson, J., Gordon, A., Pritchard-Jones, K., & Shipley, J. (1999). Genes, chromosomes, and rhabdomyosarcoma. Genes, Chromosomes & Cancer. https://doi.org/10.1002/(SICI)1098-2264(199912)26:4<275::AID-GCC1>3.0.CO;2-3.

  17. Weber-Hall, S., Anderson, J., McManus, A., Abe, S., Nojima, T., Pinkerton, R., et al. (1996). Gains, losses, and amplification of genomic material in rhabdomyosarcoma analyzed by comparative genomic hybridization. Cancer Research, 56(14), 3220–3224.

    CAS  PubMed  Google Scholar 

  18. Shern, J. F., Chen, L., Chmielecki, J., Wei, J. S., Patidar, R., Rosenberg, M., et al. (2014). Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discovery. https://doi.org/10.1158/2159-8290.CD-13-0639.

  19. Stratton, M. R., Cooper, C. S., Gusterson, B. A., & Fisher, C. (1989). Detection of point mutations in N-ras and K-ras genes of human embryonal rhabdomyosarcomas using oligonucleotide probes and the polymerase chain reaction. Cancer Research, 49(22), 6324–6327.

    CAS  PubMed  Google Scholar 

  20. Martinelli, S., McDowell, H. P., Delle Vigne, S., Kokai, G., Uccini, S., Tartaglia, M., & Dominici, C. (2009). RAS signaling dysregulation in human embryonal rhabdomyosarcoma. Genes, Chromosomes & Cancer. https://doi.org/10.1002/gcc.20702.

  21. Petricoin, E. F., Espina, V., Araujo, R. P., Midura, B., Yeung, C., Wan, X., et al. (2007). Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-06-1344.

  22. Mora, J., Dobrenis, A. M., Bussel, J. B., & Aledo, A. (2000). p53 mutation and MDM2 amplification frequency pediatric rhabdomyosarcoma tumors and cell lines. Medical and Pediatric Oncology. https://doi.org/10.1002/1096-911X(200008)35:2<96::AID-MPO2>3.0.CO;2-Z.

  23. Olanich, M. E., & Barr, F. G. (2013). A call to ARMS: targeting the PAX3-FOXO1 gene in alveolar rhabdomyosarcoma. Expert Opinion on Therapeutic Targets. https://doi.org/10.1517/14728222.2013.772136.

  24. Williamson, D., Missiaglia, E., De Reyniès, A., Pierron, G., Thuille, B., Palenzuela, G., et al. (2010). Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. Journal of Clinical Oncology. https://doi.org/10.1200/JCO.2009.26.3814.

  25. Barr, F. G., Qualman, S. J., Macris, M. H., Melnyk, N., Lawlor, E. R., Strzelecki, D. M., Triche, T. J., Bridge, J. A., & Sorensen, P. H. B. (2002). Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Research, 62(16), 4704–4710.

    CAS  PubMed  Google Scholar 

  26. Wachtel, M., Dettling, M., Koscielniak, E., Stegmaier, S., Treuner, J., Simon-Klingenstein, K., et al. (2004). Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-04-0844.

  27. Sumegi, J., Streblow, R., Frayer, R. W., Cin, P. D., Rosenberg, A., Meloni-Ehrig, A., & Bridge, J. A. (2010). Recurrent t(2;2) and t(2;8) translocations in rhabdomyosarcoma without the canonical PAX-FOXO1 fuse PAX3 to members of the nuclear receptor transcriptional coactivator family. Genes, Chromosomes & Cancer. https://doi.org/10.1002/gcc.20731.

  28. Park, S., Lee, J., Do, I. G., Jang, J., Rho, K., Ahn, S., Maruja, L., Kim, S. J., Kim, K. M., Mao, M., Oh, E., Kim, Y. J., Kim, J., & Choi, Y. L. (2014). Aberrant CDK4 amplification in refractory rhabdomyosarcoma as identified by genomic profiling. Scientific Reports, 4, 1–8. https://doi.org/10.1038/srep03623.

    Article  CAS  Google Scholar 

  29. Barr, F. G., Duan, F., Smith, L. M., Gustafson, D., Pitts, M., Hammond, S., & Gastier-Foster, J. M. (2009). Genomic and clinical analyses of 2p24 and 12q13-q14 amplification in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. Genes, Chromosomes & Cancer. https://doi.org/10.1002/gcc.20673.

  30. Charytonowicz, E., Cordon-Cardo, C., Matushansky, I., & Ziman, M. (2009). Alveolar rhabdomyosarcoma: is the cell of origin a mesenchymal stem cell? Cancer Letters. https://doi.org/10.1016/j.canlet.2008.09.039.

  31. Preussner, J., Zhong, J., Sreenivasan, K., Günther, S., Engleitner, T., Künne, C., et al. (2018). Oncogenic amplification of zygotic dux factors in regenerating p53-deficient muscle stem cells defines a molecular cancer subtype. Cell Stem Cell. https://doi.org/10.1016/j.stem.2018.10.011.

  32. Rubin, B. P., Nishijo, K., Chen, H. I. H., Yi, X., Schuetze, D. P., Pal, R., et al. (2011). Evidence for an unanticipated relationship between undifferentiated pleomorphic sarcoma and embryonal rhabdomyosarcoma. Cancer Cell. https://doi.org/10.1016/j.ccr.2010.12.023.

  33. Drummond, C. J., Hanna, J. A., Garcia, M. R., Devine, D. J., Heyrana, A. J., Finkelstein, D., et al. (2018). Hedgehog pathway drives fusion-negative rhabdomyosarcoma initiated from non-myogenic endothelial progenitors. Cancer Cell. https://doi.org/10.1016/j.ccell.2017.12.001.

  34. Hatley, M. E., Tang, W., Garcia, M. R., Finkelstein, D., Millay, D. P., Liu, N., et al. (2012). A mouse model of rhabdomyosarcoma originating from the adipocyte lineage. Cancer Cell. https://doi.org/10.1016/j.ccr.2012.09.004.

  35. Barr, F. G. (2001). Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene. https://doi.org/10.1038/sj.onc.1204599.

  36. Linardic, C. M. (2008). PAX3-FOXO1 fusion gene in rhabdomyosarcoma. Cancer Letters. https://doi.org/10.1016/j.canlet.2008.03.035.

  37. Loupe, J. M., Miller, P. J., Bonner, B. P., Maggi, E. C., Vijayaraghavan, J., Crabtree, J. S., & Hollenbach, A. D. (2016). Comparative transcriptomic analysis reveals the oncogenic fusion protein pax3-foxo1 globally alters mRNA and miRNA to enhance myoblast invasion. Oncogenesis., 5. https://doi.org/10.1038/oncsis.2016.53.

  38. Epstein, J. A., Shapiro, D. N., Cheng, J., Lam, P. Y. P., & Maas, R. L. (1996). Pax3 modulates expression of the c-met receptor during limb muscle development. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.93.9.4213.

  39. Ayalon, D., Glaser, T., & Werner, H. (2001). Transcriptional regulation of IGF-I receptor gene expression by the PAX3-FKHR oncoprotein. Growth Hormone & IGF Research. https://doi.org/10.1054/ghir.2001.0244.

  40. Tomescu, O., Xia, S. J., Strezlecki, D., Bennicelli, J. L., Ginsberg, J., Pawel, B., & Barr, F. G. (2004). Inducible short-term and stable long-term cell culture systems reveal that the PAX3-FKHR fusion oncoprotein regulates CXCR4, PAX3, and PAX7 expression. Laboratory Investigation, 84, 1060–1070. https://doi.org/10.1038/labinvest.3700125.

    Article  CAS  PubMed  Google Scholar 

  41. De Pittà, C., Tombolan, L., Albiero, G., Sartori, F., Romualdi, C., Jurman, G., et al. (2006). Gene expression profiling identifies potential relevant genes in alveolar rhabdomyosarcoma pathogenesis and discriminates PAX3-FKHR positive and negative tumors. International Journal of Cancer. https://doi.org/10.1002/ijc.21698.

  42. Laé, M., Ahn, E. H., Mercado, G. E., Chuai, S., Edgar, M., Pawel, B. R., et al. (2007). Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas. The Journal of Pathology. https://doi.org/10.1002/path.2170.

  43. Davicioni, E., Finckenstein, F. G., Shahbazian, V., Buckley, J. D., Triche, T. J., & Anderson, M. J. (2006). Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-05-4578.

  44. Anderson, J., Ramsay, A., Gould, S., & Pritchard-Jones, K. (2001). PAX3-FKHR induces morphological change and enhances cellular proliferation and invasion in rhabdomyosarcoma. The American Journal of Pathology. https://doi.org/10.1016/S0002-9440(10)61784-1.

  45. Onisto, M., Slongo, M. L., Gregnanin, L., Gastaldi, T., Carli, M., & Rosolen, A. (2005). Expression and activity of vascular endothelial growth factor and metalloproteinases in alveolar and embryonal rhabdomyosarcoma cell lines. International Journal of Oncology.

  46. Codenotti, S., Faggi, F., Ronca, R., Chiodelli, P., Grillo, E., Guescini, M., et al. (2019). Caveolin-1 enhances metastasis formation in a human model of embryonal rhabdomyosarcoma through Erk signaling cooperation. Cancer Letters. https://doi.org/10.1016/j.canlet.2019.02.013.

  47. Martin, D. E., & Hall, M. N. (2005). The expanding TOR signaling network. Current Opinion in Cell Biology. https://doi.org/10.1016/j.ceb.2005.02.008.

  48. Kaylani, S. Z., Xu, J., Srivastava, R. K., Kopelovich, L., Pressey, J. G., & Athar, M. (2013). Rapamycin targeting mTOR and hedgehog signaling pathways blocks human rhabdomyosarcoma growth in xenograft murine model. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2013.05.001.

  49. Wan, X., Shen, N., Mendoza, A., Khanna, C., & Helman, L. J. (2006). CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1α/VEGF signaling. Neoplasia. https://doi.org/10.1593/neo.05820.

  50. Guenther, M. K., Graab, U., & Fulda, S. (2013). Synthetic lethal interaction between PI3K/Akt/mTOR and Ras/MEK/ERK pathway inhibition in rhabdomyosarcoma. Cancer Letters. https://doi.org/10.1016/j.canlet.2013.05.010.

  51. Renshaw, J., Taylor, K. R., Bishop, R., Valenti, M., De Haven Brandon, A., Gowan, S., et al. (2013). Dual blockade of the PI3K/AKT/mTOR (AZD8055) and RAS/MEK/ERK (AZD6244) pathways synergistically inhibits rhabdomyosarcoma cell growth in vitro and in vivo. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.CCR-13-0850.

  52. Graab, U., Hahn, H., & Fulda, S. (2015). Identification of a novel synthetic lethality of combined inhibition of hedgehog and PI3K signaling in rhabdomyosarcoma. Oncotarget. https://doi.org/10.18632/oncotarget.2726.

  53. Baird, K., Davis, S., Antonescu, C. R., Harper, U. L., Walker, R. L., Chen, Y., et al. (2005). Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-05-1699.

  54. Khan, J., Wei, J. S., Ringnér, M., Saal, L. H., Ladanyi, M., Westermann, F., et al. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine. https://doi.org/10.1038/89044.

  55. Taylor IV, J. G., Cheuk, A. T., Tsang, P. S., Chung, J. Y., Song, Y. K., Desai, K., et al. (2009). Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI39703.

  56. Crose, L. E. S., Etheridge, K. T., Chen, C., Belyea, B., Talbot, L. J., Bentley, R. C., & Linardic, C. M. (2012). FGFR4 blockade exerts distinct antitumorigenic effects in human embryonal versus alveolar rhabdomyosarcoma. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.CCR-10-3063.

  57. McKinnon, T., Venier, R., Yohe, M., Sindiri, S., Gryder, B. E., Shern, J. F., Kabaroff, L., Dickson, B., Schleicher, K., Chouinard-Pelletier, G., Menezes, S., Gupta, A., Zhang, X., Guha, R., Ferrer, M., Thomas, C. J., Wei, Y., Davani, D., Guidos, C. J., Khan, J., & Gladdy, R. A. (2018). Functional screening of FGFR4-driven tumorigenesis identifies PI3K/mTOR inhibition as a therapeutic strategy in rhabdomyosarcoma. Oncogene., 37, 2630–2644. https://doi.org/10.1038/s41388-017-0122-y.

    Article  CAS  PubMed  Google Scholar 

  58. Shariat, S. F., Lamb, D. J., Kattan, M. W., Nguyen, C., Kim, J., Beck, J., et al. (2002). Association of preoperative plasma levels of insulin-like growth factor I and insulin-like growth factor binding proteins-2 and -3 with prostate cancer invasion, progression, and metastasis. Journal of Clinical Oncology. https://doi.org/10.1200/JCO.20.3.833.

  59. Dunlap, S. M., Celestino, J., Wang, H., Jiang, R., Holland, E. C., Fuller, G. N., & Zhang, W. (2007). Insulin-like growth factor binding protein 2 promotes glioma development and progression. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.0703145104.

  60. Jones, J. I., & Clemmons, D. R. (1995). Insulin-like growth factors and their binding proteins: biological actions. Endocrine Reviews. https://doi.org/10.1210/edrv-16-1-3.

  61. Tombolan, L., Orso, F., Guzzardo, V., Casara, S., Zin, A., Bonora, M., et al. (2011). High IGFBP2 expression correlates with tumor severity in pediatric rhabdomyosarcoma. The American Journal of Pathology. https://doi.org/10.1016/j.ajpath.2011.07.018.

  62. Makawita, S., Ho, M., Durbin, A. D., Thorner, P. S., Malkin, D., & Somers, G. R. (2009). Expression of insulin-like growth factor pathway proteins in rhabdomyosarcoma: IGF-2 expression is associated with translocation-negative tumors. Pediatric and Developmental Pathology. https://doi.org/10.2350/08-05-0477.1.

  63. Huang, F., Hurlburt, W., Greer, A., Reeves, K. A., Hillerman, S., Chang, H., et al. (2010). Differential mechanisms of acquired resistance to insulin-like growth factor-I receptor antibody therapy or to a small-molecule inhibitor, BMS-754807, in a human rhabdomyosarcoma model. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-10-0391.

  64. Kikuchi, K., Tsuchiya, K., Otabe, O., Gotoh, T., Tamura, S., Katsumi, Y., et al. (2008). Effects of PAX3-FKHR on malignant phenotypes in alveolar rhabdomyosarcoma. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2007.11.017.

  65. Taulli, R., Scuoppo, C., Bersani, F., Accornero, P., Forni, P. E., Miretti, S., et al. (2006). Validation of Met as a therapeutic target in alveolar and embryonal rhabdomyosarcoma. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-05-4292.

  66. Otabe, O., Kikuchi, K., Tsuchiya, K., Katsumi, Y., Yagyu, S., Miyachi, M., et al. (2017). MET/ERK2 pathway regulates the motility of human alveolar rhabdomyosarcoma cells. Oncology Reports. https://doi.org/10.3892/or.2016.5213.

  67. Ferracini, R., Olivero, M., Di Renzo, M. F., Martano, M., De Giovanni, C., Nanni, P., et al. (1996). Retrogenic expression of the MET proto-oncogene correlates with the invasive phenotype of human rhabdomyosarcomas. Oncogene.

  68. Saini, M., Verma, A., & Mathew, S. J. (2018). SPRY2 is a novel MET interactor that regulates metastatic potential and differentiation in rhabdomyosarcoma. Cell Death & Disease, 9, 1–15. https://doi.org/10.1038/s41419-018-0261-2.

    Article  CAS  Google Scholar 

  69. Skrzypek, K., Kusienicka, A., Szewczyk, B., Adamus, T., Lukasiewicz, E., Miekus, K., & Majka, M. (2015). Constitutive activation of MET signaling impairs myogenic differentiation of rhabdomyosarcoma and promotes its development and progression. Oncotarget. https://doi.org/10.18632/oncotarget.5145.

  70. Pillay, K., Govender, D., & Chetty, R. (2002). ALK protein expression in rhabdomyosarcomas. Histopathology. https://doi.org/10.1046/j.1365-2559.2002.01534.x.

  71. Van Gaal, J. C., Flucke, U. E., Roeffen, M. H. S., De Bont, E. S. J. M., Sleijfer, S., Mavinkurve-Groothuis, A. M. C., et al. (2012). Anaplastic lymphoma kinase aberrations in rhabdomyosarcoma: clinical and prognostic implications. Journal of Clinical Oncology. https://doi.org/10.1200/JCO.2011.37.8588.

  72. Gasparini, P., Casanova, M., Villa, R., Collini, P., Alaggio, R., Zin, A., et al. (2016). Anaplastic lymphoma kinase aberrations correlate with metastatic features in pediatric rhabdomyosarcoma. Oncotarget. https://doi.org/10.18632/oncotarget.10368.

  73. van Erp, A. E. M., Hillebrandt-Roeffen, M. H. S., van Houdt, L., Fleuren, E. D. G., van der Graaf, W. T. A., & Versleijen-Jonkers, Y. M. H. (2017). Targeting anaplastic lymphoma kinase (ALK) in rhabdomyosarcoma (RMS) with the second-generation ALK inhibitor ceritinib. Targeted Oncology, 12, 815–826. https://doi.org/10.1007/s11523-017-0528-z.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schöffski, P., Wozniak, A., Leahy, M. G., Aamdal, S., Rutkowski, P., Bauer, S., et al. (2018). The tyrosine kinase inhibitor crizotinib does not have clinically meaningful activity in heavily pre-treated patients with advanced alveolar rhabdomyosarcoma with FOXO rearrangement: European Organisation for Research and Treatment of Cancer phase 2 trial. European Journal of Cancer. https://doi.org/10.1016/j.ejca.2018.02.011.

  75. Ehnman, M., Missiaglia, E., Folestad, E., Selfe, J., Strell, C., Thway, K., et al. (2013). Distinct effects of ligand-induced PDGFRα and PDGFRβ signaling in the human rhabdomyosarcoma tumor cell and stroma cell compartments. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-12-1646.

  76. Hosoyama, T., Aslam, M. I., Abraham, J., Prajapati, S. I., Nishijo, K., Michalek, J. E., et al. (2011). IL-4R drives dedifferentiation, mitogenesis, and metastasis in rhabdomyosarcoma. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.CCR-10-3445.

  77. Nanni, P., Nicoletti, G., Palladini, A., Astolfi, A., Rinella, P., Croci, S., et al. (2009). Opposing control of rhabdomyosarcoma growth and differentiation by myogenin and interleukin 4. Molecular Cancer Therapeutics. https://doi.org/10.1158/1535-7163.MCT-08-0678.

  78. Curto, M., & McClatchey, A. I. (2004). Ezrin... a metastatic detERMinant? Cancer Cell. https://doi.org/10.1016/S1535-6108(04)00031-5.

  79. Yu, Y., Khan, J., Khanna, C., Helman, L., Meltzer, P. S., & Merlino, G. (2004). Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nature Medicine. https://doi.org/10.1038/nm966.

  80. Yu, Y., Davicioni, E., Triche, T. J., & Merlino, G. (2006). The homeoprotein Six1 transcriptionally activates multiple protumorigenic genes but requires ezrin to promote metastasis. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-05-2360.

  81. Chan, B. M. C., Matsuura, N., Takada, Y., Zetter, B. R., & Hemler, M. E. (1991). In vitro and in vivo consequences of VLA-2 expression on rhabdomyosarcoma cells. Science. https://doi.org/10.1126/science.2011740.

  82. Leabu, M., Uniyal, S., Xie, J., Xu, Y. Q., Vladau, C., Morris, V. L., & Chan, B. M. C. (2005). Integrin α2β1 modulates EGF stimulation of Rho GTPase-dependent morphological changes in adherent human rhabdomyosarcoma RD cells. Journal of Cellular Physiology. https://doi.org/10.1002/jcp.20163.

  83. Marshall, A. D., Lagutina, I., & Grosveld, G. C. (2011). PAX3-FOXO1 induces cannabinoid receptor 1 to enhance cell invasion and metastasis. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-11-0924.

  84. Thuault, S., Comunale, F., Hasna, J., Fortier, M., Planchon, D., Elarouci, N., et al. (2016). The RhoE/ROCK/ARHGAP25 signaling pathway controls cell invasion by inhibition of Rac activity. Molecular Biology of the Cell. https://doi.org/10.1091/mbc.E16-01-0041.

  85. Hayes, M. N., McCarthy, K., Jin, A., Oliveira, M. L., Iyer, S., Garcia, S. P., et al. (2018). Vangl2/RhoA signaling pathway regulates stem cell self-renewal programs and growth in rhabdomyosarcoma. Cell Stem Cell. https://doi.org/10.1016/j.stem.2018.02.002.

  86. Karhadkar, S. S., Bova, G. S., Abdallah, N., Dhara, S., Gardner, D., Maitra, A., et al. (2004). Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature. https://doi.org/10.1038/nature02962.

  87. Scales, S. J., & de Sauvage, F. J. (2009). Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends in Pharmacological Sciences. https://doi.org/10.1016/j.tips.2009.03.007.

  88. Zibat, A., Missiaglia, E., Rosenberger, A., Pritchard-Jones, K., Shipley, J., Hahn, H., & Fulda, S. (2010). Activation of the hedgehog pathway confers a poor prognosis in embryonal and fusion gene-negative alveolar rhabdomyosarcoma. Oncogene. https://doi.org/10.1038/onc.2010.368.

  89. Satheesha, S., Manzella, G., Bovay, A., Casanova, E. A., Bode, P. K., Belle, R., Feuchtgruber, S., Jaaks, P., Dogan, N., Koscielniak, E., & Schäfer, B. W. (2016). Targeting hedgehog signaling reduces self-renewal in embryonal rhabdomyosarcoma. Oncogene., 35, 2020–2030. https://doi.org/10.1038/onc.2015.267.

    Article  CAS  PubMed  Google Scholar 

  90. Almazán-Moga, A., Zarzosa, P., Molist, C., Velasco, P., Pyczek, J., Simon-Keller, K., Giralt, I., Vidal, I., Navarro, N., Segura, M. F., Soriano, A., Navarro, S., Tirado, O. M., Ferreres, J. C., Santamaria, A., Rota, R., Hahn, H., Sánchez de Toledo, J., Roma, J., & Gallego, S. (2017). Ligand-dependent hedgehog pathway activation in rhabdomyosarcoma: the oncogenic role of the ligands. British Journal of Cancer, 117, 1314–1325. https://doi.org/10.1038/bjc.2017.305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bresler, S. C., Padwa, B. L., & Granter, S. R. (2016). Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Head and Neck Pathology. https://doi.org/10.1007/s12105-016-0706-9.

  92. De Bortoli, M., Castellino, R. C., Skapura, D. G., Shen, J. J., Su, J. M., Russell, H. V., et al. (2007). Patched haploinsufficient mouse rhabdomyosarcoma overexpress secreted phosphoprotein 1 and matrix metalloproteinases. European Journal of Cancer. https://doi.org/10.1016/j.ejca.2007.02.008.

  93. Kopan, R. (2002). Notch: a membrane-bound transcription factor. Journal of Cell Science.

  94. Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science. https://doi.org/10.1126/science.284.5415.770.

  95. Roma, J., Masià, A., Reventós, J., De Toledo, J. S., & Gallego, S. (2011). Notch pathway inhibition significantly reduces rhabdomyosarcoma invasiveness and mobility in vitro. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.CCR-10-0166.

  96. Ignatius, M. S., Hayes, M. N., Lobbardi, R., Chen, E. Y., McCarthy, K. M., Sreenivas, P., & Langenau, D. M. (2017). The NOTCH1/SNAIL1/MEF2C pathway regulates growth and self-renewal in embryonal rhabdomyosarcoma. Cell Reports. https://doi.org/10.1016/j.celrep.2017.05.061.

  97. Masià, A., Almazán-Moga, A., Velasco, P., Reventós, J., Torán, N., Sánchez De Toledo, J., et al. (2012). Notch-mediated induction of N-cadherin and α9-integrin confers higher invasive phenotype on rhabdomyosarcoma cells. British Journal of Cancer, 107, 1374–1383. https://doi.org/10.1038/bjc.2012.411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Singh, S., Vinson, C., Gurley, C. M., Nolen, G. T., Beggs, M. L., Nagarajan, R., et al. (2010). Impaired Wnt signaling in embryonal rhabdomyosarcoma cells from p53/c-fos double mutant mice. The American Journal of Pathology. https://doi.org/10.2353/ajpath.2010.091195.

  99. Soglio, D. B. D., Rougemont, A. L., Absi, R., Giroux, L. M., Sanchez, R., Barrette, S., & Fournet, J. C. (2009). Beta-catenin mutation does not seem to have an effect on the tumorigenesis of pediatric rhabdomyosarcomas. Pediatric and Developmental Pathology. https://doi.org/10.2350/08-11-0553.1.

  100. Annavarapu, S. R., Cialfi, S., Dominici, C., Kokai, G. K., Uccini, S., Ceccarelli, S., et al. (2013). Characterization of Wnt/β-catenin signaling in rhabdomyosarcoma. Laboratory Investigation, 93, 1090–1099. https://doi.org/10.1038/labinvest.2013.97.

    Article  CAS  PubMed  Google Scholar 

  101. Chen, E. Y., DeRan, M. T., Ignatius, M. S., Brooke Grandinetti, K., Clagg, R., McCarthy, K. M., et al. (2014). Glycogen synthase kinase 3 inhibitors induce the canonical WNT/β-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1317731111.

  102. Oristian, K. M., Crose, L. E. S., Kuprasertkul, N., Bentley, R. C., Lin, Y. T., Williams, N., & Linardic, C. M. (2018). Loss of MST/Hippo signaling in a genetically engineered mouse model of fusion-positive rhabdomyosarcoma accelerates tumorigenesis. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-17-3912.

  103. Tremblay, A. M., Missiaglia, E., Galli, G. G., Hettmer, S., Urcia, R., Carrara, M., et al. (2014). The Hippo transducer YAP1 transforms activated satellite cells and is a potent effector of embryonal rhabdomyosarcoma formation. Cancer Cell. https://doi.org/10.1016/j.ccr.2014.05.029.

  104. Seki, M., Nishimura, R., Yoshida, K., Shimamura, T., Shiraishi, Y., Sato, Y., et al. (2015). Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nature Communications. https://doi.org/10.1038/ncomms8557.

  105. Ignatius, M. S., Hayes, M. N., Moore, F. E., Tang, Q., Garcia, S. P., Blackburn, P. R., et al. (2018). Tp53 deficiency causes a wide tumor spectrum and increases embryonal rhabdomyosarcoma metastasis in zebrafish. eLife. https://doi.org/10.7554/eLife.37202.

  106. Evdokimova, V., Ovchinnikov, L. P., & Sorensen, P. H. B. (2006). Y-box binding protein 1: providing a new angle on translational regulation. Cell Cycle. https://doi.org/10.4161/cc.5.11.2784.

  107. Evdokimova, V., Tognon, C., Ng, T., Ruzanov, P., Melnyk, N., Fink, D., et al. (2009). Translational activation of Snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell. https://doi.org/10.1016/j.ccr.2009.03.017.

  108. El-Naggar, A. M., Veinotte, C. J., Cheng, H., Grunewald, T. G. P., Negri, G. L., Somasekharan, S. P., et al. (2015). Translational activation of HIF1α by YB-1 promotes sarcoma metastasis. Cancer Cell. https://doi.org/10.1016/j.ccell.2015.04.003.

  109. Armeanu-Ebinger, S., Bonin, M., Häbig, K., Poremba, C., Koscielniak, E., Godzinski, J., & Seitz, G. (2011). Differential expression of invasion promoting genes in childhood rhabdomyosarcoma. International Journal of Oncology. https://doi.org/10.3892/ijo.2011.921.

  110. Shang, H., Liu, Y., Li, Z., Liu, Q., Cui, W., Zhang, L., Pang, Y., Liu, C., & Li, F. (2019). MicroRNA-874 functions as a tumor suppressor in rhabdomyosarcoma by directly targeting GEFT. American Journal of Cancer Research, 9(4), 668–681.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Bersani, F., Lingua, M. F., Morena, D., Foglizzo, V., Miretti, S., Lanzetti, L., et al. (2016). Deep sequencing reveals a novel miR-22 regulatory network with therapeutic potential in rhabdomyosarcoma. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-16-0709.

  112. Megiorni, F., Cialfi, S., McDowell, H. P., Felsani, A., Camero, S., Guffanti, A., Pizer, B., Clerico, A., de Grazia, A., Pizzuti, A., Moles, A., & Dominici, C. (2014). Deep sequencing the microRNA profile in rhabdomyosarcoma reveals down-regulation of miR-378 family members. BMC Cancer, 14, 1–17. https://doi.org/10.1186/1471-2407-14-880.

    Article  CAS  Google Scholar 

  113. Ignatius, M. S., Chen, E., Elpek, N. M., Fuller, A. Z., Tenente, I. M., Clagg, R., et al. (2012). In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma. Cancer Cell. https://doi.org/10.1016/j.ccr.2012.03.043.

  114. Kessenbrock, K., Plaks, V., & Werb, Z. (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. https://doi.org/10.1016/j.cell.2010.03.015.

  115. Diomedi-Camassei, F., Boldrini, R., Ravà, L., Donfrancesco, A., Boglino, C., Messina, E., & Callea, F. (2004). Different pattern of matrix metalloproteinases expression in alveolar versus embryonal rhabdomyosarcoma. Journal of Pediatric Surgery. https://doi.org/10.1016/j.jpedsurg.2004.07.014.

  116. Wysoczynski, M., Miekus, K., Jankowski, K., Wanzeck, J., Bertolone, S., Janowska-Wieczorek, A., et al. (2007). Leukemia inhibitory factor: a newly identified metastatic factor in rhabdomyosarcomas. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-06-1021.

  117. Teicher, B. A., & Fricker, S. P. (2010). CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.CCR-09-2329.

  118. Libura, J., Drukala, J., Majka, M., Tomescu, O., Navenot, J. M., Kucia, M., et al. (2002). CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood. https://doi.org/10.1182/blood-2002-01-0031.

  119. Grymula, K., Tarnowski, M., Wysoczynski, M., Drukala, J., Barr, F. G., Ratajczak, J., et al. (2010). Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior of human rhabdomyosarcomas. International Journal of Cancer. https://doi.org/10.1002/ijc.25245.

  120. Wysoczynski, M., Shin, D. M., Kucia, M., & Ratajczak, M. Z. (2010). Selective upregulation of interleukin-8 by human rhabdomyosarcomas in response to hypoxia: therapeutic implications. International Journal of Cancer. https://doi.org/10.1002/ijc.24732.

  121. Lima, L. G., & Monteiro, R. Q. (2013). Activation of blood coagulation in cancer: implications for tumour progression. Bioscience Reports. https://doi.org/10.1042/BSR20130057.

  122. Hu, L., Lee, M., Campbell, W., Perez-Soler, R., & Karpatkin, S. (2004). Role of endogenous thrombin in tumor implantation, seeding, and spontaneous metastasis. Blood. https://doi.org/10.1182/blood-2004-03-1047.

  123. Poon, R. T. P., Lau, C. P. Y., Ho, J. W. Y., Yu, W. C., Fan, S. T., & Wong, J. (2003). Tissue factor expression correlates with tumor angiogenesis and invasiveness in human hepatocellular carcinoma. Clinical Cancer Research.

  124. Wysoczynski, M., Liu, R., Kucia, M., Drukala, J., & Ratajczak, M. Z. (2010). Thrombin regulates the metastatic potential of human rhabdomyosarcoma cells: distinct role of PAR1 and PAR3 signaling. Molecular Cancer Research. https://doi.org/10.1158/1541-7786.MCR-10-0019.

  125. Nakajima, M., Nagahashi, M., Rashid, O. M., Takabe, K., & Wakai, T. (2017). The role of sphingosine-1-phosphate in the tumor microenvironment and its clinical implications. Tumor Biology. https://doi.org/10.1177/1010428317699133.

  126. Schneider, G., Bryndza, E., Abdel-Latif, A., Ratajczak, J., Maj, M., Tarnowski, M., et al. (2013). Bioactive lipids S1P and C1P are prometastatic factors in human rhabdomyosarcoma, and their tissue levels increase in response to radio/chemotherapy. Molecular Cancer Research. https://doi.org/10.1158/1541-7786.MCR-12-0600.

  127. Adamus, A., Engel, N., & Seitz, G. (2019). SGPL1321 mutation: one main trigger for invasiveness of pediatric alveolar rhabdomyosarcoma. Cancer Gene Therapy, 1–14. https://doi.org/10.1038/s41417-019-0132-8.

  128. Théry, C., Zitvogel, L., & Amigorena, S. (2002). Exosomes: composition, biogenesis and function. Nature Reviews. Immunology. https://doi.org/10.1038/nri855.

  129. Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology. https://doi.org/10.1038/ncb1596.

  130. Tai, Y. L., Chen, K. C., Hsieh, J. T., & Shen, T. L. (2018). Exosomes in cancer development and clinical applications. Cancer Science. https://doi.org/10.1111/cas.13697.

  131. Ghayad, S. E., Rammal, G., Ghamloush, F., Basma, H., Nasr, R., Diab-Assaf, M., Chelala, C., & Saab, R. (2016). Exosomes derived from embryonal and alveolar rhabdomyosarcoma carry differential miRNA cargo and promote invasion of recipient fibroblasts. Scientific Reports, 6, 1–15. https://doi.org/10.1038/srep37088.

    Article  CAS  Google Scholar 

  132. Hanna, J. A., Garcia, M. R., Lardennois, A., Leavey, P. J., Maglic, D., Fagnan, A., Go, J. C., Roach, J., Wang, Y. D., Finkelstein, D., & Hatley, M. E. (2018). PAX3-FOXO1 drives miR-486-5p and represses miR-221 contributing to pathogenesis of alveolar rhabdomyosarcoma. Oncogene., 37, 1991–2007. https://doi.org/10.1038/s41388-017-0081-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ghamloush, F., Ghayad, S. E., Rammal, G., Fahs, A., Ayoub, A. J., Merabi, Z., Harajly, M., Zalzali, H., & Saab, R. (2019). The PAX3-FOXO1 oncogene alters exosome miRNA content and leads to paracrine effects mediated by exosomal miR-486. Scientific Reports, 9, 1–12. https://doi.org/10.1038/s41598-019-50592-4.

    Article  CAS  Google Scholar 

  134. Rammal, G., Fahs, A., Kobeissy, F., Mechref, Y., Zhao, J., Zhu, R., et al. (2019). Proteomic profiling of rhabdomyosarcoma-derived exosomes yield insights into their functional role in paracrine signaling. Journal of Proteome Research. https://doi.org/10.1021/acs.jproteome.9b00157.

  135. Li, S., Zou, H., Shao, Y. Y., Mei, Y., Cheng, Y., Hu, D. L., et al. (2017). Pseudogenes of annexin A2, novel prognosis biomarkers for diffuse gliomas. Oncotarget. https://doi.org/10.18632/oncotarget.22197.

  136. Murphy, A. G., Foley, K., Rucki, A. A., Xia, T., Jaffee, E. M., Huang, C. Y., & Zheng, L. (2017). Stromal Annexin A2 expression is predictive of decreased survival in pancreatic cancer. Oncotarget. https://doi.org/10.18632/oncotarget.22433.

  137. Hoshino, A., Costa-Silva, B., Shen, T. L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., & Lyden, D. (2015). Tumour exosome integrins determine organotropic metastasis. Nature. https://doi.org/10.1038/nature15756.

  138. Richardson, A. M., Havel, L. S., Koyen, A. E., Konen, J. M., Shupe, J., Wiles, W. G., et al. (2018). Vimentin is required for lung adenocarcinoma metastasis via heterotypic tumor cell–cancer-associated fibroblast interactions during collective invasion. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.CCR-17-1776.

  139. Satelli, A., & Li, S. (2011). Vimentin in cancer and its potential as a molecular target for cancer therapy. Cellular and Molecular Life Sciences. https://doi.org/10.1007/s00018-011-0735-1.

  140. Huang, F., Greer, A., Hurlburt, W., Han, X., Hafezi, R., Wittenberg, G. M., et al. (2009). The mechanisms of differential sensitivity to an insulin-like growth factor-1 receptor inhibitor (BMS-536924) and rationale for combining with EGFR/HER2 inhibitors. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-08-0835.

  141. Vela, M. (2018). Anti CXCR4 antibody combined with activated and expanded natural killer cells for sarcoma immunotherapy. Journal of Clinical Oncology. https://doi.org/10.1200/jco.2018.36.15_suppl.11541.

  142. Rengaswamy, V., Zimmer, D., Süss, R., & Rössler, J. (2016). RGD liposome-protamine-siRNA (LPR) nanoparticles targeting PAX3-FOXO1 for alveolar rhabdomyosarcoma therapy. Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2016.05.063.

  143. Anderson, J. L., Park, A., Akiyama, R., Tap, W. D., Denny, C. T., & Federman, N. (2015). Evaluation of in vitro activity of the class i PI3K inhibitor buparlisib (BKM120) in pediatric bone and soft tissue sarcomas. PLoS One. https://doi.org/10.1371/journal.pone.0133610.

  144. Van Erp, A. E. M., Versleijen-Jonkers, Y. M. H., Van Der Graaf, W. T. A., & Fleuren, E. D. G. (2018). Targeted therapy-based combination treatment in rhabdomyosarcoma. Molecular Cancer Therapeutics. https://doi.org/10.1158/1535-7163.MCT-17-1131.

  145. Xin, X., Zeng, X., Gu, H., Li, M., Tan, H., Jin, Z., Hua, T., Shi, R., & Wang, H. (2016). CD147/EMMPRIN overexpression and prognosis in cancer: a systematic review and meta-analysis. Scientific Reports, 6, 1–12. https://doi.org/10.1038/srep32804.

    Article  CAS  Google Scholar 

  146. Dana, P., Kariya, R., Vaeteewoottacharn, K., Sawanyawisuth, K., Seubwai, W., Matsuda, K., et al. (2017). Upregulation of CD147 promotes metastasis of cholangiocarcinoma by modulating the epithelial-to-mesenchymal transitional process. Oncology Research. https://doi.org/10.3727/096504016X14813899000565.

  147. Caudron, A., Battistella, M., Feugeas, J. P., Pagès, C., Basset-Seguin, N., Sadoux, A., et al. (2015). EMMPRIN/CD147 as a novel independent prognostic biomarker in melanoma. Journal of Clinical Oncology. https://doi.org/10.1200/jco.2015.33.15_suppl.e20027.

Download references

Acknowledgments

All figures were created using BioRender.com

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raya Saab.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadan, F., Fahs, A., Ghayad, S.E. et al. Signaling pathways in Rhabdomyosarcoma invasion and metastasis. Cancer Metastasis Rev 39, 287–301 (2020). https://doi.org/10.1007/s10555-020-09860-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09860-3

Keywords

Navigation