Skip to main content

Advertisement

Log in

Novel therapy for pediatric and adolescent kidney cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Pediatric and adolescent renal tumors account for approximately 7% of all new cancer diagnoses in the USA each year. The prognosis and treatment are varied based on factors including the underlying histology and tumor stage, with survival rates ranging from greater than 90% in favorable histology Wilms tumor to almost universally fatal in other disease types, including those patients with advanced stage malignant rhabdoid tumor and renal medullary carcinoma. In recent years, our understanding of the underlying genetic drivers of the different types of pediatric kidney cancer has dramatically increased, opening the door to utilization of new targeted biologic agents alone or in combination with conventional chemotherapy to improve outcomes. Several ongoing clinical trials are investigating the use of a variety of targeted agents in pediatric patients with underlying genetic aberrations. In this manuscript, the underlying biology and early phase clinical trials relevant to pediatric renal cancers are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Comprehensive update of pediatric renal tumor epidemiology: analysis of the first 4000 patients on Children's Oncology Group (COG) renal tumor classification and biology protocol AREN03B2 (2014). Pediatr Blood Cancer https://onlinelibrary.wiley.com/doi/pdf/10.1002/pbc.25314. Accessed 10/22/2019.

  2. Dix, D. B., Fernandez, C. V., Chi, Y. Y., Mullen, E. A., Geller, J. I., Gratias, E. J., et al. (2019). Augmentation of therapy for combined loss of heterozygosity 1p and 16q in favorable histology Wilms tumor: a Children's Oncology Group AREN0532 and AREN0533 study report. J Clin Oncol, 37(30), 2769–2777. https://doi.org/10.1200/jco.18.01972.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fernandez, C. V., Mullen, E. A., Chi, Y. Y., Ehrlich, P. F., Perlman, E. J., Kalapurakal, J. A., Khanna, G., Paulino, A. C., Hamilton, T. E., Gow, K. W., Tochner, Z., Hoffer, F. A., Withycombe, J. S., Shamberger, R. C., Kim, Y., Geller, J. I., Anderson, J. R., Grundy, P. E., & Dome, J. S. (2018). Outcome and prognostic factors in stage III favorable-histology Wilms tumor: a report from the Children's Oncology Group study AREN0532. J Clin Oncol, 36(3), 254–261. https://doi.org/10.1200/jco.2017.73.7999.

    Article  CAS  PubMed  Google Scholar 

  4. Dix, D. B., Seibel, N. L., Chi, Y. Y., Khanna, G., Gratias, E., Anderson, J. R., et al. (2018). Treatment of stage IV favorable histology Wilms tumor with lung metastases: a report from the Children's Oncology Group AREN0533 Study. J Clin Oncol, 36(16), 1564–1570. https://doi.org/10.1200/jco.2017.77.1931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pritchard-Jones, K., Bergeron, C., de Camargo, B., van den Heuvel-Eibrink, M. M., Acha, T., Godzinski, J., et al. (2015). Omission of doxorubicin from the treatment of stage II-III, intermediate-risk Wilms' tumour (SIOP WT 2001): an open-label, non-inferiority, randomised controlled trial. Lancet, 386(9999), 1156–1164. https://doi.org/10.1016/s0140-6736(14)62395-3.

    Article  CAS  PubMed  Google Scholar 

  6. Fernandez, C. V., Perlman, E. J., Mullen, E. A., Chi, Y. Y., Hamilton, T. E., Gow, K. W., et al. (2017). Clinical outcome and biological predictors of relapse after nephrectomy only for very low-risk Wilms tumor: a report from Children's Oncology Group AREN0532. Ann Surg, 265(4), 835–840. https://doi.org/10.1097/sla.0000000000001716.

    Article  PubMed  Google Scholar 

  7. Gadd, S., Huff, V., Walz, A. L., Ooms, A., Armstrong, A. E., Gerhard, D. S., Smith M.A., Auvil J.M.G., Meerzaman D., Chen Q.R., Hsu C.H., Yan C., Nguyen C., Hu Y., Hermida L.C., Davidsen T., Gesuwan P., Ma Y., Zong Z., Mungall A.J., Moore R.A., Marra M.A., Dome J.S., Mullighan C.G., Ma J., Wheeler D.A., Hampton O.A., Ross N., Gastier-Foster J.M., Arold S.T., Perlman E.J. (2017). A Children's Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. 49(10), 1487–1494. https://doi.org/10.1038/ng.3940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Green, D. M., Cotton, C. A., Malogolowkin, M., Breslow, N. E., Perlman, E., Miser, J., Ritchey, M. L., Thomas, P. R., Grundy, P. E., D'Angio, G. J., Beckwith, J. B., Shamberger, R. C., Haase, G. M., Donaldson, M., Weetman, R., Coppes, M. J., Shearer, P., Coccia, P., Kletzel, M., Macklis, R., Tomlinson, G., Huff, V., Newbury, R., & Weeks, D. (2007). Treatment of Wilms tumor relapsing after initial treatment with vincristine and actinomycin D: a report from the National Wilms Tumor Study Group. Pediatr Blood Cancer, 48(5), 493–499. https://doi.org/10.1002/pbc.20822.

    Article  PubMed  Google Scholar 

  9. Spreafico, F., Pritchard Jones, K., Malogolowkin, M. H., Bergeron, C., Hale, J., de Kraker, J., Dallorso, S., Acha, T., de Camargo, B., Dome, J. S., & Graf, N. (2009). Treatment of relapsed Wilms tumors: lessons learned. Expert Rev Anticancer Ther, 9(12), 1807–1815. https://doi.org/10.1586/era.09.159.

    Article  PubMed  Google Scholar 

  10. Malogolowkin, M., Cotton, C. A., Green, D. M., Breslow, N. E., Perlman, E., Miser, J., et al. (2008). Treatment of Wilms tumor relapsing after initial treatment with vincristine, actinomycin D, and doxorubicin. A report from the National Wilms Tumor Study Group. Pediatr Blood Cancer, 50(2), 236–241. https://doi.org/10.1002/pbc.21267.

    Article  PubMed  Google Scholar 

  11. Wong, K. F., Reulen, R. C., Winter, D. L., Guha, J., Fidler, M. M., Kelly, J., Lancashire, E. R., Pritchard-Jones, K., Jenkinson, H. C., Sugden, E., Levitt, G., Frobisher, C., & Hawkins, M. M. (2016). Risk of adverse health and social outcomes up to 50 years after Wilms tumor: The British Childhood Cancer Survivor Study. J Clin Oncol, 34(15), 1772–1779. https://doi.org/10.1200/jco.2015.64.4344.

    Article  CAS  PubMed  Google Scholar 

  12. Termuhlen, A. M., Tersak, J. M., Liu, Q., Yasui, Y., Stovall, M., Weathers, R., et al. (2011). Twenty-five year follow-up of childhood Wilms tumor: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer, 57(7), 1210–1216. https://doi.org/10.1002/pbc.23090.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Burk, C. D., Restaino, I., Kaplan, B. S., & Meadows, A. T. (1990). Ifosfamide-induced renal tubular dysfunction and rickets in children with Wilms tumor. J Pediatr, 117(2 Pt 1), 331–335. https://doi.org/10.1016/s0022-3476(05)80557-8.

    Article  CAS  PubMed  Google Scholar 

  14. Evans, A. E., Norkool, P., Evans, I., Breslow, N., & D'Angio, G. J. (1991). Late effects of treatment for Wilms' tumor. A report from the National Wilms' Tumor Study Group. Cancer, 67(2), 331–336. https://doi.org/10.1002/1097-0142(19910115)67:2<331::aid-cncr2820670202>3.0.co;2-7.

    Article  CAS  PubMed  Google Scholar 

  15. Oji, Y., Tatsumi, N., Kobayashi, J., Fukuda, M., Ueda, T., Nakano, E., Saito, C., Shibata, S., Sumikawa, M., Fukushima, H., Saito, A., Hojo, N., Suzuki, M., Hoshikawa, T., Shimura, T., Morii, E., Oka, Y., Hosen, N., Komatsu, K., & Sugiyama, H. (2015). Wilms' tumor gene WT1 promotes homologous recombination-mediated DNA damage repair. Mol Carcinog, 54(12), 1758–1771. https://doi.org/10.1002/mc.22248.

    Article  CAS  PubMed  Google Scholar 

  16. Rahman, N., Seal, S., Thompson, D., Kelly, P., Renwick, A., Elliott, A., Reid, S., Spanova, K., Barfoot, R., Chagtai, T., Jayatilake, H., McGuffog, L., Hanks, S., Evans, D. G., Eccles, D., Breast Cancer Susceptibility Collaboration (UK), Easton, D. F., & Stratton, M. R. (2007). PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet, 39(2), 165–167. https://doi.org/10.1038/ng1959.

    Article  CAS  PubMed  Google Scholar 

  17. Reid, S., Schindler, D., Hanenberg, H., Barker, K., Hanks, S., Kalb, R., et al. (2007). Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet, 39(2), 162–164. https://doi.org/10.1038/ng1947.

    Article  CAS  PubMed  Google Scholar 

  18. Smith, M. A., Hampton, O. A., Reynolds, C. P., Kang, M. H., Maris, J. M., Gorlick, R., Kolb, E. A., Lock, R., Carol, H., Keir, S. T., Wu, J., Kurmasheva, R. T., Wheeler, D. A., & Houghton, P. J. (2015). Initial testing (stage 1) of the PARP inhibitor BMN 673 by the pediatric preclinical testing program: PALB2 mutation predicts exceptional in vivo response to BMN 673. Pediatr Blood Cancer, 62(1), 91–98. https://doi.org/10.1002/pbc.25201.

    Article  CAS  PubMed  Google Scholar 

  19. Kurmasheva, R. T., Kurmashev, D., Reynolds, C. P., Kang, M., Wu, J., Houghton, P. J., et al. (2018). Initial testing (stage 1) of M6620 (formerly VX-970), a novel ATR inhibitor, alone and combined with cisplatin and melphalan, by the pediatric preclinical testing program. 65(2). https://doi.org/10.1002/pbc.26825.

    Article  Google Scholar 

  20. Kastan, M. B., & Bartek, J. (2004). Cell-cycle checkpoints and cancer. Nature, 432(7015), 316–323. https://doi.org/10.1038/nature03097.

    Article  CAS  PubMed  Google Scholar 

  21. Hall, A. B., Newsome, D., Wang, Y., Boucher, D. M., Eustace, B., Gu, Y., et al. (2014). Potentiation of tumor responses to DNA damaging therapy by the selective ATR inhibitor VX-970. Oncotarget, 5(14), 5674–5685. https://doi.org/10.18632/oncotarget.2158.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Josse, R., Martin, S. E., Guha, R., Ormanoglu, P., Pfister, T. D., Reaper, P. M., et al. (2014). ATR inhibitors VE-821 and VX-970 sensitize cancer cells to topoisomerase i inhibitors by disabling DNA replication initiation and fork elongation responses. Cancer Res, 74(23), 6968–6979. https://doi.org/10.1158/0008-5472.can-13-3369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fokas, E., Prevo, R., Pollard, J. R., Reaper, P. M., Charlton, P. A., Cornelissen, B., Vallis, K. A., Hammond, E. M., Olcina, M. M., Gillies McKenna, W., Muschel, R. J., & Brunner, T. B. (2012). Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis, 3, e441. https://doi.org/10.1038/cddis.2012.181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Logan, C. Y., & Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 20, 781–810. https://doi.org/10.1146/annurev.cellbio.20.010403.113126.

    Article  CAS  PubMed  Google Scholar 

  25. Cortes, J. E., Faderl, S., Pagel, J., Jung, C. W., Yoon, S.-S., Koh, Y., et al. (2015). Phase 1 study of CWP232291 in relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Journal of Clinical Oncology, 33(15_suppl), 7044-7044. https://doi.org/10.1200/jco.2015.33.15_suppl.7044.

    Article  Google Scholar 

  26. Yoon, S.-S., Min, C.-K., Kim, J. S., Manasanch, E. E., Hauptschein, R., Choi, J., et al. (2016). Ongoing phase 1a/1b dose-finding study of CWP232291 (CWP291) in relapsed or refractory multiple myeloma (MM). Blood, 128(22), 4501–4501. https://doi.org/10.1182/blood.V128.22.4501.4501.

    Article  Google Scholar 

  27. Tabatabai, R., Linhares, Y., Bolos, D., Mita, M., & Mita, A. (2017). Targeting the Wnt pathway in cancer: a review of novel therapeutics. Target Oncol, 12(5), 623–641. https://doi.org/10.1007/s11523-017-0507-4.

    Article  PubMed  Google Scholar 

  28. Nomura, M., Rainusso, N., Lee, Y. C., Dawson, B., Coarfa, C., Han, R., et al. (2019). Tegavivint and the beta-catenin/ALDH axis in chemotherapy-resistant and metastatic osteosarcoma. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djz026.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Walz, A. L., Ooms, A., Gadd, S., Gerhard, D. S., Smith, M. A., Guidry Auvil, J. M., Meerzaman, D., Chen, Q. R., Hsu, C. H., Yan, C., Nguyen, C., Hu, Y., Bowlby, R., Brooks, D., Ma, Y., Mungall, A. J., Moore, R. A., Schein, J., Marra, M. A., Huff, V., Dome, J. S., Chi, Y. Y., Mullighan, C. G., Ma, J., Wheeler, D. A., Hampton, O. A., Jafari, N., Ross, N., Gastier-Foster, J. M., & Perlman, E. J. (2015). Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell, 27(2), 286–297. https://doi.org/10.1016/j.ccell.2015.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hua, Y., Larsen, N., Kalyana-Sundaram, S., Kjems, J., Chinnaiyan, A. M., & Peter, M. E. (2013). miRConnect 2.0: identification of oncogenic, antagonistic miRNA families in three human cancers. BMC Genomics, 14, 179. https://doi.org/10.1186/1471-2164-14-179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vo, D. D., & Duca, M. (2017). Design of multimodal small molecules targeting miRNAs biogenesis: synthesis and in vitro evaluation. Methods Mol Biol, 1517, 137–154. https://doi.org/10.1007/978-1-4939-6563-2_10.

    Article  CAS  PubMed  Google Scholar 

  32. Yap, L. W., Brok, J., & Pritchard-Jones, K. (2017). Role of CD56 in normal kidney development and Wilms tumorigenesis. Fetal Pediatr Pathol, 36(1), 62–75. https://doi.org/10.1080/15513815.2016.1256358.

    Article  CAS  PubMed  Google Scholar 

  33. Jin, L., Hemperly, J. J., & Lloyd, R. V. (1991). Expression of neural cell adhesion molecule in normal and neoplastic human neuroendocrine tissues. Am J Pathol, 138(4), 961–969.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wood, A. C., Maris, J. M., Gorlick, R., Kolb, E. A., Keir, S. T., Reynolds, C. P., Kang, M. H., Wu, J., Kurmasheva, R. T., Whiteman, K., Houghton, P. J., & Smith, M. A. (2013). Initial testing (Stage 1) of the antibody-maytansinoid conjugate, IMGN901 (lorvotuzumab mertansine), by the pediatric preclinical testing program. Pediatr Blood Cancer, 60(11), 1860–1867. https://doi.org/10.1002/pbc.24647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ambrosini, G., Adida, C., & Altieri, D. C. (1997). A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med, 3(8), 917–921. https://doi.org/10.1038/nm0897-917.

    Article  CAS  PubMed  Google Scholar 

  36. Hopkins-Donaldson, S., Bodmer, J. L., Bourloud, K. B., Brognara, C. B., Tschopp, J., & Gross, N. (2000). Loss of caspase-8 expression in neuroblastoma is related to malignancy and resistance to TRAIL-induced apoptosis. Med Pediatr Oncol, 35(6), 608–611. https://doi.org/10.1002/1096-911x(20001201)35:6<608::aid-mpo25>3.0.co;2-u.

    Article  CAS  PubMed  Google Scholar 

  37. Teitz, T., Lahti, J. M., & Kidd, V. J. (2001). Aggressive childhood neuroblastomas do not express caspase-8: an important component of programmed cell death. J Mol Med (Berl), 79(8), 428–436.

    Article  CAS  Google Scholar 

  38. Fulda, S., Sieverts, H., Friesen, C., Herr, I., & Debatin, K. M. (1997). The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res, 57(17), 3823–3829.

    CAS  PubMed  Google Scholar 

  39. Friesen, C., Herr, I., Krammer, P. H., & Debatin, K. M. (1996). Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nat Med, 2(5), 574–577. https://doi.org/10.1038/nm0596-574.

    Article  CAS  PubMed  Google Scholar 

  40. Takamizawa, S., Scott, D., Wen, J., Grundy, P., Bishop, W., Kimura, K., & Sandler, A. (2001). The survivin:fas ratio in pediatric renal tumors. J Pediatr Surg, 36(1), 37–42. https://doi.org/10.1053/jpsu.2001.20000.

    Article  CAS  PubMed  Google Scholar 

  41. Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R. D., & Korsmeyer, S. J. (1990). Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature, 348(6299), 334–336. https://doi.org/10.1038/348334a0.

    Article  CAS  PubMed  Google Scholar 

  42. Re, G. G., Hazen-Martin, D. J., Bahtimi, R. E., Brownlee, N. A., Willingham, M. C., & Garvin, A. J. (1999). Prognostic significance of Bcl-2 in Wilms' tumor and oncogenic potential of Bcl-XL in rare tumor cases. International Journal of Cancer, 84(2), 192–200. https://doi.org/10.1002/(sici)1097-0215(19990420)84:2<192::aid-ijc17>3.0.co;2-1.

    Article  CAS  PubMed  Google Scholar 

  43. Scott, R. H., Murray, A., Baskcomb, L., Turnbull, C., Loveday, C., Al-Saadi, R., et al. (2012). Stratification of Wilms tumor by genetic and epigenetic analysis. Oncotarget, 3(3), 327–335. https://doi.org/10.18632/oncotarget.468.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Segers, H., Kersseboom, R., Alders, M., Pieters, R., Wagner, A., & van den Heuvel-Eibrink, M. M. (2012). Frequency of WT1 and 11p15 constitutional aberrations and phenotypic correlation in childhood Wilms tumour patients. Eur J Cancer, 48(17), 3249–3256. https://doi.org/10.1016/j.ejca.2012.06.008.

    Article  CAS  PubMed  Google Scholar 

  45. Gadd, S., Huff, V., Huang, C. C., Ruteshouser, E. C., Dome, J. S., Grundy, P. E., Breslow, N., Jennings, L., Green, D. M., Beckwith, J. B., & Perlman, E. J. (2012). Clinically relevant subsets identified by gene expression patterns support a revised ontogenic model of Wilms tumor: a Children's Oncology Group study. Neoplasia, 14(8), 742–756. https://doi.org/10.1593/neo.12714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maschietto, M., Charlton, J., Perotti, D., Radice, P., Geller, J. I., Pritchard-Jones, K., et al. (2014). The IGF signalling pathway in Wilms tumours--a report from the ENCCA Renal Tumours Biology-driven drug development workshop. Oncotarget, 5(18), 8014–8026. https://doi.org/10.18632/oncotarget.2485.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Beckwith, J. B., & Palmer, N. F. (1978). Histopathology and prognosis of Wilms tumors: results from the first National Wilms' Tumor Study. Cancer, 41(5), 1937–1948. https://doi.org/10.1002/1097-0142(197805)41:5<1937::aid-cncr2820410538>3.0.co;2-u.

  48. Zuppan, C. W., Beckwith, J. B., & Luckey, D. W. (1988). Anaplasia in unilateral Wilms' tumor: a report from the National Wilms' Tumor Study Pathology Center. Hum Pathol, 19(10), 1199–1209. https://doi.org/10.1016/s0046-8177(88)80152-7.

    Article  CAS  PubMed  Google Scholar 

  49. Dome, J. S., Cotton, C. A., Perlman, E. J., Breslow, N. E., Kalapurakal, J. A., Ritchey, M. L., Grundy, P. E., Malogolowkin, M., Beckwith, J. B., Shamberger, R. C., Haase, G. M., Coppes, M. J., Coccia, P., Kletzel, M., Weetman, R. M., Donaldson, M., Macklis, R. M., & Green, D. M. (2006). Treatment of anaplastic histology Wilms' tumor: results from the fifth National Wilms' Tumor Study. J Clin Oncol, 24(15), 2352–2358. https://doi.org/10.1200/jco.2005.04.7852.

    Article  PubMed  Google Scholar 

  50. Ooms, A. H., Gadd, S., Gerhard, D. S., Smith, M. A., Guidry Auvil, J. M., Meerzaman, D., Chen, Q. R., Hsu, C. H., Yan, C., Nguyen, C., Hu, Y., Ma, Y., Zong, Z., Mungall, A. J., Moore, R. A., Marra, M. A., Huff, V., Dome, J. S., Chi, Y. Y., Tian, J., Geller, J. I., Mullighan, C. G., Ma, J., Wheeler, D. A., Hampton, O. A., Walz, A. L., van den Heuvel-Eibrink, M., de Krijger, R. R., Ross, N., Gastier-Foster, J. M., & Perlman, E. J. (2016). Significance of TP53 mutation in Wilms tumors with diffuse anaplasia: a report from the Children's Oncology Group. Clin Cancer Res, 22(22), 5582–5591. https://doi.org/10.1158/1078-0432.ccr-16-0985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Daw, N. C., Anderson, J. R., Hoffer, F. A., Geller, J. I., Kalapurakal, J. A., Perlman, E. J., et al. (2014). A phase 2 study of vincristine and irinotecan in metastatic diffuse anaplastic Wilms tumor: results from the Children’s Oncology Group AREN0321 study. Journal of Clinical Oncology, 32(15_suppl), 10032–10032. https://doi.org/10.1200/jco.2014.32.15_suppl.10032.

    Article  Google Scholar 

  52. Houghton, P. J., Kurmasheva, R. T., Gorlick, R., Kolb, E. A., Mosse, Y. P., Erickson, S. W., et al. (2018). Abstract LB-B15: pediatric preclinical testing consortium evaluation of the AZD1775 as a single agent and in combination with irinotecan. Mol Cancer Ther, 17(1 Supplement), LB-B15-LB-B15. https://doi.org/10.1158/1535-7163.targ-17-lb-b15.

    Article  Google Scholar 

  53. Geenen, J. J. J., & Schellens, J. H. M. (2017). Molecular pathways: targeting the protein kinase Wee1 in cancer. Clin Cancer Res, 23(16), 4540–4544. https://doi.org/10.1158/1078-0432.ccr-17-0520.

    Article  CAS  PubMed  Google Scholar 

  54. Hirai, H., Iwasawa, Y., Okada, M., Arai, T., Nishibata, T., Kobayashi, M., Kimura, T., Kaneko, N., Ohtani, J., Yamanaka, K., Itadani, H., Takahashi-Suzuki, I., Fukasawa, K., Oki, H., Nambu, T., Jiang, J., Sakai, T., Arakawa, H., Sakamoto, T., Sagara, T., Yoshizumi, T., Mizuarai, S., & Kotani, H. (2009). Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther, 8(11), 2992–3000. https://doi.org/10.1158/1535-7163.mct-09-0463.

    Article  CAS  PubMed  Google Scholar 

  55. Bridges, K. A., Hirai, H., Buser, C. A., Brooks, C., Liu, H., Buchholz, T. A., et al. (2011). MK-1775, a novel Wee1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Clin Cancer Res, 17(17), 5638–5648. https://doi.org/10.1158/1078-0432.ccr-11-0650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rajeshkumar, N. V., De Oliveira, E., Ottenhof, N., Watters, J., Brooks, D., Demuth, T., et al. (2011). MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res, 17(9), 2799–2806. https://doi.org/10.1158/1078-0432.ccr-10-2580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. King, C., Diaz, H. B., McNeely, S., Barnard, D., Dempsey, J., Blosser, W., Beckmann, R., Barda, D., & Marshall, M. S. (2015). LY2606368 causes replication catastrophe and antitumor effects through CHK1-dependent mechanisms. Mol Cancer Ther, 14(9), 2004–2013. https://doi.org/10.1158/1535-7163.mct-14-1037.

    Article  CAS  PubMed  Google Scholar 

  58. Lowery, C. D., VanWye, A. B., Dowless, M., Blosser, W., Falcon, B. L., Stewart, J., et al. (2017). The checkpoint kinase 1 inhibitor prexasertib induces regression of preclinical models of human neuroblastoma. Clin Cancer Res, 23(15), 4354–4363. https://doi.org/10.1158/1078-0432.ccr-16-2876.

    Article  CAS  PubMed  Google Scholar 

  59. Tarhini, A., Lo, E., & Minor, D. R. (2010). Releasing the brake on the immune system: ipilimumab in melanoma and other tumors. Cancer Biother Radiopharm, 25(6), 601–613. https://doi.org/10.1089/cbr.2010.0865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peggs, K. S., Quezada, S. A., Korman, A. J., & Allison, J. P. (2006). Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr Opin Immunol, 18(2), 206–213. https://doi.org/10.1016/j.coi.2006.01.011.

    Article  CAS  PubMed  Google Scholar 

  61. Freeman, G. J., Long, A. J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., et al. (2000). Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med, 192(7), 1027–1034. https://doi.org/10.1084/jem.192.7.1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brahmer, J. R., Tykodi, S. S., Chow, L. Q., Hwu, W. J., Topalian, S. L., Hwu, P., Drake, C. G., Camacho, L. H., Kauh, J., Odunsi, K., Pitot, H. C., Hamid, O., Bhatia, S., Martins, R., Eaton, K., Chen, S., Salay, T. M., Alaparthy, S., Grosso, J. F., Korman, A. J., Parker, S. M., Agrawal, S., Goldberg, S. M., Pardoll, D. M., Gupta, A., & Wigginton, J. M. (2012). Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med, 366(26), 2455–2465. https://doi.org/10.1056/NEJMoa1200694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Routh, J. C., Ashley, R. A., Sebo, T. J., Lohse, C. M., Husmann, D. A., Kramer, S. A., & Kwon, E. D. (2008). B7-H1 expression in Wilms tumor: correlation with tumor biology and disease recurrence. J Urol, 179(5), 1954–1959; discussion 1959-1960. https://doi.org/10.1016/j.juro.2008.01.056.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Holl, E. K., Routh, J. C., Johnston, A. W., Frazier, V., Rice, H. E., Tracy, E. T., et al. (2019). Immune expression in children with Wilms tumor: a pilot study. J Pediatr Urol. https://doi.org/10.1016/j.jpurol.2019.03.011.

    Article  PubMed  Google Scholar 

  65. Geller, J. I., Y.-Y. C., Kalapurakal, J. A., Daw, N., Kim, Y., Kalapurakal, J. A., Hoffer, F. A., Perlman, E. J., Ehrlich, P. F., Mullen, E. A., Warwick, A., Paulino, A., Tochner, Z., Gow, K., Grundy, P. E., Gratias, E., Ward, D., Anderson, J. R., Fernandez, C., & Dome, J. S. (2014). Rhabdoid tumor: results from the Children’s Oncology Group AREN0321 study at the 46th Congress of the International Society of Paediatric Oncology (SIOP) 2014. Pediatr Blood Cancer, 61(S2), S105–S433. https://doi.org/10.1002/pbc.25314.

    Article  Google Scholar 

  66. Roberts, C. W., & Biegel, J. A. (2009). The role of SMARCB1/INI1 in development of rhabdoid tumor. Cancer Biol Ther, 8(5), 412–416. https://doi.org/10.4161/cbt.8.5.8019.

    Article  CAS  PubMed  Google Scholar 

  67. Wilson, B. G., & Roberts, C. W. (2011). SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer, 11(7), 481–492. https://doi.org/10.1038/nrc3068.

    Article  CAS  PubMed  Google Scholar 

  68. Tsikitis, M., Zhang, Z., Edelman, W., Zagzag, D., & Kalpana, G. V. (2005). Genetic ablation of cyclin D1 abrogates genesis of rhabdoid tumors resulting from Ini1 loss. Proc Natl Acad Sci U S A, 102(34), 12129–12134. https://doi.org/10.1073/pnas.0505300102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gadd, S., Sredni, S. T., Huang, C. C., & Perlman, E. J. (2010). Rhabdoid tumor: gene expression clues to pathogenesis and potential therapeutic targets. Lab Invest, 90(5), 724–738. https://doi.org/10.1038/labinvest.2010.66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee, S., Cimica, V., Ramachandra, N., Zagzag, D., & Kalpana, G. V. (2011). Aurora A is a repressed effector target of the chromatin remodeling protein INI1/hSNF5 required for rhabdoid tumor cell survival. Cancer Res, 71(9), 3225–3235. https://doi.org/10.1158/0008-5472.can-10-2167.

    Article  CAS  PubMed  Google Scholar 

  71. Kramer, K. F., Moreno, N., Fruhwald, M. C., & Kerl, K. (2017). BRD9 inhibition, alone or in combination with cytostatic compounds as a therapeutic approach in rhabdoid tumors. Int J Mol Sci, 18(7). https://doi.org/10.3390/ijms18071537.

    Article  PubMed Central  Google Scholar 

  72. Knutson, S. K., Warholic, N. M., Wigle, T. J., Klaus, C. R., Allain, C. J., Raimondi, A., et al. (2013). Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci U S A, 110(19), 7922–7927. https://doi.org/10.1073/pnas.1303800110.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kurmasheva, R. T., Sammons, M., Favours, E., Wu, J., Kurmashev, D., Cosmopoulos, K., Keilhack, H., Klaus, C. R., Houghton, P. J., & Smith, M. A. (2017). Initial testing (stage 1) of tazemetostat (EPZ-6438), a novel EZH2 inhibitor, by the pediatric preclinical testing program. Pediatr Blood Cancer, 64(3). https://doi.org/10.1002/pbc.26218.

    Article  Google Scholar 

  74. Carol, H., Boehm, I., Reynolds, C. P., Kang, M. H., Maris, J. M., Morton, C. L., Gorlick, R., Kolb, E. A., Keir, S. T., Wu, J., Wozniak, A. E., Yang, Y., Manfredi, M., Ecsedy, J., Wang, J., Neale, G., Houghton, P. J., Smith, M. A., & Lock, R. B. (2011). Efficacy and pharmacokinetic/pharmacodynamic evaluation of the Aurora kinase A inhibitor MLN8237 against preclinical models of pediatric cancer. Cancer Chemother Pharmacol, 68(5), 1291–1304. https://doi.org/10.1007/s00280-011-1618-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Geoerger, B., Bourdeaut, F., DuBois, S. G., Fischer, M., Geller, J. I., Gottardo, N. G., et al. (2017). A phase I study of the CDK4/6 inhibitor ribociclib (LEE011) in pediatric patients with malignant rhabdoid tumors, neuroblastoma, and other solid tumors. Clin Cancer Res, 23(10), 2433–2441. https://doi.org/10.1158/1078-0432.ccr-16-2898.

    Article  CAS  PubMed  Google Scholar 

  76. Cole, K. A., Houghton, P. J., Kurmasheva, R. T., Gorlick, R., Kolb, E. A., Kang, M., et al. (2018). Abstract LB-B13: pediatric preclinical testing consortium evaluation of the CHK1 inhibitor prexasertib. Mol Cancer Ther, 17(1 Supplement), LB-B13-LB-B13. https://doi.org/10.1158/1535-7163.targ-17-lb-b13.

    Article  Google Scholar 

  77. Abro, B., Kaushal, M., Chen, L., Wu, R., Dehner, L. P., Pfeifer, J. D., et al. (2019). Tumor mutation burden, DNA mismatch repair status and checkpoint immunotherapy markers in primary and relapsed malignant rhabdoid tumors. Pathol Res Pract, 215(6), 152395. https://doi.org/10.1016/j.prp.2019.03.023.

    Article  CAS  PubMed  Google Scholar 

  78. Leruste, A., Han, Z.-Y., Tauziède-Espariat, A., Caudana, P., Waterfall, J. J., Andrianteranagna, M., et al. (2018). Abstract PR03: analysis of immune infiltrate identifies checkpoint blockade and TLR3 activation as efficient synergistic combination of immunotherapy in rhabdoid tumors. Cancer Res, 78(19 Supplement), PR03-PR03. https://doi.org/10.1158/1538-7445.pedca17-pr03.

    Article  Google Scholar 

  79. Geller, J. I., Ehrlich, P. F., Cost, N. G., Khanna, G., Mullen, E. A., Gratias, E. J., et al. (2015). Characterization of adolescent and pediatric renal cell carcinoma: a report from the Children's Oncology Group study AREN03B2. Cancer, 121(14), 2457–2464. https://doi.org/10.1002/cncr.29368.

    Article  PubMed  Google Scholar 

  80. Geller, J. I., & Dome, J. S. (2004). Local lymph node involvement does not predict poor outcome in pediatric renal cell carcinoma. Cancer, 101(7), 1575–1583. https://doi.org/10.1002/cncr.20548.

    Article  PubMed  Google Scholar 

  81. Tsuda, M., Davis, I. J., Argani, P., Shukla, N., McGill, G. G., Nagai, M., et al. (2007). TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res, 67(3), 919–929. https://doi.org/10.1158/0008-5472.can-06-2855.

    Article  CAS  PubMed  Google Scholar 

  82. Munshi, N., Jeay, S., Li, Y., Chen, C. R., France, D. S., Ashwell, M. A., et al. (2010). ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity. Mol Cancer Ther, 9(6), 1544–1553. https://doi.org/10.1158/1535-7163.mct-09-1173.

    Article  CAS  PubMed  Google Scholar 

  83. Wagner, A. J., Goldberg, J. M., Dubois, S. G., Choy, E., Rosen, L., Pappo, A., et al. (2012). Tivantinib (ARQ 197), a selective inhibitor of MET, in patients with microphthalmia transcription factor-associated tumors: results of a multicenter phase 2 trial. Cancer, 118(23), 5894–5902. https://doi.org/10.1002/cncr.27582.

    Article  CAS  PubMed  Google Scholar 

  84. Damayanti, N. P., Budka, J. A., Khella, H. W. Z., Ferris, M. W., Ku, S. Y., Kauffman, E., Wood, A. C., Ahmed, K., Chintala, V. N., Adelaiye-Ogala, R., Elbanna, M., Orillion, A., Chintala, S., Kao, C., Linehan, W. M., Yousef, G. M., Hollenhorst, P. C., & Pili, R. (2018). Therapeutic targeting of TFE3/IRS-1/PI3K/mTOR axis in translocation renal cell carcinoma. Clin Cancer Res, 24(23), 5977–5989. https://doi.org/10.1158/1078-0432.ccr-18-0269.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Parikh, J., Coleman, T., Messias, N., & Brown, J. (2009). Temsirolimus in the treatment of renal cell carcinoma associated with Xp11.2 translocation/TFE gene fusion proteins: a case report and review of literature. Rare Tumors, 1(2), e53. https://doi.org/10.4081/rt.2009.e53.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Malouf, G. G., Camparo, P., Oudard, S., Schleiermacher, G., Theodore, C., Rustine, A., Dutcher, J., Billemont, B., Rixe, O., Bompas, E., Guillot, A., Boccon-Gibod, L., Couturier, J., Molinié, V., & Escudier, B. (2010). Targeted agents in metastatic Xp11 translocation/TFE3 gene fusion renal cell carcinoma (RCC): a report from the Juvenile RCC Network. Ann Oncol, 21(9), 1834–1838. https://doi.org/10.1093/annonc/mdq029.

    Article  CAS  PubMed  Google Scholar 

  87. Choueiri, T. K., Lim, Z. D., Hirsch, M. S., Tamboli, P., Jonasch, E., McDermott, D. F., et al. (2010). Vascular endothelial growth factor-targeted therapy for the treatment of adult metastatic Xp11.2 translocation renal cell carcinoma. Cancer, 116(22), 5219–5225. https://doi.org/10.1002/cncr.25512.

    Article  CAS  PubMed  Google Scholar 

  88. Liu, Y. C., Chang, P. M., Liu, C. Y., Yang, C. Y., Chen, M. H., Pan, C. C., & Chen, M. H. (2011). Sunitinib-induced nephrotic syndrome in association with drug response in a patient with Xp11.2 translocation renal cell carcinoma. Jpn J Clin Oncol, 41(11), 1277–1281. https://doi.org/10.1093/jjco/hyr140.

    Article  PubMed  Google Scholar 

  89. Hou, M. M., Hsieh, J. J., Chang, N. J., Huang, H. Y., Wang, H. M., Chuang, C. K., Hsu, T., & Chang, J. W. C. (2010). Response to sorafenib in a patient with metastatic xp11 translocation renal cell carcinoma. Clin Drug Investig, 30(11), 799–804. https://doi.org/10.2165/11537220-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  90. Ambalavanan, M., & Geller, J. I. (2019). Treatment of advanced pediatric renal cell carcinoma. 66(8), e27766. https://doi.org/10.1002/pbc.27766.

  91. Geller, J. I., Fox, E., Turpin, B. K., Goldstein, S. L., Liu, X., Minard, C. G., Kudgus, R. A., Reid, J. M., Berg, S. L., & Weigel, B. J. (2018). A study of axitinib, a VEGF receptor tyrosine kinase inhibitor, in children and adolescents with recurrent or refractory solid tumors: a Children's Oncology Group phase 1 and pilot consortium trial (ADVL1315). Cancer, 124(23), 4548–4555. https://doi.org/10.1002/cncr.31725.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, C., Duan, Y., Xia, M., Dong, Y., Chen, Y., Zheng, L., et al. (2019). TFEB mediates immune evasion and resistance to mTOR inhibition of renal cell carcinoma via induction of PD-L1. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.ccr-19-0733.

    Article  PubMed  Google Scholar 

  93. McDermott, D. F., Drake, C. G., Sznol, M., Choueiri, T. K., Powderly, J. D., Smith, D. C., et al. (2015). Survival, durable response, and long-term safety in patients with previously treated advanced renal cell carcinoma receiving nivolumab. J Clin Oncol, 33(18), 2013–2020. https://doi.org/10.1200/jco.2014.58.1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Motzer, R. J., Penkov, K., Haanen, J., Rini, B., Albiges, L., Campbell, M. T., Venugopal, B., Kollmannsberger, C., Negrier, S., Uemura, M., Lee, J. L., Vasiliev, A., Miller WH Jr, Gurney, H., Schmidinger, M., Larkin, J., Atkins, M. B., Bedke, J., Alekseev, B., Wang, J., Mariani, M., Robbins, P. B., Chudnovsky, A., Fowst, C., Hariharan, S., Huang, B., di Pietro, A., & Choueiri, T. K. (2019). Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med, 380(12), 1103–1115. https://doi.org/10.1056/NEJMoa1816047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rini, B. I., Plimack, E. R., Stus, V., Gafanov, R., Hawkins, R., Nosov, D., Pouliot, F., Alekseev, B., Soulières, D., Melichar, B., Vynnychenko, I., Kryzhanivska, A., Bondarenko, I., Azevedo, S. J., Borchiellini, D., Szczylik, C., Markus, M., McDermott, R., Bedke, J., Tartas, S., Chang, Y. H., Tamada, S., Shou, Q., Perini, R. F., Chen, M., Atkins, M. B., Powles, T., & KEYNOTE-426 Investigators. (2019). Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med, 380(12), 1116–1127. https://doi.org/10.1056/NEJMoa1816714.

    Article  CAS  PubMed  Google Scholar 

  96. Davis Jr., C. J., Mostofi, F. K., & Sesterhenn, I. A. (1995). Renal medullary carcinoma. The seventh sickle cell nephropathy. Am J Surg Pathol, 19(1), 1–11. https://doi.org/10.1097/00000478-199501000-00001.

    Article  PubMed  Google Scholar 

  97. Beckermann, K. E., Sharma, D., Chaturvedi, S., Msaouel, P., Abboud, M. R., Allory, Y., Bourdeaut, F., Calderaro, J., de Cubas, A. A., Derebail, V. K., Hong, A. L., Naik, R. P., Malouf, G. G., Mullen, E. A., Reuter, V. E., Roberts, C. W. M., Walker, C. L., Wood, C. G., DeBaun, M., van Poppel, H., Tannir, N. M., & Rathmell, W. K. (2017). Renal medullary carcinoma: establishing standards in practice. Journal of Oncology Practice, 13(7), 414–421. https://doi.org/10.1200/jop.2017.020909.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hakimi, A. A., Koi, P. T., Milhoua, P. M., Blitman, N. M., Li, M., Hugec, V., Dutcher, J. P., & Ghavamian, R. (2007). Renal medullary carcinoma: the Bronx experience. Urology, 70(5), 878–882. https://doi.org/10.1016/j.urology.2007.06.1124.

    Article  PubMed  Google Scholar 

  99. Watanabe, I. C., Billis, A., Guimaraes, M. S., Alvarenga, M., de Matos, A. C., Cardinalli, I. A., et al. (2007). Renal medullary carcinoma: report of seven cases from Brazil. Mod Pathol, 20(9), 914–920. https://doi.org/10.1038/modpathol.3800934.

    Article  PubMed  Google Scholar 

  100. Cheng, J. X., Tretiakova, M., Gong, C., Mandal, S., Krausz, T., & Taxy, J. B. (2008). Renal medullary carcinoma: rhabdoid features and the absence of INI1 expression as markers of aggressive behavior. Mod Pathol, 21(6), 647–652. https://doi.org/10.1038/modpathol.2008.44.

    Article  CAS  PubMed  Google Scholar 

  101. Msaouel, P., Tannir, N. M., & Walker, C. L. (2018). A model linking sickle cell hemoglobinopathies and SMARCB1 loss in renal medullary carcinoma. Clin Cancer Res, 24(9), 2044–2049. https://doi.org/10.1158/1078-0432.ccr-17-3296.

    Article  CAS  PubMed  Google Scholar 

  102. Genovese, G., Carugo, A., Tepper, J., Robinson, F. S., Li, L., Svelto, M., Nezi, L., Corti, D., Minelli, R., Pettazzoni, P., Gutschner, T., Wu, C. C., Seth, S., Akdemir, K. C., Leo, E., Amin, S., Molin, M. D., Ying, H., Kwong, L. N., Colla, S., Takahashi, K., Ghosh, P., Giuliani, V., Muller, F., Dey, P., Jiang, S., Garvey, J., Liu, C. G., Zhang, J., Heffernan, T. P., Toniatti, C., Fleming, J. B., Goggins, M. G., Wood, L. D., Sgambato, A., Agaimy, A., Maitra, A., Roberts, C. W. M., Wang, H., Viale, A., DePinho, R. A., Draetta, G. F., & Chin, L. (2017). Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature, 542(7641), 362–366. https://doi.org/10.1038/nature21064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Msaouel, P., Hong, A. L., Mullen, E. A., Atkins, M. B., Walker, C. L., Lee, C. H., et al. (2019). Updated recommendations on the diagnosis, management, and clinical trial eligibility criteria for patients with renal medullary carcinoma. Clin Genitourin Cancer, 17(1), 1–6. https://doi.org/10.1016/j.clgc.2018.09.005.

    Article  PubMed  Google Scholar 

  104. Beckermann, K. E., Jolly, P. C., Kim, J. Y., Bordeaux, J., Puzanov, I., Rathmell, W. K., & Johnson, D. B. (2017). Clinical and immunologic correlates of response to PD-1 blockade in a patient with metastatic renal medullary carcinoma. J Immunother Cancer, 5, 1–5. https://doi.org/10.1186/s40425-016-0206-1.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sodji, Q., Klein, K., Sravan, K., & Parikh, J. (2017). Predictive role of PD-L1 expression in the response of renal medullary carcinoma to PD-1 inhibition. 5(1), 62. https://doi.org/10.1186/s40425-017-0267-9.

  106. Furtwangler, R., Gooskens, S. L., van Tinteren, H., de Kraker, J., Schleiermacher, G., Bergeron, C., et al. (2013). Clear cell sarcomas of the kidney registered on International Society of Pediatric Oncology (SIOP) 93-01 and SIOP 2001 protocols: a report of the SIOP Renal Tumour Study Group. Eur J Cancer, 49(16), 3497–3506. https://doi.org/10.1016/j.ejca.2013.06.036.

    Article  CAS  PubMed  Google Scholar 

  107. Gooskens, S. L., Graf, N., Furtwangler, R., Spreafico, F., Bergeron, C., Ramirez-Villar, G. L., et al. (2018). Position paper: rationale for the treatment of children with CCSK in the UMBRELLA SIOP-RTSG 2016 protocol. Nat Rev Urol, 15(5), 309–319. https://doi.org/10.1038/nrurol.2018.14.

    Article  PubMed  Google Scholar 

  108. Astolfi, A., Melchionda, F., Perotti, D., Fois, M., Indio, V., Urbini, M., et al. (2015). Whole transcriptome sequencing identifies BCOR internal tandem duplication as a common feature of clear cell sarcoma of the kidney. Oncotarget, 6(38), 40934–40939. https://doi.org/10.18632/oncotarget.5882.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Roy, A., Kumar, V., Zorman, B., Fang, E., Haines, K. M., Doddapaneni, H., et al. (2015). Recurrent internal tandem duplications of BCOR in clear cell sarcoma of the kidney. Nat Commun, 6, 8891. https://doi.org/10.1038/ncomms9891.

    Article  CAS  PubMed  Google Scholar 

  110. Karlsson, J., Lilljebjorn, H., Holmquist Mengelbier, L., Valind, A., Rissler, M., Ora, I., et al. (2015). Activation of human telomerase reverse transcriptase through gene fusion in clear cell sarcoma of the kidney. Cancer Lett, 357(2), 498–501. https://doi.org/10.1016/j.canlet.2014.11.057.

    Article  CAS  PubMed  Google Scholar 

  111. Gooskens, S. L., Gadd, S., van den Heuvel-Eibrink, M. M., & Perlman, E. J. (2016). BCOR internal tandem duplications in clear cell sarcoma of the kidney. Genes Chromosomes Cancer, 55(6), 549–550. https://doi.org/10.1002/gcc.22353.

    Article  CAS  PubMed  Google Scholar 

  112. Cutcliffe, C., Kersey, D., Huang, C. C., Zeng, Y., Walterhouse, D., & Perlman, E. J. (2005). Clear cell sarcoma of the kidney: up-regulation of neural markers with activation of the sonic hedgehog and Akt pathways. Clin Cancer Res, 11(22), 7986–7994. https://doi.org/10.1158/1078-0432.ccr-05-1354.

    Article  CAS  PubMed  Google Scholar 

  113. Kenny, C., McDonagh, N., Lazaro, A., O'Meara, E., Klinger, R., O'Connor, D., et al. (2018). Dysregulated mitogen-activated protein kinase signalling as an oncogenic basis for clear cell sarcoma of the kidney. J Pathol, 244(3), 334–345. https://doi.org/10.1002/path.5020.

    Article  CAS  PubMed  Google Scholar 

  114. Glick, R. D., Hicks, M. J., Nuchtern, J. G., Wesson, D. E., Olutoye, O. O., & Cass, D. L. (2004). Renal tumors in infants less than 6 months of age. J Pediatr Surg, 39(4), 522–525. https://doi.org/10.1016/j.jpedsurg.2003.12.007.

    Article  PubMed  Google Scholar 

  115. Vokuhl, C., Nourkami-Tutdibi, N., & Furtwangler, R. (2018). ETV6-NTRK3 in congenital mesoblastic nephroma: a report of the SIOP/GPOH nephroblastoma study. 65(4). https://doi.org/10.1002/pbc.26925.

    Article  Google Scholar 

  116. Ortiz, M. V., Ahmed, S., Burns, M., Henssen, A. G., Hollmann, T. J., MacArthur, I., et al. (2019). Prohibitin is a prognostic marker and therapeutic target to block chemotherapy resistance in Wilms' tumor. JCI Insight, 4(15). https://doi.org/10.1172/jci.insight.127098.

  117. Hong, A. L., Tseng, Y. Y., Wala, J. A., Kim, W. J., Kynnap, B. D., Doshi, M. B., et al. (2019). Renal medullary carcinomas depend upon SMARCB1 loss and are sensitive to proteasome inhibition. 8. https://doi.org/10.7554/eLife.44161.

  118. Clevers, H. (2016). Modeling development and disease with organoids. Cell, 165(7), 1586–1597. https://doi.org/10.1016/j.cell.2016.05.082.

    Article  CAS  PubMed  Google Scholar 

  119. Schutgens, F., Rookmaaker, M. B., Margaritis, T., Rios, A., Ammerlaan, C., Jansen, J., et al. (2019). Tubuloids derived from human adult kidney and urine for personalized disease modeling. 37(3), 303–313. https://doi.org/10.1038/s41587-019-0048-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Drs. Fernandez and Geller are supported in part by National Clinical Trials Network Committee Leadership under the 2U10CA180886 Grant from the National Cancer Institute and National Institutes of Health, to support the Children’s Oncology Group. The authors wish to thank the parents and children with pediatric renal cancer who have participated in clinical trials and genetic sequencing efforts which provide the basis for this review. We also wish to thank the many investigators, pediatric oncologists, pathologists, surgeons, radiation oncologists, radiologists, researchers, and other health professionals who manage the children entered on clinical trials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy L. Walz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walz, A.L., Fernandez, C.V. & Geller, J.I. Novel therapy for pediatric and adolescent kidney cancer. Cancer Metastasis Rev 38, 643–655 (2019). https://doi.org/10.1007/s10555-019-09822-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-019-09822-4

Keywords

Navigation