Skip to main content

Advertisement

Log in

New approaches to selectively target cancer-associated matrix metalloproteinase activity

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Heightened matrix metalloproteinase (MMP) activity has been noted in the context of the tumor microenvironment for many years, and causal roles for MMPs have been defined across the spectrum of cancer progression. This is primarily due to the ability of the MMPs to process extracellular matrix (ECM) components and to regulate the bioavailability/activity of a large repertoire of cytokines and growth factors. These characteristics made MMPs an attractive target for therapeutic intervention but notably clinical trials performed in the 1990s did not fulfill the promise of preclinical studies. The reason for the failure of early MMP inhibitor (MMPI) clinical trials that are multifold but arguably principal among them was the inability of early MMP-based inhibitors to selectively target individual MMPs and to distinguish between MMPs and other members of the metzincin family. In the decades that have followed the MMP inhibitor trials, innovations in chemical design, antibody-based strategies, and nanotechnologies have greatly enhanced our ability to specifically target and measure the activity of MMPs. These advances provide us with the opportunity to generate new lines of highly selective MMPIs that will not only extend the overall survival of cancer patients, but will also afford us the ability to utilize heightened MMP activity in the tumor microenvironment as a means by which to deliver MMPIs or MMP activatable prodrugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Overall, C. M., & Lopez-Otin, C. (2002). Strategies for MMP inhibition in cancer: Innovations for the post-trial era. Nature Reviews Cancer, 2(9), 657–72. doi:10.1038/nrc884.

    CAS  PubMed  Google Scholar 

  2. Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2(3), 161–74.

    CAS  PubMed  Google Scholar 

  3. Nagase, H., & Woessner, J. F., Jr. (1999). Matrix metalloproteinases. Journal Biological Chemistry, 274(31), 21491–4.

    CAS  Google Scholar 

  4. Khokha, R., Murthy, A., & Weiss, A. (2013). Metalloproteinases and their natural inhibitors in inflammation and immunity. Nature Reviews Immunology, 13(9), 649–65. doi:10.1038/nri3499.

    CAS  PubMed  Google Scholar 

  5. Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., & Shafie, S. (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature, 284(5751), 67–8.

    CAS  PubMed  Google Scholar 

  6. Devel, L., Czarny, B., Beau, F., Georgiadis, D., Stura, E., & Dive, V. (2010). Third generation of matrix metalloprotease inhibitors: Gain in selectivity by targeting the depth of the S1′ cavity. Biochimie, 92(11), 1501–8. doi:10.1016/j.biochi.2010.07.017.

    CAS  PubMed  Google Scholar 

  7. Coussens, L. M., Fingleton, B., & Matrisian, L. M. (2002). Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science, 295(5564), 2387–92.

    CAS  PubMed  Google Scholar 

  8. Fingleton, B. (2007). Matrix metalloproteinases as valid clinical targets. Current Pharmaceutical Design, 13(3), 333–46.

    CAS  PubMed  Google Scholar 

  9. Lopez-Otin, C., & Overall, C. M. (2002). Protease degradomics: a new challenge for proteomics. Nature Reviews Molecular Cell Biology, 3(7), 509–19. doi:10.1038/nrm858.

    CAS  PubMed  Google Scholar 

  10. Zucker, S., & Cao, J. (2009). Selective matrix metalloproteinase (MMP) inhibitors in cancer therapy: Ready for prime time? Cancer Biology and Therapy, 8(24), 2371–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Roy, R., Yang, J., & Moses, M. A. (2009). Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. Journal of Clinical Oncology, 27(31), 5287–97. doi:10.1200/JCO.2009.23.5556.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Rodriguez, D., Morrison, C. J., & Overall, C. M. (2010). Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochimica et Biophysica Acta, 1803(1), 39–54. doi:10.1016/j.bbamcr.2009.09.015.

    CAS  PubMed  Google Scholar 

  13. Overall, C. M., & Blobel, C. P. (2007). In search of partners: Linking extracellular proteases to substrates. Nature Reviews Molecular Cell Biology, 8(3), 245–57. doi:10.1038/nrm2120.

    CAS  PubMed  Google Scholar 

  14. Lopez-Otin, C., & Matrisian, L. M. (2007). Emerging roles of proteases in tumour suppression. Nature Reviews Cancer, 7(10), 800–8. doi:10.1038/nrc2228.

    CAS  PubMed  Google Scholar 

  15. Gonzalo, P., Guadamillas, M. C., Hernandez-Riquer, M. V., Pollan, A., Grande-Garcia, A., Bartolome, R. A., et al. (2010). MT1-MMP is required for myeloid cell fusion via regulation of Rac1 signaling. Developmental Cell, 18(1), 77–89. doi:10.1016/j.devcel.2009.11.012.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Correia, A. L., Mori, H., Chen, E. I., Schmitt, F. C., & Bissell, M. J. (2013). The hemopexin domain of MMP3 is responsible for mammary epithelial invasion and morphogenesis through extracellular interaction with HSP90beta. Genes and Development, 27(7), 805–17. doi:10.1101/gad.211383.112.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Saghatelian, A., Jessani, N., Joseph, A., Humphrey, M., & Cravatt, B. F. (2004). Activity-based probes for the proteomic profiling of metalloproteases. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 10000–5. doi:10.1073/pnas.0402784101.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Browner, M. F., Smith, W. W., & Castelhano, A. L. (1995). Matrilysin-inhibitor complexes: Common themes among metalloproteases. Biochemistry, 34(20), 6602–10.

    CAS  PubMed  Google Scholar 

  19. Puerta, D. T., Lewis, J. A., & Cohen, S. M. (2004). New beginnings for matrix metalloproteinase inhibitors: Identification of high-affinity zinc-binding groups. Journal of the American Chemical Society, 126(27), 8388–9. doi:10.1021/ja0485513.

    CAS  PubMed  Google Scholar 

  20. Quantin, B., Murphy, G., & Breathnach, R. (1989). Pump-1 cDNA codes for a protein with characteristics similar to those of classical collagenase family members. Biochemistry, 28(13), 5327–34.

    CAS  PubMed  Google Scholar 

  21. Chandler, S., Cossins, J., Lury, J., & Wells, G. (1996). Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour necrosis factor-alpha fusion protein. Biochemical and Biophysical Research Communications, 228(2), 421–9. doi:10.1006/bbrc.1996.1677.

    CAS  PubMed  Google Scholar 

  22. Tochowicz, A., Maskos, K., Huber, R., Oltenfreiter, R., Dive, V., Yiotakis, A., et al. (2007). Crystal structures of MMP-9 complexes with five inhibitors: Contribution of the flexible Arg424 side-chain to selectivity. Journal of Molecular Biology, 371(4), 989–1006. doi:10.1016/j.jmb.2007.05.068.

    CAS  PubMed  Google Scholar 

  23. Tao, P., Fisher, J. F., Mobashery, S., & Schlegel, H. B. (2009). DFT studies of the ring-opening mechanism of SB-3CT, a potent inhibitor of matrix metalloproteinase 2. Organic Letters, 11(12), 2559–62. doi:10.1021/ol9008393.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Kleifeld, O., Kotra, L. P., Gervasi, D. C., Brown, S., Bernardo, M. M., Fridman, R., et al. (2001). X-ray absorption studies of human matrix metalloproteinase-2 (MMP-2) bound to a highly selective mechanism-based inhibitor. Comparison with the latent and active forms of the enzyme. Journal of Biological Chemistry, 276(20), 17125–31.

    CAS  PubMed  Google Scholar 

  25. Weinspach, D., Seubert, B., Schaten, S., Honert, K., Sebens, S., Altevogt, P., et al. (2014). Role of L1 cell adhesion molecule (L1CAM) in the metastatic cascade: Promotion of dissemination, colonization, and metastatic growth. Clinical and Experimental Metastasis, 31(1), 87–100. doi:10.1007/s10585-013-9613-6.

    CAS  PubMed  Google Scholar 

  26. Bonfil, R. D., Sabbota, A., Nabha, S., Bernardo, M. M., Dong, Z., Meng, H., et al. (2006). Inhibition of human prostate cancer growth, osteolysis and angiogenesis in a bone metastasis model by a novel mechanism-based selective gelatinase inhibitor. International Journal of Cancer, 118(11), 2721–6.

    CAS  Google Scholar 

  27. Gooyit, M., Song, W., Mahasenan, K. V., Lichtenwalter, K., Suckow, M. A., Schroeder, V. A., et al. (2013). O-phenyl carbamate and phenyl urea thiiranes as selective matrix metalloproteinase-2 inhibitors that cross the blood–brain barrier. Journal of Medicinal Chemistry, 56(20), 8139–50. doi:10.1021/jm401217d.

    CAS  PubMed  Google Scholar 

  28. Puerta, D. T., Griffin, M. O., Lewis, J. A., Romero-Perez, D., Garcia, R., Villarreal, F. J., et al. (2006). Heterocyclic zinc-binding groups for use in next-generation matrix metalloproteinase inhibitors: Potency, toxicity, and reactivity. Journal of Biological Inorganic Chemistry: JBIC: a Publication of the Society of Biological Inorganic Chemistry, 11(2), 131–8. doi:10.1007/s00775-005-0053-x.

    CAS  Google Scholar 

  29. Rubino, M. T., Agamennone, M., Campestre, C., Campiglia, P., Cremasco, V., Faccio, R., et al. (2011). Biphenyl sulfonylamino methyl bisphosphonic acids as inhibitors of matrix metalloproteinases and bone resorption. ChemMedChem, 6(7), 1258–68. doi:10.1002/cmdc.201000540.

    CAS  PubMed  Google Scholar 

  30. Thiolloy, S., Edwards, J. R., Fingleton, B., Rifkin, D. B., Matrisian, L. M., & Lynch, C. C. (2012). An osteoblast-derived proteinase controls tumor cell survival via TGF-beta activation in the bone microenvironment. PloS One, 7(1), e29862. doi:10.1371/journal.pone.0029862PONE-D-11-14696.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Tauro, M., Laghezza, A., Loiodice, F., Agamennone, M., Campestre, C., Tortorella, P. (2013). Arylamino methylene bisphosphonate derivatives as bone seeking matrix metalloproteinase inhibitors. Bioorganic & Medicinal Chemistry, 21(21), 6456–6465.

  32. Kolb, H. C., & Sharpless, K. B. (2003). The growing impact of click chemistry on drug discovery. Drug Discovery Today, 8(24), 1128–37.

    CAS  PubMed  Google Scholar 

  33. Lewis, W. G., Green, L. G., Grynszpan, F., Radic, Z., Carlier, P. R., Taylor, P., et al. (2002). Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angewandte Chemie, 41(6), 1053–7.

    CAS  PubMed  Google Scholar 

  34. Hu, M., Li, J., & Yao, S. Q. (2008). In situ “click” assembly of small molecule matrix metalloprotease inhibitors containing zinc-chelating groups. Organic Letters, 10(24), 5529–31. doi:10.1021/ol802286g.

    CAS  PubMed  Google Scholar 

  35. Scherer, R. L., McIntyre, J. O., & Matrisian, L. M. (2008). Imaging matrix metalloproteinases in cancer. Cancer and Metastasis Reviews, 27(4), 679–90. doi:10.1007/s10555-008-9152-9.

    PubMed  Google Scholar 

  36. Howat, S., Park, B., Oh, I. S., Jin, Y. W., Lee, E. K., & Loake, G. J. (2014). Paclitaxel: Biosynthesis, production and future prospects. New Biotechnology, 31(3), 242–5. doi:10.1016/j.nbt.2014.02.010.

    CAS  PubMed  Google Scholar 

  37. Payne, J. B., & Golub, L. M. (2011). Using tetracyclines to treat osteoporotic/osteopenic bone loss: from the basic science laboratory to the clinic. Pharmacological Research: The Official Journal of the Italian Pharmacological Society, 63(2), 121–9. doi:10.1016/j.phrs.2010.10.006.

    CAS  Google Scholar 

  38. Fingleton, B. (2003). CMT-3. CollaGenex. Current Opinion in Investigational Drugs, 4(12), 1460–7.

    CAS  PubMed  Google Scholar 

  39. Furlow, B. (2006). COL-3 benefits patients with AIDS-related Kaposi’s sarcoma. The Lancet Oncology, 7(5), 368.

    PubMed  Google Scholar 

  40. Zhang, C., & Kim, S. K. (2012). Antimetastasis effect of anthraquinones from marine fungus, Microsporum sp. Advances in Food and Nutrition Research, 65, 415–21. doi:10.1016/B978-0-12-416003-3.00027-5.

    PubMed  Google Scholar 

  41. Miyata, Y., Sato, T., Yano, M., & Ito, A. (2004). Activation of protein kinase C betaII/epsilon-c-Jun NH2-terminal kinase pathway and inhibition of mitogen-activated protein/extracellular signal-regulated kinase 1/2 phosphorylation in antitumor invasive activity induced by the polymethoxy flavonoid, nobiletin. Molecular Cancer Therapeutics, 3(7), 839–47.

    CAS  PubMed  Google Scholar 

  42. Rooprai, H. K., Kandanearatchi, A., Maidment, S. L., Christidou, M., Trillo-Pazos, G., Dexter, D. T., et al. (2001). Evaluation of the effects of swainsonine, captopril, tangeretin and nobiletin on the biological behaviour of brain tumour cells in vitro. Neuropathology and Applied Neurobiology, 27(1), 29–39.

    CAS  PubMed  Google Scholar 

  43. Kawabata, K., Murakami, A., & Ohigashi, H. (2006). Citrus auraptene targets translation of MMP-7 (matrilysin) via ERK1/2-dependent and mTOR-independent mechanism. FEBS Letters, 580(22), 5288–94. doi:10.1016/j.febslet.2006.08.072.

    CAS  PubMed  Google Scholar 

  44. Minagawa, A., Otani, Y., Kubota, T., Wada, N., Furukawa, T., Kumai, K., et al. (2001). The citrus flavonoid, nobiletin, inhibits peritoneal dissemination of human gastric carcinoma in SCID mice. Japanese Journal of Cancer Research: Gann, 92(12), 1322–8.

    CAS  PubMed  Google Scholar 

  45. Shao, Z. M., Wu, J., Shen, Z. Z., & Barsky, S. H. (1998). Genistein inhibits both constitutive and EGF-stimulated invasion in ER-negative human breast carcinoma cell lines. Anticancer Research, 18(3A), 1435–9.

    CAS  PubMed  Google Scholar 

  46. Kousidou, O. C., Mitropoulou, T. N., Roussidis, A. E., Kletsas, D., Theocharis, A. D., & Karamanos, N. K. (2005). Genistein suppresses the invasive potential of human breast cancer cells through transcriptional regulation of metalloproteinases and their tissue inhibitors. International Journal of Oncology, 26(4), 1101–9.

    CAS  PubMed  Google Scholar 

  47. Agarwal, C., Tyagi, A., Kaur, M., & Agarwal, R. (2007). Silibinin inhibits constitutive activation of Stat3, and causes caspase activation and apoptotic death of human prostate carcinoma DU145 cells. Carcinogenesis, 28(7), 1463–70. doi:10.1093/carcin/bgm042.

    CAS  PubMed  Google Scholar 

  48. Agarwal, R., Agarwal, C., Ichikawa, H., Singh, R. P., & Aggarwal, B. B. (2006). Anticancer potential of silymarin: from bench to bed side. Anticancer Research, 26(6B), 4457–98.

    CAS  PubMed  Google Scholar 

  49. Dell’Aica, I., Caniato, R., Biggin, S., & Garbisa, S. (2007). Matrix proteases, green tea, and St. John’s wort: biomedical research catches up with folk medicine. Clinica Chimica Acta; International Journal of Clinical Chemistry, 381(1), 69–77. doi:10.1016/j.cca.2007.02.022.

    PubMed  Google Scholar 

  50. Yamakawa, S., Asai, T., Uchida, T., Matsukawa, M., Akizawa, T., & Oku, N. (2004). (−)-Epigallocatechin gallate inhibits membrane-type 1 matrix metalloproteinase, MT1-MMP, and tumor angiogenesis. Cancer Letters, 210(1), 47–55. doi:10.1016/j.canlet.2004.03.008.

    CAS  PubMed  Google Scholar 

  51. Cao, Y., Fu, Z. D., Wang, F., Liu, H. Y., & Han, R. (2005). Anti-angiogenic activity of resveratrol, a natural compound from medicinal plants. Journal of Asian Natural Products Research, 7(3), 205–13. doi:10.1080/10286020410001690190.

    CAS  PubMed  Google Scholar 

  52. Tang, Z., Liu, X. Y., & Zou, P. (2007). Resveratrol inhibits the secretion of vascular endothelial growth factor and subsequent proliferation in human leukemia U937 cells. Journal of Huazhong University of Science and Technology Medical sciences =Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban =Huazhong keji daxue xuebao Yixue Yingdewen ban, 27(5), 508–12. doi:10.1007/s11596-007-0508-0.

    CAS  Google Scholar 

  53. Woo, J. H., Lim, J. H., Kim, Y. H., Suh, S. I., Min, D. S., Chang, J. S., et al. (2004). Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene, 23(10), 1845–53. doi:10.1038/sj.onc.1207307.

    CAS  PubMed  Google Scholar 

  54. Vayalil, P. K., Mittal, A., & Katiyar, S. K. (2004). Proanthocyanidins from grape seeds inhibit expression of matrix metalloproteinases in human prostate carcinoma cells, which is associated with the inhibition of activation of MAPK and NF kappa B. Carcinogenesis, 25(6), 987–95. doi:10.1093/carcin/bgh095.

    CAS  PubMed  Google Scholar 

  55. Bodet, C., Chandad, F., & Grenier, D. (2007). Inhibition of host extracellular matrix destructive enzyme production and activity by a high-molecular-weight cranberry fraction. Journal of Periodontal Research, 42(2), 159–68. doi:10.1111/j.1600-0765.2006.00929.x.

    CAS  PubMed  Google Scholar 

  56. Banerji, A., Chakrabarti, J., Mitra, A., & Chatterjee, A. (2004). Effect of curcumin on gelatinase A (MMP-2) activity in B16F10 melanoma cells. Cancer Letters, 211(2), 235–42. doi:10.1016/j.canlet.2004.02.007.

    CAS  PubMed  Google Scholar 

  57. Lin, L. I., Ke, Y. F., Ko, Y. C., & Lin, J. K. (1998). Curcumin inhibits SK-Hep-1 hepatocellular carcinoma cell invasion in vitro and suppresses matrix metalloproteinase-9 secretion. Oncology (Williston Park), 55(4), 349–53.

    CAS  Google Scholar 

  58. Chen, H. W., Yu, S. L., Chen, J. J., Li, H. N., Lin, Y. C., Yao, P. L., et al. (2004). Anti-invasive gene expression profile of curcumin in lung adenocarcinoma based on a high throughput microarray analysis. Molecular Pharmacology, 65(1), 99–110. doi:10.1124/mol.65.1.99.

    CAS  PubMed  Google Scholar 

  59. Chen, H., Yan, X., Lin, J., Wang, F., & Xu, W. (2007). Depolymerized products of lambda-carrageenan as a potent angiogenesis inhibitor. Journal of Agricultural and Food Chemistry, 55(17), 6910–7. doi:10.1021/jf070183+.

    CAS  PubMed  Google Scholar 

  60. Kim, J. A., Ahn, B. N., Kong, C. S., Park, S. H., Park, B. J., & Kim, S. K. (2012). Antiphotoaging effect of chitooligosaccharides on human dermal fibroblasts. Photodermatology, Photoimmunology & Photomedicine, 28(6), 299–306. doi:10.1111/phpp.12004.

    CAS  Google Scholar 

  61. Mannello, F. (2006). Natural bio-drugs as matrix metalloproteinase inhibitors: New perspectives on the horizon? Recent Patents on Anti-Cancer Drug Discovery, 1(1), 91–103.

    CAS  PubMed  Google Scholar 

  62. Dredge, K. (2004). AE-941 (AEterna). Current Opinion in Investigational Drugs, 5(6), 668–77.

    CAS  PubMed  Google Scholar 

  63. Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231–46. doi:10.3390/nu2121231.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Babu, P. V., & Liu, D. (2008). Green tea catechins and cardiovascular health: an update. Current Medicinal Chemistry, 15(18), 1840–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Annabi, B., Lachambre, M. P., Bousquet-Gagnon, N., Page, M., Gingras, D., & Beliveau, R. (2002). Green tea polyphenol (−)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in glioblastoma cells. Biochimica et Biophysica Acta, 1542(1–3), 209–20.

    CAS  PubMed  Google Scholar 

  66. Demeule, M., Brossard, M., Page, M., Gingras, D., & Beliveau, R. (2000). Matrix metalloproteinase inhibition by green tea catechins. Biochimica et Biophysica Acta, 1478(1), 51–60.

    CAS  PubMed  Google Scholar 

  67. Fujita, M., Nakao, Y., Matsunaga, S., Seiki, M., Itoh, Y., Yamashita, J., et al. (2003). Ageladine A: an antiangiogenic matrixmetalloproteinase inhibitor from the marine sponge Agelas nakamurai. Journal of the American Chemical Society, 125(51), 15700–1. doi:10.1021/ja038025w.

    CAS  PubMed  Google Scholar 

  68. Shengule, S. R., Loa-Kum-Cheung, W. L., Parish, C. R., Blairvacq, M., Meijer, L., Nakao, Y., et al. (2011). A one-pot synthesis and biological activity of ageladine A and analogues. Journal of Medicinal Chemistry, 54(7), 2492–503. doi:10.1021/jm200039m.

    CAS  PubMed  Google Scholar 

  69. Falardeau, P., Champagne, P., Poyet, P., Hariton, C., & Dupont, E. (2001). Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phase III clinical trials. Seminars in Oncology, 28(6), 620–5.

    CAS  PubMed  Google Scholar 

  70. Lu, C., Lee, J. J., Komaki, R., Herbst, R. S., Feng, L., Evans, W. K., et al. (2010). Chemoradiotherapy with or without AE-941 in stage III non-small cell lung cancer: a randomized phase III trial. Journal of the National Cancer Institute, 102(12), 859–65. doi:10.1093/jnci/djq179.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Loprinzi, C. L., Levitt, R., Barton, D. L., Sloan, J. A., Atherton, P. J., Smith, D. J., et al. (2005). Evaluation of shark cartilage in patients with advanced cancer: a north central cancer treatment group trial. Cancer, 104(1), 176–82. doi:10.1002/cncr.21107.

    PubMed  Google Scholar 

  72. Vacchelli, E., Aranda, F., Eggermont, A., Galon, J., Sautes-Fridman, C., Zitvogel, L., et al. (2014). Trial watch: Tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology, 3(1), e27048. doi:10.4161/onci.27048.

    PubMed Central  PubMed  Google Scholar 

  73. Acharya, U. H., & Jeter, J. M. (2013). Use of ipilimumab in the treatment of melanoma. Clinical Pharmacology: Advances and Applications, 5(Suppl 1), 21–7. doi:10.2147/CPAA.S45884.

    Google Scholar 

  74. Braghiroli, M. I., Sabbaga, J., & Hoff, P. M. (2012). Bevacizumab: Overview of the literature. Expert Review of Anticancer Therapy, 12(5), 567–80. doi:10.1586/era.12.13.

    CAS  PubMed  Google Scholar 

  75. Devy, L., Huang, L., Naa, L., Yanamandra, N., Pieters, H., Frans, N., et al. (2009). Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Research, 69(4), 1517–26. doi:10.1158/0008-5472.CAN-08-3255.

    CAS  PubMed  Google Scholar 

  76. Naito, S., Takahashi, T., Onoda, J., Yamauchi, A., Kawai, T., Kishino, J., et al. (2012). Development of a neutralizing antibody specific for the active form of matrix metalloproteinase-13. Biochemistry, 51(44), 8877–84. doi:10.1021/bi301228d.

    CAS  PubMed  Google Scholar 

  77. Shiryaev, S. A., Remacle, A. G., Golubkov, V. S., Ingvarsen, S., Porse, A., Behrendt, N., et al. (2013). A monoclonal antibody interferes with TIMP-2 binding and incapacitates the MMP-2-activating function of multifunctional, pro-tumorigenic MMP-14/MT1-MMP. Oncogenesis, 2, e80. doi:10.1038/oncsis.2013.44.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Fingleton, B., Powell, W. C., Crawford, H. C., Couchman, J. R., & Matrisian, L. M. (2007). A rat monoclonal antibody that recognizes pro- and active MMP-7 indicates polarized expression in vivo. Hybridoma (Larchmt), 26(1), 22–7. doi:10.1089/hyb.2006.028.

    CAS  Google Scholar 

  79. Lolmede, K., Campana, L., Vezzoli, M., Bosurgi, L., Tonlorenzi, R., Clementi, E., et al. (2009). Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. Journal of Leukocyte Biology, 85(5), 779–87. doi:10.1189/jlb.0908579.

    CAS  PubMed  Google Scholar 

  80. Sela-Passwell, N., Kikkeri, R., Dym, O., Rozenberg, H., Margalit, R., Arad-Yellin, R., et al. (2012). Antibodies targeting the catalytic zinc complex of activated matrix metalloproteinases show therapeutic potential. Nature Medicine, 18(1), 143–7. doi:10.1038/nm.2582.

    CAS  Google Scholar 

  81. Pei, D., Kang, T., & Qi, H. (2000). Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. The Journal of Biological Chemistry, 275(43), 33988–97. doi:10.1074/jbc.M006493200.

    CAS  PubMed  Google Scholar 

  82. Sato, H., Okada, Y., & Seiki, M. (1997). Membrane-type matrix metalloproteinases (MT-MMPs) in cell invasion. Thrombosis and Haemostasis, 78(1), 497–500.

    CAS  PubMed  Google Scholar 

  83. Itoh, Y., & Seiki, M. (2006). MT1-MMP: a potent modifier of pericellular microenvironment. Journal of Cellular Physiology, 206(1), 1–8. doi:10.1002/jcp.20431.

    CAS  PubMed  Google Scholar 

  84. Ota, I., Li, X. Y., Hu, Y., & Weiss, S. J. (2009). Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20318–23. doi:10.1073/pnas.0910962106.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Deu, E., Verdoes, M., & Bogyo, M. (2012). New approaches for dissecting protease functions to improve probe development and drug discovery. Nature Structural & Molecular Biology, 19(1), 9–16. doi:10.1038/nsmb.2203.

    CAS  Google Scholar 

  86. Olson, E. S., Jiang, T., Aguilera, T. A., Nguyen, Q. T., Ellies, L. G., Scadeng, M., et al. (2010). Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proceedings of the National Academy of Sciences of the United States of America, 107(9), 4311–6. doi:10.1073/pnas.0910283107.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Akers, W. J., Xu, B., Lee, H., Sudlow, G. P., Fields, G. B., Achilefu, S., et al. (2012). Detection of MMP-2 and MMP-9 activity in vivo with a triple-helical peptide optical probe. Bioconjugate Chemistry, 23(3), 656–63. doi:10.1021/bc300027y.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Turk, B. E., Huang, L. L., Piro, E. T., & Cantley, L. C. (2001). Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nature Biotechnology, 19(7), 661–7. doi:10.1038/90273.

    CAS  PubMed  Google Scholar 

  89. Scherer, R. L., VanSaun, M. N., McIntyre, J. O., & Matrisian, L. M. (2008). Optical imaging of matrix metalloproteinase-7 activity in vivo using a proteolytic nanobeacon. Molecular Imaging, 7(3), 118–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Zhang, H. (2004). Pyro-Gly-Pro-Leu-Gly-Leu-Ala-Arg-Lys (BHQ3). Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD).

  91. Fudala R, Rich R, Mukerjee A, Ranjan AP, Vishwanatha JK, Kurdowska AK, et al. (2012). Fluorescence detection of MMP-9.II. Ratiometric FRET-based sensing with dually labeled specific peptide. Current Pharmaceutical Biotechnology.

  92. Lee, S., Xie, J., & Chen, X. (2010). Peptides and peptide hormones for molecular imaging and disease diagnosis. Chemical Reviews, 110(5), 3087–111. doi:10.1021/cr900361p.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Meyer, B. S., & Rademann, J. (2012). Extra- and intracellular imaging of human matrix metalloprotease 11 (hMMP-11) with a cell-penetrating FRET substrate. Journal of Biological Chemistry, 287(45), 37857–67. doi:10.1074/jbc.M112.371500.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Jabaiah, A., & Daugherty, P. S. (2011). Directed evolution of protease beacons that enable sensitive detection of endogenous MT1-MMP activity in tumor cell lines. Chemistry & Biology, 18(3), 392–401. doi:10.1016/j.chembiol.2010.12.017.

    CAS  Google Scholar 

  95. Zhu, L., Ma, Y., Kiesewetter, D. O., Wang, Y., Lang, L., Lee, S., et al. (2013). Rational design of matrix metalloproteinase-13 activatable probes for enhanced specificity. ACS Chemical Biology. doi:10.1021/cb400698s.

    PubMed Central  Google Scholar 

  96. Chien, M. P., Carlini, A. S., Hu, D., Barback, C. V., Rush, A. M., Hall, D. J., et al. (2013). Enzyme-directed assembly of nanoparticles in tumors monitored by in vivo whole animal imaging and ex vivo super-resolution fluorescence imaging. Journal of the American Chemical Society. doi:10.1021/ja408182p.

    PubMed  Google Scholar 

  97. Remacle, A. G., Shiryaev, S. A., Golubkov, V. S., Freskos, J. N., Brown, M. A., Karwa, A. S., et al. (2013). Non-destructive and selective imaging of the functionally active, pro-invasive membrane type-1 matrix metalloproteinase (MT1-MMP) enzyme in cancer cells. Journal of Biological Chemistry, 288(28), 20568–80. doi:10.1074/jbc.M113.471508.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Yu, S. S., Lau, C. M., Thomas, S. N., Jerome, W. G., Maron, D. J., Dickerson, J. H., et al. (2012). Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. International Journal of Nanomedicine, 7, 799–813. doi:10.2147/IJN.S28531.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Thorek, D. L., Ogirala, A., Beattie, B. J., & Grimm, J. (2013). Quantitative imaging of disease signatures through radioactive decay signal conversion. Nature Medicine, 19(10), 1345–50. doi:10.1038/nm.3323.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Kim, Y. P., Daniel, W. L., Xia, Z., Xie, H., Mirkin, C. A., & Rao, J. (2010). Bioluminescent nanosensors for protease detection based upon gold nanoparticle-luciferase conjugates. Chemical communications (Cambridge), 46(1), 76–8. doi:10.1039/b915612g.

    CAS  Google Scholar 

  101. Samuelson, L. E., Scherer, R. L., Matrisian, L. M., McIntyre, J. O., & Bornhop, D. J. (2013). Synthesis and in vitro efficacy of MMP9-activated NanoDendrons. Molecular Pharmaceutics, 10(8), 3164–74. doi:10.1021/mp4002206.

    CAS  PubMed  Google Scholar 

  102. Shi, N. Q., Gao, W., Xiang, B., & Qi, X. R. (2012). Enhancing cellular uptake of activable cell-penetrating peptide-doxorubicin conjugate by enzymatic cleavage. International Journal of Nanomedicine, 7, 1613–21. doi:10.2147/IJN.S30104.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Li, R., Wu, W., Liu, Q., Wu, P., Xie, L., Zhu, Z., et al. (2013). Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles. PloS One, 8(7), e69643. doi:10.1371/journal.pone.0069643.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Tredan, O., Galmarini, C. M., Patel, K., & Tannock, I. F. (2007). Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute, 99(19), 1441–54. doi:10.1093/jnci/djm135.

    CAS  PubMed  Google Scholar 

  105. Danhier, F., Feron, O., & Preat, V. (2010). To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release: Official Journal of the Controlled Release Society, 148(2), 135–46. doi:10.1016/j.jconrel.2010.08.027.

    CAS  Google Scholar 

  106. Burris, H. A., 3rd, Tibbitts, J., Holden, S. N., Sliwkowski, M. X., & Lewis Phillips, G. D. (2011). Trastuzumab emtansine (T-DM1): a novel agent for targeting HER2+ breast cancer. Clinical Breast Cancer, 11(5), 275–82. doi:10.1016/j.clbc.2011.03.018.

    CAS  PubMed  Google Scholar 

  107. Gu, G., Xia, H., Hu, Q., Liu, Z., Jiang, M., Kang, T., et al. (2013). PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials, 34(1), 196–208. doi:10.1016/j.biomaterials.2012.09.044.

    PubMed  Google Scholar 

  108. Kondo, M., Asai, T., Katanasaka, Y., Sadzuka, Y., Tsukada, H., Ogino, K., et al. (2004). Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase. International Journal of Cancer, 108(2), 301–6. doi:10.1002/ijc.11526.

    CAS  Google Scholar 

  109. Van Valckenborgh, E., Mincher, D., Di Salvo, A., Van Riet, I., Young, L., Van Camp, B., et al. (2005). Targeting an MMP-9-activated prodrug to multiple myeloma-diseased bone marrow: a proof of principle in the 5T33MM mouse model. Leukemia, 19(9), 1628–33. doi:10.1038/sj.leu.2403866.

    PubMed  Google Scholar 

  110. Ansari, C., Tikhomirov, G. A., Hong, S. H., Falconer, R. A., Loadman, P. M., Gill, J. H., et al. (2014). Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy. Small, 10(3), 566–75. doi:10.1002/smll.201301456.

    CAS  PubMed  Google Scholar 

  111. Morell, M., Nguyen Duc, T., Willis, A. L., Syed, S., Lee, J., Deu, E., et al. (2013). Coupling protein engineering with probe design to inhibit and image matrix metalloproteinases with controlled specificity. Journal of the American Chemical Society, 135(24), 9139–48. doi:10.1021/ja403523p.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the National Cancer Institute (RO1CA143094). We would also like to thank Barbara Fingleton at Vanderbilt University for her evaluation and critique of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conor C. Lynch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tauro, M., McGuire, J. & Lynch, C.C. New approaches to selectively target cancer-associated matrix metalloproteinase activity. Cancer Metastasis Rev 33, 1043–1057 (2014). https://doi.org/10.1007/s10555-014-9530-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9530-4

Keywords

Navigation