Skip to main content

Advertisement

Log in

Involvement of aberrantly expressed microRNAs in the pathogenesis of head and neck squamous cell carcinoma

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that act as fine-tuners of the post-transcriptional control of protein-coding or noncoding RNAs by repressing translation or cleaving RNA transcripts in a sequence-dependent manner in cells. Accumulating evidence have been indicated that aberrantly expressed miRNAs are deeply involved in human pathogenesis, including cancers. Surprisingly, these small, single-stranded RNAs (18–23 nucleotides) have been shown to function as antitumor or oncogenic RNAs in several types of cancer cells. A single miRNA has regulating hundreds or thousands of different mRNAs, and individual mRNA has been regulated by multiple different miRNAs in normal cells. Therefore, tightly controlled RNA networks can be disrupted by dysregulated of miRNAs in cancer cells. Investigation of novel miRNA-mediated RNA networks in cancer cells could provide new insights in the field of cancer research. In this review, we focus on head and neck squamous cell carcinoma (HNSCC) and discuss current findings of the involvement of aberrantly expressed miRNAs in the pathogenesis of HNSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bhartiya, D., & Scaria, V. (2016). Genomic variations in non-coding RNAs: structure, function and regulation. Genomics, 107(2–3), 59–68.

    Article  CAS  PubMed  Google Scholar 

  2. Beermann, J., Piccoli, M. T., Viereck, J., & Thum, T. (2016). Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev, 96(4), 1297–1325.

    Article  PubMed  Google Scholar 

  3. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    Article  CAS  PubMed  Google Scholar 

  4. Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2), 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 19(1), 92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garzon, R., Calin, G. A., & Croce, C. M. (2009). MicroRNAs in cancer. Annu Rev Med, 60, 167–179.

    Article  CAS  PubMed  Google Scholar 

  7. Nelson, K. M., & Weiss, G. J. (2008). MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther, 7(12), 3655–3660.

    Article  CAS  PubMed  Google Scholar 

  8. Tay, Y., Rinn, J., & Pandolfi, P. P. (2014). The multilayered complexity of ceRNA crosstalk and competition. Nature, 505(7483), 344–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, Y., Hou, J., He, D., Sun, M., Zhang, P., Yu, Y., et al. (2016). The emerging function and mechanism of ceRNAs in cancer. Trends Genet, 32(4), 211–224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chen, L., Zhang, S., Wu, J., Cui, J., Zhong, L., Zeng, L., et al. (2017). circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene. doi:10.1038/onc.2017.89.

  11. Leemans, C. R., Braakhuis, B. J., & Brakenhoff, R. H. (2011). The molecular biology of head and neck cancer. Nat Rev Cancer, 11(1), 9–22.

    Article  CAS  PubMed  Google Scholar 

  12. Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA Cancer J Clin, 66(1), 7–30.

    Article  PubMed  Google Scholar 

  13. Janiszewska, J., Szaumkessel, M., & Szyfter, K. (2013). microRNAs are important players in head and neck carcinoma: a review. Crit Rev Oncol Hematol, 88(3), 716–728.

    Article  PubMed  Google Scholar 

  14. Chung, C. H., Guthrie, V. B., Masica, D. L., Tokheim, C., Kang, H., Richmon, J., et al. (2015). Genomic alterations in head and neck squamous cell carcinoma determined by cancer gene-targeted sequencing. Ann Oncol, 26(6), 1216–1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rothenberg, S. M., & Ellisen, L. W. (2012). The molecular pathogenesis of head and neck squamous cell carcinoma. J Clin Invest, 122(6), 1951–1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lui, V. W., Hedberg, M. L., Li, H., Vangara, B. S., Pendleton, K., Zeng, Y., et al. (2013). Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov, 3(7), 761–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kulasinghe, A., Perry, C., Jovanovic, L., Nelson, C., & Punyadeera, C. (2015). Circulating tumour cells in metastatic head and neck cancers. Int J Cancer, 136(11), 2515–2523.

    Article  CAS  PubMed  Google Scholar 

  18. Ang, K. K., Zhang, Q., Rosenthal, D. I., Nguyen-Tan, P. F., Sherman, E. J., Weber, R. S., et al. (2014). Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J Clin Oncol, 32(27), 2940–2950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sethi, N., Wright, A., Wood, H., & Rabbitts, P. (2014). MicroRNAs and head and neck cancer: reviewing the first decade of research. Eur J Cancer, 50(15), 2619–2635.

    Article  CAS  PubMed  Google Scholar 

  20. Wiemer, E. A. (2007). The role of microRNAs in cancer: no small matter. Eur J Cancer, 43(10), 1529–1544.

    Article  CAS  PubMed  Google Scholar 

  21. Chen, D., Cabay, R. J., Jin, Y., Wang, A., Lu, Y., Shah-Khan, M., et al. (2013). MicroRNA deregulations in head and neck squamous cell carcinomas. J Oral Maxillofac Res, 4(1), e2.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zou, A. E., Zheng, H., Saad, M. A., Rahimy, M., Ku, J., Kuo, S. Z., et al. (2016). The non-coding landscape of head and neck squamous cell carcinoma. Oncotarget, 7(32), 51211–51222.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kikkawa, N., Hanazawa, T., Fujimura, L., Nohata, N., Suzuki, H., Chazono, H., et al. (2010). miR-489 is a tumour-suppressive miRNA target PTPN11 in hypopharyngeal squamous cell carcinoma (HSCC). Br J Cancer, 103(6), 877–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nohata, N., Hanazawa, T., Kikkawa, N., Sakurai, D., Fujimura, L., Chiyomaru, T., et al. (2011). Tumour suppressive microRNA-874 regulates novel cancer networks in maxillary sinus squamous cell carcinoma. Br J Cancer, 105(6), 833–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fukumoto, I., Kinoshita, T., Hanazawa, T., Kikkawa, N., Chiyomaru, T., Enokida, H., et al. (2014). Identification of tumour suppressive microRNA-451a in hypopharyngeal squamous cell carcinoma based on microRNA expression signature. Br J Cancer, 111(2), 386–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fukumoto, I., Hanazawa, T., Kinoshita, T., Kikkawa, N., Koshizuka, K., Goto, Y., et al. (2015). MicroRNA expression signature of oral squamous cell carcinoma: functional role of microRNA-26a/b in the modulation of novel cancer pathways. Br J Cancer, 112(5), 891–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koshizuka, K., Hanazawa, T., Fukumoto, I., Kikkawa, N., Matsushita, R., Mataki, H., et al. (2017). Dual-receptor (EGFR and c-MET) inhibition by tumor-suppressive miR-1 and miR-206 in head and neck squamous cell carcinoma. J Hum Genet, 62(1), 113–121.

    Article  CAS  PubMed  Google Scholar 

  28. Iorio, M. V., & Croce, C. M. (2012). MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med, 4(3), 143–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Daugaard, I., & Hansen, T. B. (2017). Biogenesis and function of ago-associated RNAs. Trends Genet. doi:10.1016/j.tig.2017.01.003.

  30. Macfarlane, L. A., & Murphy, P. R. (2010). MicroRNA: biogenesis, function and role in cancer. Curr Genomics, 11(7), 537–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., et al. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436(7051), 740–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gregory, R. I., Chendrimada, T. P., Cooch, N., & Shiekhattar, R. (2005). Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 123(4), 631–640.

    Article  CAS  PubMed  Google Scholar 

  33. Hutvagner, G., & Zamore, P. D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297(5589), 2056–2060.

    Article  CAS  PubMed  Google Scholar 

  34. Matranga, C., Tomari, Y., Shin, C., Bartel, D. P., & Zamore, P. D. (2005). Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 123(4), 607–620.

    Article  CAS  PubMed  Google Scholar 

  35. Matsushita, R., Yoshino, H., Enokida, H., Goto, Y., Miyamoto, K., Yonemori, M., et al. (2016). Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): inhibition of bladder cancer cell aggressiveness. Oncotarget, 7(19), 28460–28487.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mataki, H., Seki, N., Mizuno, K., Nohata, N., Kamikawaji, K., Kumamoto, T., et al. (2016). Dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p) coordinately targeted MTDH in lung squamous cell carcinoma. Oncotarget, 7(44), 72084–72098.

    PubMed  PubMed Central  Google Scholar 

  37. Koshizuka, K., Nohata, N., Hanazawa, T., Kikkawa, N., Arai, T., Okato, A., et al. (2017). Deep sequencing-based microRNA expression signatures in head and neck squamous cell carcinoma: dual strands of pre-miR-150 as antitumor miRNAs. Oncotarget, 8(18), 30288–30304.

    PubMed  PubMed Central  Google Scholar 

  38. Koshizuka, K., Hanazawa, T., Kikkawa, N., Arai, T., Okato, A., Kurozumi, A., et al. (2017). Regulation of ITGA3 by the anti-tumor miR-199 family inhibits cancer cell migration and invasion in head and neck cancer. Cancer Sci, 108(8), 1681-1692.

  39. Yang, J. S., & Lai, E. C. (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell, 43(6), 892–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sibley, C. R., Seow, Y., Saayman, S., Dijkstra, K. K., El Andaloussi, S., Weinberg, M. S., et al. (2012). The biogenesis and characterization of mammalian microRNAs of mirtron origin. Nucleic Acids Res, 40(1), 438–448.

    Article  CAS  PubMed  Google Scholar 

  41. Martin, R., Smibert, P., Yalcin, A., Tyler, D. M., Schafer, U., Tuschl, T., et al. (2009). A Drosophila pasha mutant distinguishes the canonical microRNA and mirtron pathways. Mol Cell Biol, 29(3), 861–870.

    Article  CAS  PubMed  Google Scholar 

  42. Hui, A. B., Lenarduzzi, M., Krushel, T., Waldron, L., Pintilie, M., Shi, W., et al. (2010). Comprehensive microRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res, 16(4), 1129–1139.

    Article  CAS  PubMed  Google Scholar 

  43. Liu, C. J., Tsai, M. M., Hung, P. S., Kao, S. Y., Liu, T. Y., Wu, K. J., et al. (2010). miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res, 70(4), 1635–1644.

    Article  CAS  PubMed  Google Scholar 

  44. Lajer, C. B., Nielsen, F. C., Friis-Hansen, L., Norrild, B., Borup, R., Garnaes, E., et al. (2011). Different miRNA signatures of oral and pharyngeal squamous cell carcinomas: a prospective translational study. Br J Cancer, 104(5), 830–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Severino, P., Bruggemann, H., Andreghetto, F. M., Camps, C., Klingbeil Mde, F., de Pereira, W. O., et al. (2013). MicroRNA expression profile in head and neck cancer: HOX-cluster embedded microRNA-196a and microRNA-10b dysregulation implicated in cell proliferation. BMC Cancer, 13, 533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zhang, Y., Chen, Y., Yu, J., Liu, G., & Huang, Z. (2014). Integrated transcriptome analysis reveals miRNA-mRNA crosstalk in laryngeal squamous cell carcinoma. Genomics, 104(4), 249–256.

    Article  CAS  PubMed  Google Scholar 

  47. Victoria Martinez, B., Dhahbi, J. M., Nunez Lopez, Y. O., Lamperska, K., Golusinski, P., Luczewski, L., et al. (2015). Circulating small non-coding RNA signature in head and neck squamous cell carcinoma. Oncotarget, 6(22), 19246–19263.

    Article  PubMed  Google Scholar 

  48. Wang, F., Lu, J., Peng, X., Wang, J., Liu, X., Chen, X., et al. (2016). Integrated analysis of microRNA regulatory network in nasopharyngeal carcinoma with deep sequencing. J Exp Clin Cancer Res, 35(1), 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu, Y. F., Li, Y. Q., Guo, R., He, Q. M., Ren, X. Y., Tang, X. R., et al. (2015). Identification of miR-143 as a tumour suppressor in nasopharyngeal carcinoma based on microRNA expression profiling. Int J Biochem Cell Biol, 61, 120–128.

    Article  CAS  PubMed  Google Scholar 

  50. Manikandan, M., Deva Magendhra Rao, A. K., Arunkumar, G., Manickavasagam, M., Rajkumar, K. S., Rajaraman, R., et al. (2016). Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism. Mol Cancer, 15, 28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lovat, F., Fassan, M., Gasparini, P., Rizzotto, L., Cascione, L., Pizzi, M., et al. (2015). miR-15b/16-2 deletion promotes B-cell malignancies. Proc Natl Acad Sci U S A, 112(37), 11636–11641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Singchat, W., Hitakomate, E., Rerkarmnuaychoke, B., Suntronpong, A., Fu, B., Bodhisuwan, W., et al. (2016). Genomic alteration in head and neck squamous cell carcinoma (HNSCC) cell lines inferred from karyotyping, molecular cytogenetics, and array comparative genomic hybridization. PLoS One, 11(8), e0160901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Carthew, R. W., & Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136(4), 642–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mataki, H., Enokida, H., Chiyomaru, T., Mizuno, K., Matsushita, R., Goto, Y., et al. (2015). Downregulation of the microRNA-1/133a cluster enhances cancer cell migration and invasion in lung-squamous cell carcinoma via regulation of Coronin1C. J Hum Genet, 60(2), 53–61.

    Article  CAS  PubMed  Google Scholar 

  55. Nohata, N., Hanazawa, T., Kikkawa, N., Sakurai, D., Sasaki, K., Chiyomaru, T., et al. (2011). Identification of novel molecular targets regulated by tumor suppressive miR-1/miR-133a in maxillary sinus squamous cell carcinoma. Int J Oncol, 39(5), 1099–1107.

    CAS  PubMed  Google Scholar 

  56. Baskerville, S., & Bartel, D. P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA, 11(3), 241–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nohata, N., Hanazawa, T., Enokida, H., & Seki, N. (2012). microRNA-1/133a and microRNA-206/133b clusters: dysregulation and functional roles in human cancers. Oncotarget, 3(1), 9–21.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nohata, N., Sone, Y., Hanazawa, T., Fuse, M., Kikkawa, N., Yoshino, H., et al. (2011). miR-1 as a tumor suppressive microRNA targeting TAGLN2 in head and neck squamous cell carcinoma. Oncotarget, 2(1–2), 29–42.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Du, Y. Y., Zhao, L. M., Chen, L., Sang, M. X., Li, J., Ma, M., et al. (2016). The tumor-suppressive function of miR-1 by targeting LASP1 and TAGLN2 in esophageal squamous cell carcinoma. J Gastroenterol Hepatol, 31(2), 384–393.

    Article  CAS  PubMed  Google Scholar 

  60. Yoshino, H., Chiyomaru, T., Enokida, H., Kawakami, K., Tatarano, S., Nishiyama, K., et al. (2011). The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer. Br J Cancer, 104(5), 808–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamasaki, T., Yoshino, H., Enokida, H., Hidaka, H., Chiyomaru, T., Nohata, N., et al. (2012). Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer. Int J Oncol, 40(6), 1821–1830.

    CAS  PubMed  Google Scholar 

  62. Kinoshita, T., Nohata, N., Watanabe-Takano, H., Yoshino, H., Hidaka, H., Fujimura, L., et al. (2012). Actin-related protein 2/3 complex subunit 5 (ARPC5) contributes to cell migration and invasion and is directly regulated by tumor-suppressive microRNA-133a in head and neck squamous cell carcinoma. Int J Oncol, 40(6), 1770–1778.

    CAS  PubMed  Google Scholar 

  63. Kinoshita, T., Nohata, N., Fuse, M., Hanazawa, T., Kikkawa, N., Fujimura, L., et al. (2012). Tumor suppressive microRNA-133a regulates novel targets: moesin contributes to cancer cell proliferation and invasion in head and neck squamous cell carcinoma. Biochem Biophys Res Commun, 418(2), 378–383.

    Article  CAS  PubMed  Google Scholar 

  64. Yamamoto, N., Nishikawa, R., Chiyomaru, T., Goto, Y., Fukumoto, I., Usui, H., et al. (2015). The tumor-suppressive microRNA-1/133a cluster targets PDE7A and inhibits cancer cell migration and invasion in endometrial cancer. Int J Oncol, 47(1), 325–334.

    Article  CAS  PubMed  Google Scholar 

  65. Kent, O. A., McCall, M. N., Cornish, T. C., & Halushka, M. K. (2014). Lessons from miR-143/145: the importance of cell-type localization of miRNAs. Nucleic Acids Res, 42(12), 7528–7538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yoshino, H., Enokida, H., Itesako, T., Kojima, S., Kinoshita, T., Tatarano, S., et al. (2013). Tumor-suppressive microRNA-143/145 cluster targets hexokinase-2 in renal cell carcinoma. Cancer Sci, 104(12), 1567–1574.

    Article  CAS  PubMed  Google Scholar 

  67. Kojima, S., Enokida, H., Yoshino, H., Itesako, T., Chiyomaru, T., Kinoshita, T., et al. (2014). The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer. J Hum Genet, 59(2), 78–87.

    Article  CAS  PubMed  Google Scholar 

  68. Shao, Y., Qu, Y., Dang, S., Yao, B., & Ji, M. (2013). MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int, 13(1), 51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, R., Liao, J., Yang, M., Sheng, J., Yang, H., Wang, Y., et al. (2012). The cluster of miR-143 and miR-145 affects the risk for esophageal squamous cell carcinoma through co-regulating fascin homolog 1. PLoS One, 7(3), e33987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, J., Sun, Q., Zhang, Z., Ge, S., Han, Z. G., & Chen, W. T. (2013). Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop. Oncogene, 32(1), 61–69.

    Article  PubMed  CAS  Google Scholar 

  71. Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., et al. (2009). p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A, 106(9), 3207–3212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Suzuki, H. I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., & Miyazono, K. (2009). Modulation of microRNA processing by p53. Nature, 460(7254), 529–533.

    Article  CAS  PubMed  Google Scholar 

  73. Chen, Z., Zeng, H., Guo, Y., Liu, P., Pan, H., Deng, A., et al. (2010). miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. J Exp Clin Cancer Res, 29, 151.

  74. Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307–310.

    Article  CAS  PubMed  Google Scholar 

  75. Guimaraes, D. P., & Hainaut, P. (2002). TP53: a key gene in human cancer. Biochimie, 84(1), 83–93.

    Article  CAS  PubMed  Google Scholar 

  76. Kumar, M., Lu, Z., Takwi, A. A., Chen, W., Callander, N. S., Ramos, K. S., et al. (2011). Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene, 30(7), 843–853.

    Article  CAS  PubMed  Google Scholar 

  77. He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447(7148), 1130–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rokavec, M., Li, H., Jiang, L., & Hermeking, H. (2014). The p53/microRNA connection in gastrointestinal cancer. Clin Exp Gastroenterol, 7, 395–413.

    PubMed  PubMed Central  Google Scholar 

  79. Zhang, D. G., Zheng, J. N., & Pei, D. S. (2014). P53/microRNA-34-induced metabolic regulation: new opportunities in anticancer therapy. Mol Cancer, 13, 115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Chang, T. C., Wentzel, E. A., Kent, O. A., Ramachandran, K., Mullendore, M., Lee, K. H., et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell, 26(5), 745–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kumar, B., Yadav, A., Lang, J., Teknos, T. N., & Kumar, P. (2012). Dysregulation of microRNA-34a expression in head and neck squamous cell carcinoma promotes tumor growth and tumor angiogenesis. PLoS One, 7(5), e37601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jiang, H., Zhang, G., Wu, J. H., & Jiang, C. P. (2014). Diverse roles of miR-29 in cancer (review). Oncol Rep, 31(4), 1509–1516.

    Article  CAS  PubMed  Google Scholar 

  83. Kinoshita, T., Nohata, N., Hanazawa, T., Kikkawa, N., Yamamoto, N., Yoshino, H., et al. (2013). Tumour-suppressive microRNA-29s inhibit cancer cell migration and invasion by targeting laminin-integrin signalling in head and neck squamous cell carcinoma. Br J Cancer, 109(10), 2636–2645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nishikawa, R., Chiyomaru, T., Enokida, H., Inoguchi, S., Ishihara, T., Matsushita, R., et al. (2015). Tumour-suppressive microRNA-29s directly regulate LOXL2 expression and inhibit cancer cell migration and invasion in renal cell carcinoma. FEBS Lett, 589(16), 2136–2145.

    Article  CAS  PubMed  Google Scholar 

  85. Nishikawa, R., Goto, Y., Kojima, S., Enokida, H., Chiyomaru, T., Kinoshita, T., et al. (2014). Tumor-suppressive microRNA-29s inhibit cancer cell migration and invasion via targeting LAMC1 in prostate cancer. Int J Oncol, 45(1), 401–410.

    Article  CAS  PubMed  Google Scholar 

  86. Yamamoto, N., Kinoshita, T., Nohata, N., Yoshino, H., Itesako, T., Fujimura, L., et al. (2013). Tumor-suppressive microRNA-29a inhibits cancer cell migration and invasion via targeting HSP47 in cervical squamous cell carcinoma. Int J Oncol, 43(6), 1855–1863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kamikawaji, K., Seki, N., Watanabe, M., Mataki, H., Kumamoto, T., Takagi, K., et al. (2016). Regulation of LOXL2 and SERPINH1 by antitumor microRNA-29a in lung cancer with idiopathic pulmonary fibrosis. J Hum Genet, 61(12), 985–993.

    Article  CAS  PubMed  Google Scholar 

  88. Wang, Y., Zhang, X., Li, H., Yu, J., & Ren, X. (2013). The role of miRNA-29 family in cancer. Eur J Cell Biol, 92(3), 123–128.

    Article  CAS  PubMed  Google Scholar 

  89. Melo, S. A., & Kalluri, R. (2013). miR-29b moulds the tumour microenvironment to repress metastasis. Nat Cell Biol, 15(2), 139–140.

    Article  CAS  PubMed  Google Scholar 

  90. Lu, P., Weaver, V. M., & Werb, Z. (2012). The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol, 196(4), 395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fuse, M., Kojima, S., Enokida, H., Chiyomaru, T., Yoshino, H., Nohata, N., et al. (2012). Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer. J Hum Genet, 57(11), 691–699.

    Article  CAS  PubMed  Google Scholar 

  92. Fukumoto, I., Kikkawa, N., Matsushita, R., Kato, M., Kurozumi, A., Nishikawa, R., et al. (2016). Tumor-suppressive microRNAs (miR-26a/b, miR-29a/b/c and miR-218) concertedly suppressed metastasis-promoting LOXL2 in head and neck squamous cell carcinoma. J Hum Genet, 61(2), 109–118.

    Article  CAS  PubMed  Google Scholar 

  93. Yu, L., Lu, J., Zhang, B., Liu, X., Wang, L., Li, S. Y., et al. (2013). miR-26a inhibits invasion and metastasis of nasopharyngeal cancer by targeting EZH2. Oncol Lett, 5(4), 1223–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lu, J., He, M. L., Wang, L., Chen, Y., Liu, X., Dong, Q., et al. (2011). MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res, 71(1), 225–233.

    Article  CAS  PubMed  Google Scholar 

  95. Koh, C. M., Iwata, T., Zheng, Q., Bethel, C., Yegnasubramanian, S., & De Marzo, A. M. (2011). Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget, 2(9), 669–683.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kurozumi, A., Kato, M., Goto, Y., Matsushita, R., Nishikawa, R., Okato, A., et al. (2016). Regulation of the collagen cross-linking enzymes LOXL2 and PLOD2 by tumor-suppressive microRNA-26a/b in renal cell carcinoma. Int J Oncol, 48(5), 1837–1846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Miyamoto, K., Seki, N., Matsushita, R., Yonemori, M., Yoshino, H., Nakagawa, M., et al. (2016). Tumour-suppressive miRNA-26a-5p and miR-26b-5p inhibit cell aggressiveness by regulating PLOD2 in bladder cancer. Br J Cancer, 115, 354–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kano, M., Seki, N., Kikkawa, N., Fujimura, L., Hoshino, I., Akutsu, Y., et al. (2010). miR-145, miR-133a and miR-133b: tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer, 127(12), 2804–2814.

    Article  CAS  PubMed  Google Scholar 

  99. Nohata, N., Hanazawa, T., Kikkawa, N., Mutallip, M., Sakurai, D., Fujimura, L., et al. (2011). Tumor suppressive microRNA-375 regulates oncogene AEG-1/MTDH in head and neck squamous cell carcinoma (HNSCC). J Hum Genet, 56(8), 595–601.

    Article  CAS  PubMed  Google Scholar 

  100. Yan, J. W., Lin, J. S., & He, X. X. (2014). The emerging role of miR-375 in cancer. Int J Cancer, 135(5), 1011–1018.

    Article  CAS  PubMed  Google Scholar 

  101. Wei, R., Yang, Q., Han, B., Li, Y., Yao, K., Yang, X., et al. (2017). microRNA-375 inhibits colorectal cancer cells proliferation by downregulating JAK2/STAT3 and MAP3K8/ERK signaling pathways. Oncotarget, 8(10), 16633-16641.

  102. Ding, L., Xu, Y., Zhang, W., Deng, Y., Si, M., Du, Y., et al. (2010). MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res, 20(7), 784–793.

    Article  CAS  PubMed  Google Scholar 

  103. Pfeffer, S. R., Yang, C. H., & Pfeffer, L. M. (2015). The Role of miR-21 in cancer. Drug Dev Res, 76(6), 270–277.

    Article  CAS  PubMed  Google Scholar 

  104. Ren, J., Zhu, D., Liu, M., Sun, Y., & Tian, L. (2010). Downregulation of miR-21 modulates Ras expression to promote apoptosis and suppress invasion of laryngeal squamous cell carcinoma. Eur J Cancer, 46(18), 3409–3416.

    Article  CAS  PubMed  Google Scholar 

  105. Fu, X., Han, Y., Wu, Y., Zhu, X., Lu, X., Mao, F., et al. (2011). Prognostic role of microRNA-21 in various carcinomas: a systematic review and meta-analysis. Eur J Clin Invest, 41(11), 1245–1253.

    Article  CAS  PubMed  Google Scholar 

  106. Mace, T. A., Collins, A. L., Wojcik, S. E., Croce, C. M., Lesinski, G. B., & Bloomston, M. (2013). Hypoxia induces the overexpression of microRNA-21 in pancreatic cancer cells. J Surg Res, 184(2), 855–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li, L., Li, C., Wang, S., Wang, Z., Jiang, J., Wang, W., et al. (2016). Exosomes Derived from Hypoxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype. Cancer Res, 76(7), 1770–1780.

    Article  CAS  PubMed  Google Scholar 

  108. Dambal, S., Shah, M., Mihelich, B., & Nonn, L. (2015). The microRNA-183 cluster: the family that plays together stays together. Nucleic Acids Res, 43(15), 7173–7188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, Q. H., Sun, H. M., Zheng, R. Z., Li, Y. C., Zhang, Q., Cheng, P., et al. (2013). Meta-analysis of microRNA-183 family expression in human cancer studies comparing cancer tissues with noncancerous tissues. Gene, 527(1), 26–32.

    Article  CAS  PubMed  Google Scholar 

  110. Ma, Y., Liang, A. J., Fan, Y. P., Huang, Y. R., Zhao, X. M., Sun, Y., et al. (2016). Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis. Oncotarget, 7(27), 42805–42825.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wang, L., Jiang, H., Li, W., Jia, C., Zhang, H., Sun, Y., et al. (2017). Overexpression of TP53 mutation-associated microRNA-182 promotes tumor cell proliferation and migration in head and neck squamous cell carcinoma. Arch Oral Biol, 73, 105–112.

    Article  PubMed  CAS  Google Scholar 

  112. Chen, P. S., Su, J. L., & Hung, M. C. (2012). Dysregulation of microRNAs in cancer. J Biomed Sci, 19, 90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lin, S., & Gregory, R. I. (2015). MicroRNA biogenesis pathways in cancer. Nat Rev Cancer, 15(6), 321–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet, 3(6), 415–428.

    CAS  PubMed  Google Scholar 

  115. Lujambio, A., Ropero, S., Ballestar, E., Fraga, M. F., Cerrato, C., Setien, F., et al. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res, 67(4), 1424–1429.

    Article  CAS  PubMed  Google Scholar 

  116. Chuang, J. C., & Jones, P. A. (2007). Epigenetics and microRNAs. Pediatr Res, 61(5 Pt 2), 24r–29r.

    Article  CAS  PubMed  Google Scholar 

  117. Guil, S., & Esteller, M. (2009). DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol, 41(1), 87–95.

    Article  CAS  PubMed  Google Scholar 

  118. Iorio, M. V., Piovan, C., & Croce, C. M. (2010). Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta, 1799(10–12), 694–701.

    Article  CAS  PubMed  Google Scholar 

  119. Egger, G., Liang, G., Aparicio, A., & Jones, P. A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429(6990), 457–463.

    Article  CAS  PubMed  Google Scholar 

  120. Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci, 31(2), 89–97.

    Article  CAS  PubMed  Google Scholar 

  121. Kozaki, K., & Inazawa, J. (2012). Tumor-suppressive microRNA silenced by tumor-specific DNA hypermethylation in cancer cells. Cancer Sci, 103(5), 837–845.

    Article  CAS  PubMed  Google Scholar 

  122. Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., et al. (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A, 104(40), 15805–15810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xu, H., Sun, J., Shi, C., Sun, C., Yu, L., Wen, Y., et al. (2015). miR-29s inhibit the malignant behavior of U87MG glioblastoma cell line by targeting DNMT3A and 3B. Neurosci Lett, 590, 40–46.

    Article  CAS  PubMed  Google Scholar 

  124. Solly, F., Koering, C., Mint-Mohamed, A., Maucort-Boulch, D., Robert, G., Auberger, P., et al. (2017). A miRNAs-DNMT1 axis is involved in azacitidine-resistance and predicts survival in higher risk myelodysplastic syndrome and low blast count acute myeloid leukemia. Clin Cancer Res, 23(12), 3025-3034

  125. Fraga, M. F., & Esteller, M. (2005). Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle, 4(10), 1377–1381.

    Article  CAS  PubMed  Google Scholar 

  126. Yang, X. J., & Seto, E. (2007). HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene, 26(37), 5310–5318.

    Article  CAS  PubMed  Google Scholar 

  127. Sampath, D., Liu, C., Vasan, K., Sulda, M., Puduvalli, V. K., Wierda, W. G., et al. (2012). Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood, 119(5), 1162–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kim, H. S., Shen, Q., & Nam, S. W. (2015). Histone deacetylases and their regulatory microRNAs in hepatocarcinogenesis. J Korean Med Sci, 30(10), 1375–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Scott, G. K., Mattie, M. D., Berger, C. E., Benz, S. C., & Benz, C. C. (2006). Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res, 66(3), 1277–1281.

    Article  CAS  PubMed  Google Scholar 

  130. Chase, A., & Cross, N. C. (2011). Aberrations of EZH2 in cancer. Clin Cancer Res, 17(9), 2613–2618.

    Article  CAS  PubMed  Google Scholar 

  131. Sun, S., Yu, F., Zhang, L., & Zhou, X. (2016). EZH2, an on-off valve in signal network of tumor cells. Cell Signal, 28(5), 481–487.

    Article  CAS  PubMed  Google Scholar 

  132. Tsang, D. P., & Cheng, A. S. (2011). Epigenetic regulation of signaling pathways in cancer: role of the histone methyltransferase EZH2. J Gastroenterol Hepatol, 26(1), 19–27.

    Article  CAS  PubMed  Google Scholar 

  133. Deb, G., Singh, A. K., & Gupta, S. (2014). EZH2: not EZHY (easy) to deal. Mol Cancer Res, 12(5), 639–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Goto, Y., Kurozumi, A., Nohata, N., Kojima, S., Matsushita, R., Yoshino, H., et al. (2016). The microRNA signature of patients with sunitinib failure: regulation of UHRF1 pathways by microRNA-101 in renal cell carcinoma. Oncotarget. doi:10.18632/oncotarget.10887.

  135. Wang, H., Meng, Y., Cui, Q., Qin, F., Yang, H., Chen, Y., et al. (2016). MiR-101 targets the EZH2/Wnt/beta-catenin the pathway to promote the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Sci Rep, 6, 36988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Konno, Y., Dong, P., Xiong, Y., Suzuki, F., Lu, J., Cai, M., et al. (2014). MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells. Oncotarget, 5(15), 6049–6062.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Zhang, K., Zhang, Y., Ren, K., Zhao, G., Yan, K., & Ma, B. (2014). MicroRNA-101 inhibits the metastasis of osteosarcoma cells by downregulation of EZH2 expression. Oncol Rep, 32(5), 2143–2149.

    Article  CAS  PubMed  Google Scholar 

  138. Wang, H. J., Ruan, H. J., He, X. J., Ma, Y. Y., Jiang, X. T., Xia, Y. J., et al. (2010). MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer, 46(12), 2295–2303.

    Article  CAS  PubMed  Google Scholar 

  139. Zhang, B., Liu, X. X., He, J. R., Zhou, C. X., Guo, M., He, M., et al. (2011). Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis, 32(1), 2–9.

    Article  CAS  PubMed  Google Scholar 

  140. Kato, M., Kurozumi, A., Goto, Y., Matsushita, R., Okato, A., Nishikawa, R., et al. (2017). Regulation of metastasis-promoting LOXL2 gene expression by antitumor microRNAs in prostate cancer. J Hum Genet, 62(1), 123–132.

    Article  CAS  PubMed  Google Scholar 

  141. Bronner, C., Krifa, M., & Mousli, M. (2013). Increasing role of UHRF1 in the reading and inheritance of the epigenetic code as well as in tumorogenesis. Biochem Pharmacol, 86(12), 1643–1649.

    Article  CAS  PubMed  Google Scholar 

  142. Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. J Clin Invest, 119(6), 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2(6), 442–454.

    Article  CAS  PubMed  Google Scholar 

  144. Zhang, J., & Ma, L. (2012). MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev, 31(3–4), 653–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.

    Article  CAS  PubMed  Google Scholar 

  146. Lamouille, S., Subramanyam, D., Blelloch, R., & Derynck, R. (2013). Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr Opin Cell Biol, 25(2), 200–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bracken, C. P., Gregory, P. A., Khew-Goodall, Y., & Goodall, G. J. (2009). The role of microRNAs in metastasis and epithelial-mesenchymal transition. Cell Mol Life Sci, 66(10), 1682–1699.

    Article  CAS  PubMed  Google Scholar 

  148. Spoelstra, N. S., Manning, N. G., Higashi, Y., Darling, D., Singh, M., Shroyer, K. R., et al. (2006). The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Res, 66(7), 3893–3902.

    Article  CAS  PubMed  Google Scholar 

  149. Kyprianou, N. (2010). ASK-ing EMT not to spread cancer. Proc Natl Acad Sci U S A, 107(7), 2731–2732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sekhon, K., Bucay, N., Majid, S., Dahiya, R., & Saini, S. (2016). MicroRNAs and epithelial-mesenchymal transition in prostate cancer. Oncotarget, 7(41), 67597–67611.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Zaravinos, A. (2015). The regulatory role of microRNAs in EMT and cancer. J Oncol, 2015, 865816.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Mongroo, P. S., & Rustgi, A. K. (2010). The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther, 10(3), 219–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Feng, X., Wang, Z., Fillmore, R., & Xi, Y. (2014). MiR-200, a new star miRNA in human cancer. Cancer Lett, 344(2), 166–173.

    Article  CAS  PubMed  Google Scholar 

  154. Hill, L., Browne, G., & Tulchinsky, E. (2013). ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer, 132(4), 745–754.

    Article  CAS  PubMed  Google Scholar 

  155. Korpal, M., & Kang, Y. (2008). The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol, 5(3), 115–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kim, T., Veronese, A., Pichiorri, F., Lee, T. J., Jeon, Y. J., Volinia, S., et al. (2011). p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med, 208(5), 875–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu, Y. N., Yin, J. J., Abou-Kheir, W., Hynes, P. G., Casey, O. M., Fang, L., et al. (2013). MiR-1 and miR-200 inhibit EMT via slug-dependent and tumorigenesis via slug-independent mechanisms. Oncogene, 32(3), 296–306.

    Article  CAS  PubMed  Google Scholar 

  158. Chang, Y. S., Chen, W. Y., Yin, J. J., Sheppard-Tillman, H., Huang, J., & Liu, Y. N. (2015). EGF receptor promotes prostate cancer bone metastasis by downregulating miR-1 and activating TWIST1. Cancer Res, 75(15), 3077–3086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Peng, X., Guo, W., Liu, T., Wang, X., Tu, X., Xiong, D., et al. (2011). Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One, 6(5), e20341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ren, D., Wang, M., Guo, W., Huang, S., Wang, Z., Zhao, X., et al. (2014). Double-negative feedback loop between ZEB2 and miR-145 regulates epithelial-mesenchymal transition and stem cell properties in prostate cancer cells. Cell Tissue Res, 358(3), 763–778.

    Article  CAS  PubMed  Google Scholar 

  161. Kinoshita, T., Hanazawa, T., Nohata, N., Kikkawa, N., Enokida, H., Yoshino, H., et al. (2012). Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion through targeting laminin-332 in head and neck squamous cell carcinoma. Oncotarget, 3(11), 1386–1400.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Mizuno, K., Seki, N., Mataki, H., Matsushita, R., Kamikawaji, K., Kumamoto, T., et al. (2016). Tumor-suppressive microRNA-29 family inhibits cancer cell migration and invasion directly targeting LOXL2 in lung squamous cell carcinoma. Int J Oncol, 48(2), 450–460.

    Article  CAS  PubMed  Google Scholar 

  163. Wu, L., & Zhu, Y. (2015). The function and mechanisms of action of LOXL2 in cancer (Review). Int J Mol Med, 36(5), 1200–1204.

    Article  CAS  PubMed  Google Scholar 

  164. Moon, H. J., Finney, J., Ronnebaum, T., & Mure, M. (2014). Human lysyl oxidase-like 2. Bioorg Chem, 57, 231–241.

    Article  CAS  PubMed  Google Scholar 

  165. Schietke, R., Warnecke, C., Wacker, I., Schodel, J., Mole, D. R., Campean, V., et al. (2010). The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. J Biol Chem, 285(9), 6658–6669.

    Article  CAS  PubMed  Google Scholar 

  166. Millanes-Romero, A., Herranz, N., Perrera, V., Iturbide, A., Loubat-Casanovas, J., Gil, J., et al. (2013). Regulation of heterochromatin transcription by Snail1/LOXL2 during epithelial-to-mesenchymal transition. Mol Cell, 52(5), 746–757.

    Article  CAS  PubMed  Google Scholar 

  167. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 9(6), 654–659.

    Article  CAS  PubMed  Google Scholar 

  168. Kinoshita, T., Yip, K. W., Spence, T., & Liu, F. F. (2017). MicroRNAs in extracellular vesicles: potential cancer biomarkers. J Hum Genet, 62(1), 67–74.

    Article  CAS  PubMed  Google Scholar 

  169. Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 18(10), 997–1006.

    Article  CAS  PubMed  Google Scholar 

  170. Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A, 105(30), 10513–10518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Liu, Q., Yu, Z., Yuan, S., Xie, W., Li, C., Hu, Z., et al. (2016). Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget. doi:10.18632/oncotarget.14369.

  172. Halvorsen, A. R., Helland, A., Gromov, P., Wielenga, V. T., Talman, M. M., Brunner, N., et al. (2017). Profiling of microRNAs in tumor interstitial fluid of breast tumors—a novel resource to identify biomarkers for prognostic classification and detection of cancer. Mol Oncol, 11(2), 220–234.

    Article  CAS  PubMed  Google Scholar 

  173. Foj, L., Ferrer, F., Serra, M., Arevalo, A., Gavagnach, M., Gimenez, N., et al. (2016). Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis. Prostate, 77(6), 573–583.

    Article  PubMed  CAS  Google Scholar 

  174. Pei, Z., Liu, S. M., Huang, J. T., Zhang, X., Yan, D., Xia, Q., et al. (2017). Clinically relevant circulating microRNA profiling studies in pancreatic cancer using meta-analysis. Oncotarget, 8(14), 22616–22624.

    PubMed  PubMed Central  Google Scholar 

  175. Hsu, C. M., Lin, P. M., Wang, Y. M., Chen, Z. J., Lin, S. F., & Yang, M. Y. (2012). Circulating miRNA is a novel marker for head and neck squamous cell carcinoma. Tumour Biol, 33(6), 1933–1942.

    Article  CAS  PubMed  Google Scholar 

  176. Hou, B., Ishinaga, H., Midorikawa, K., Shah, S. A., Nakamura, S., Hiraku, Y., et al. (2015). Circulating microRNAs as novel prognosis biomarkers for head and neck squamous cell carcinoma. Cancer Biol Ther, 16(7), 1042–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Summerer, I., Unger, K., Braselmann, H., Schuettrumpf, L., Maihoefer, C., Baumeister, P., et al. (2015). Circulating microRNAs as prognostic therapy biomarkers in head and neck cancer patients. Br J Cancer, 113(1), 76–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS KAKENHI (C), Grant Number JP17K16893 and JP15K10801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohiko Seki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshizuka, K., Hanazawa, T., Arai, T. et al. Involvement of aberrantly expressed microRNAs in the pathogenesis of head and neck squamous cell carcinoma. Cancer Metastasis Rev 36, 525–545 (2017). https://doi.org/10.1007/s10555-017-9692-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-017-9692-y

Keywords

Navigation