Skip to main content

Advertisement

Log in

Emerging roles of regulatory T cells in tumour progression and metastasis

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The metastasis of cancer is a complex and life-threatening process that is only partially understood. Immune suppressive cells are recognized as important contributors to tumour progression and may also promote the development and growth of tumour metastases. Specifically, regulatory T cells (Tregs) have been found to promote primary tumour progression, and emerging pre-clinical data suggests that Tregs may promote metastasis and metastatic tumour growth. While the precise role that Tregs play in metastatic progression is understudied, recent findings have indicated that by suppressing innate and adaptive anti-tumour immunity, Tregs may shield tumour cells from immune detection, and thereby allow tumour cells to survive, proliferate and acquire characteristics that facilitate dissemination. This review will highlight our current understanding of Tregs in metastasis, including an overview of pre-clinical findings and discussion of clinical data regarding Tregs and therapeutic outcome. Evolving strategies to directly ablate Tregs or to inhibit their function will also be discussed. Improving our understanding of how Tregs may influence tumour metastasis may lead to novel treatments for metastatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Tregs:

Regulatory T cells

pTregs:

Peripheral regulatory T cells

tTregs:

Thymic regulatory T cells

Foxp3:

Forkhead box P3

References

  1. Beyer, M., & Schultze, J. L. (2006). Regulatory T cells in cancer. Blood, 108(3), 804–811.

    CAS  PubMed  Google Scholar 

  2. Maizels, R. M., & Smith, K. A. (2011). Regulatory T cells in infection. Advances in Immunology, 112, 73–136.

    PubMed  Google Scholar 

  3. Gershon, R. K., & Kondo, K. (1970). Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology, 18(5), 723–737.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Berendt, M. J., & North, R. J. (1980). T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. Journal of Experimental Medicine, 151(1), 69–80.

    CAS  PubMed  Google Scholar 

  5. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., & Toda, M. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunology, 155(3), 1151–1164.

    CAS  Google Scholar 

  6. Bennett, C. L., Christie, J., Ramsdell, F., Brunkow, M. E., Ferguson, P. J., Whitesell, L., et al. (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genetics, 27(1), 20–21.

    CAS  PubMed  Google Scholar 

  7. Williams, L. M., & Rudensky, A. Y. (2007). Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nature Immunology, 8(3), 277–284.

    CAS  PubMed  Google Scholar 

  8. McMurchy, A. N., Bushell, A., Levings, M. K., & Wood, K. J. (2011). Moving to tolerance: clinical application of T regulatory cells. Seminars in Immunology, 23(4), 304–313.

    CAS  PubMed  Google Scholar 

  9. Pacholczyk, R., & Kern, J. (2008). The T-cell receptor repertoire of regulatory T cells. Immunology, 125(4), 450–458.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Bilate, A. M., & Lafaille, J. J. (2012). Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annual Review of Immunology, 30, 733–758.

    CAS  PubMed  Google Scholar 

  11. Toker, A., Engelbert, D., Garg, G., Polansky, J. K., Floess, S., Miyao, T., et al. (2013). Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. Journal of Immunology, 190(7), 3180–3188.

    CAS  Google Scholar 

  12. Shalev, I., Schmelzle, M., Robson, S. C., & Levy, G. (2011). Making sense of regulatory T cell suppressive function. Seminars in Immunology, 23(4), 282–292.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Sakaguchi, S., Miyara, M., Costantino, C. M., & Hafler, D. A. (2010). Foxp3+ regulatory T cells in the human immune system. Nature Reviews Immunology, 10(7), 490–500.

    CAS  PubMed  Google Scholar 

  14. Allan, S. E., Song-Zhao, G. X., Abraham, T., McMurchy, A. N., & Levings, M. K. (2008). Inducible reprogramming of human T cells into Treg cells by a conditionally active form of Foxp3. European Journal of Immunology, 38(12), 3282–3289.

    CAS  PubMed  Google Scholar 

  15. Gratz, I. K., & Campbell, D. J. (2014). Organ-specific and memory treg cells: specificity, development, function, and maintenance. Frontiers in Immunology, 5, 333.

    PubMed Central  PubMed  Google Scholar 

  16. Corthay, A. (2009). How do regulatory T cells work? Scandinavian Journal of Immunology, 70(4), 326–336.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Morlacchi, S., Dal Secco, V., Soldani, C., Glaichenhaus, N., Viola, A., & Sarukhan, A. (2011). Regulatory T cells target chemokine secretion by dendritic cells independently of their capacity to regulate T cell proliferation. Journal of Immunology, 186(12), 6807–6814.

    CAS  Google Scholar 

  18. Yamaguchi, T., Wing, J. B., & Sakaguchi, S. (2011). Two modes of immune suppression by Foxp3(+) regulatory T cells under inflammatory or non-inflammatory conditions. Seminars in Immunology, 23(6), 424–430.

    CAS  PubMed  Google Scholar 

  19. Wright, G. P., Notley, C. A., Xue, S. A., Bendle, G. M., Holler, A., Schumacher, T. N., et al. (2009). Adoptive therapy with redirected primary regulatory T cells results in antigen-specific suppression of arthritis. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 19078–19083.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Facciabene, A., Motz, G. T., & Coukos, G. (2012). T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Research, 72(9), 2162–2171.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Mailloux, A. W., & Young, M. R. (2010). Regulatory T-cell trafficking: from thymic development to tumor-induced immune suppression. Critical Reviews in Immunology, 30(5), 435–447.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Medicine, 10(9), 942–949.

    CAS  PubMed  Google Scholar 

  23. Gobert, M., Treilleux, I., Bendriss-Vermare, N., Bachelot, T., Goddard-Leon, S., Arfi, V., et al. (2009). Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Research, 69(5), 2000–2009.

    CAS  PubMed  Google Scholar 

  24. Tan, W., Zhang, W., Strasner, A., Grivennikov, S., Cheng, J. Q., Hoffman, R. M., et al. (2011). Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature, 470(7335), 548–553.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Facciabene, A., Peng, X., Hagemann, I. S., Balint, K., Barchetti, A., Wang, L. P., et al. (2011). Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature, 475(7355), 226–230.

    CAS  PubMed  Google Scholar 

  26. Wei, S., Kryczek, I., Edwards, R. P., Zou, L., Szeliga, W., Banerjee, M., et al. (2007). Interleukin-2 administration alters the CD4+Foxp3+ T-cell pool and tumor trafficking in patients with ovarian carcinoma. Cancer Research, 67(15), 7487–7494.

    CAS  PubMed  Google Scholar 

  27. Liu, V. C., Wong, L. Y., Jang, T., Shah, A. H., Park, I., Yang, X., et al. (2007). Tumor evasion of the immune system by converting CD4+CD25 T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta. Journal of Immunology, 178(5), 2883–2892.

    CAS  Google Scholar 

  28. Valzasina, B., Piconese, S., Guiducci, C., & Colombo, M. P. (2006). Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25 lymphocytes is thymus and proliferation independent. Cancer Research, 66(8), 4488–4495.

    CAS  PubMed  Google Scholar 

  29. Elkord, E., Sharma, S., Burt, D. J., & Hawkins, R. E. (2011). Expanded subpopulation of FoxP3+ T regulatory cells in renal cell carcinoma co-express Helios, indicating they could be derived from natural but not induced Tregs. Clinical Immunology, 140(3), 218–222.

    CAS  PubMed  Google Scholar 

  30. Nizar, S., Meyer, B., Galustian, C., Kumar, D., & Dalgleish, A. (2010). T regulatory cells, the evolution of targeted immunotherapy. Biochimica et Biophysica Acta, 1806(1), 7–17.

    CAS  PubMed  Google Scholar 

  31. Mougiakakos, D., Johansson, C. C., & Kiessling, R. (2009). Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress-induced cell death. Blood, 113(15), 3542–3545.

    CAS  PubMed  Google Scholar 

  32. Carreras, J., Lopez-Guillermo, A., Fox, B. C., Colomo, L., Martinez, A., Roncador, G., et al. (2006). High numbers of tumor-infiltrating Foxp3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood, 108(9), 2957–2964.

    CAS  PubMed  Google Scholar 

  33. Lee, A. M., Clear, A. J., Calaminici, M., Davies, A. J., Jordan, S., MacDougall, F., et al. (2006). Number of CD4+ cells and location of forkhead box protein P3-positive cells in diagnostic follicular lymphoma tissue microarrays correlates with outcome. Journal of Clinical Oncology, 24(31), 5052–5059.

    CAS  PubMed  Google Scholar 

  34. Tzankov, A., Meier, C., Hirschmann, P., Went, P., Pileri, S. A., & Dirnhofer, S. (2008). Correlation of high numbers of intratumoral Foxp3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin’s lymphoma. Haematologica, 93(2), 193–200.

    CAS  PubMed  Google Scholar 

  35. Polcher, M., Braun, M., Friedrichs, N., Rudlowski, C., Bercht, E., Fimmers, R., et al. (2010). Foxp3(+) cell infiltration and granzyme B(+)/Foxp3(+) cell ratio are associated with outcome in neoadjuvant chemotherapy-treated ovarian carcinoma. Cancer Immunology, Immunotherapy, 59(6), 909–919.

    PubMed  Google Scholar 

  36. Wolf, D., Wolf, A. M., Rumpold, H., Fiegl, H., Zeimet, A. G., Muller-Holzner, E., et al. (2005). The expression of the regulatory T cell-specific forkhead box transcription factor Foxp3 is associated with poor prognosis in ovarian cancer. Clinical Cancer Research, 11(23), 8326–8331.

    CAS  PubMed  Google Scholar 

  37. Chen, K. J., Zhou, L., Xie, H. Y., Ahmed, T. E., Feng, X. W., & Zheng, S. S. (2012). Intratumoral regulatory T cells alone or in combination with cytotoxic T cells predict prognosis of hepatocellular carcinoma after resection. Medical Oncology, 29(3), 1817–1826.

    PubMed  Google Scholar 

  38. Gao, Q., Qiu, S. J., Fan, J., Zhou, J., Wang, X. Y., Xiao, Y. S., et al. (2007). Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. Journal of Clinical Oncology, 25(18), 2586–2593.

    PubMed  Google Scholar 

  39. Li, J. F., Chu, Y. W., Wang, G. M., Zhu, T. Y., Rong, R. M., Hou, J., et al. (2009). The prognostic value of peritumoral regulatory T cells and its correlation with intratumoral cyclooxygenase-2 expression in clear cell renal cell carcinoma. BJU International, 103(3), 399–405.

    PubMed  Google Scholar 

  40. Siddiqui, S. A., Frigola, X., Bonne-Annee, S., Mercader, M., Kuntz, S. M., Krambeck, A. E., et al. (2007). Tumor-infiltrating Foxp3-CD4+CD25+ T cells predict poor survival in renal cell carcinoma. Clinical Cancer Research, 13(7), 2075–2081.

    CAS  PubMed  Google Scholar 

  41. Hiraoka, N., Onozato, K., Kosuge, T., & Hirohashi, S. (2006). Prevalence of Foxp3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clinical Cancer Research, 12(18), 5423–5434.

    CAS  PubMed  Google Scholar 

  42. Mougiakakos, D., Johansson, C. C., Trocme, E., All-Ericsson, C., Economou, M. A., Larsson, O., et al. (2010). Intratumoral forkhead box P3-positive regulatory T cells predict poor survival in cyclooxygenase-2-positive uveal melanoma. Cancer, 116(9), 2224–2233.

    PubMed  Google Scholar 

  43. Brudvik, K. W., Henjum, K., Aandahl, E. M., Bjornbeth, B. A., & Tasken, K. (2012). Regulatory T-cell-mediated inhibition of antitumor immune responses is associated with clinical outcome in patients with liver metastasis from colorectal cancer. Cancer Immunology, Immunotherapy, 61(7), 1045–1053.

    CAS  PubMed  Google Scholar 

  44. Shimizu, K., Nakata, M., Hirami, Y., Yukawa, T., Maeda, A., & Tanemoto, K. (2010). Tumor-infiltrating Foxp3+ regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer. Journal of Thoracic Oncology, 5(5), 585–590.

    PubMed  Google Scholar 

  45. Correale, P., Rotundo, M. S., Del Vecchio, M. T., Remondo, C., Migali, C., Ginanneschi, C., et al. (2010). Regulatory (Foxp3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy. Journal of Immunotherapy, 33(4), 435–441.

    PubMed  Google Scholar 

  46. Ladoire, S., Martin, F., & Ghiringhelli, F. (2011). Prognostic role of Foxp3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunology, Immunotherapy, 60(7), 909–918.

    CAS  PubMed  Google Scholar 

  47. Salama, P., Phillips, M., Grieu, F., Morris, M., Zeps, N., Joseph, D., et al. (2009). Tumor-infiltrating Foxp3+ T regulatory cells show strong prognostic significance in colorectal cancer. Journal of Clinical Oncology, 27(2), 186–192.

    PubMed  Google Scholar 

  48. Haas, M., Dimmler, A., Hohenberger, W., Grabenbauer, G. G., Niedobitek, G., & Distel, L. V. (2009). Stromal regulatory T-cells are associated with a favourable prognosis in gastric cancer of the cardia. BMC Gastroenterology, 9, 65.

    PubMed Central  PubMed  Google Scholar 

  49. Badoual, C., Hans, S., Rodriguez, J., Peyrard, S., Klein, C., Agueznay Nel, H., et al. (2006). Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clinical Cancer Research, 12(2), 465–472.

    CAS  PubMed  Google Scholar 

  50. Bron, L., Jandus, C., Andrejevic-Blant, S., Speiser, D. E., Monnier, P., Romero, P., et al. (2013). Prognostic value of arginase-II expression and regulatory T-cell infiltration in head and neck squamous cell carcinoma. International Journal of Cancer, 132(3), E85–E93.

    CAS  Google Scholar 

  51. Strauss, L., Bergmann, C., Gooding, W., Johnson, J. T., & Whiteside, T. L. (2007). The frequency and suppressor function of CD4+CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clinical Cancer Research, 13(21), 6301–6311.

    CAS  PubMed  Google Scholar 

  52. Chaudhary, B., Abd Al Samid, M., al-Ramadi, B. K., & Elkord, E. (2014). Phenotypic alterations, clinical impact and therapeutic potential of regulatory T cells in cancer. Expert Opinion on Biological Therapy, 14(7), 931–945.

    CAS  PubMed  Google Scholar 

  53. Zitvogel, L., Kepp, O., & Kroemer, G. (2011). Immune parameters affecting the efficacy of chemotherapeutic regimens. Nature Reviews. Clinical Oncology, 8(3), 151–160.

    CAS  PubMed  Google Scholar 

  54. Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The three Es of cancer immunoediting. Annual Review of Immunology, 22, 329–360.

    CAS  PubMed  Google Scholar 

  55. Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science, 299(5609), 1057–1061.

    CAS  PubMed  Google Scholar 

  56. Kryczek, I., Liu, R., Wang, G., Wu, K., Shu, X., Szeliga, W., et al. (2009). Foxp3 defines regulatory T cells in human tumor and autoimmune disease. Cancer Research, 69(9), 3995–4000.

    CAS  PubMed  Google Scholar 

  57. Roncador, G., Brown, P. J., Maestre, L., Hue, S., Martinez-Torrecuadrada, J. L., Ling, K. L., et al. (2005). Analysis of Foxp3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. European Journal of Immunology, 35(6), 1681–1691.

    CAS  PubMed  Google Scholar 

  58. Hinz, S., Pagerols-Raluy, L., Oberg, H. H., Ammerpohl, O., Grussel, S., Sipos, B., et al. (2007). Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Research, 67(17), 8344–8350.

    CAS  PubMed  Google Scholar 

  59. Zuo, T., Wang, L., Morrison, C., Chang, X., Zhang, H., Li, W., et al. (2007). Foxp3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell, 129(7), 1275–1286.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Triulzi, T., Tagliabue, E., Balsari, A., & Casalini, P. (2013). Foxp3 expression in tumor cells and implications for cancer progression. Journal of Cellular Physiology, 228(1), 30–35.

    CAS  PubMed  Google Scholar 

  61. Li, W., Wang, L., Katoh, H., Liu, R., Zheng, P., & Liu, Y. (2011). Identification of a tumor suppressor relay between the Foxp3 and the Hippo pathways in breast and prostate cancers. Cancer Research, 71(6), 2162–2171.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. McInnes, N., Sadlon, T. J., Brown, C. Y., Pederson, S., Beyer, M., Schultze, J. L., et al. (2012). Foxp3 and Foxp3-regulated microRNAs suppress SATB1 in breast cancer cells. Oncogene, 31(8), 1045–1054.

    CAS  PubMed  Google Scholar 

  63. Dimitrakopoulos, F. I., Papadaki, H., Antonacopoulou, A. G., Kottorou, A., Gotsis, A. D., Scopa, C., et al. (2011). Association of Foxp3 expression with non-small cell lung cancer. Anticancer Research, 31(5), 1677–1683.

    CAS  PubMed  Google Scholar 

  64. Merlo, A., Casalini, P., Carcangiu, M. L., Malventano, C., Triulzi, T., Menard, S., et al. (2009). Foxp3 expression and overall survival in breast cancer. Journal of Clinical Oncology, 27(11), 1746–1752.

    CAS  PubMed  Google Scholar 

  65. Winerdal, M. E., Marits, P., Winerdal, M., Hasan, M., Rosenblatt, R., Tolf, A., et al. (2011). Foxp3 and survival in urinary bladder cancer. BJU International, 108(10), 1672–1678.

    CAS  PubMed  Google Scholar 

  66. Xue, L., Lu, H. Q., He, J., Zhao, X. W., Zhong, L., Zhang, Z. Z., et al. (2010). Expression of Foxp3 in esophageal squamous cell carcinoma relating to the clinical data. Diseases of the Esophagus, 23(4), 340–346.

    CAS  PubMed  Google Scholar 

  67. Miyara, M., Yoshioka, Y., Kitoh, A., Shima, T., Wing, K., Niwa, A., et al. (2009). Functional delineation and differentiation dynamics of human CD4+ T cells expressing the Foxp3 transcription factor. Immunity, 30(6), 899–911.

    CAS  PubMed  Google Scholar 

  68. Rech, A. J., Mick, R., Kaplan, D. E., Chang, K. M., Domchek, S. M., & Vonderheide, R. H. (2010). Homeostasis of peripheral Foxp3(+) CD4(+) regulatory T cells in patients with early and late stage breast cancer. Cancer Immunology, Immunotherapy, 59(4), 599–607.

    CAS  PubMed  Google Scholar 

  69. Xu, L., Xu, W., Qiu, S., & Xiong, S. (2010). Enrichment of CCR6+Foxp3+ regulatory T cells in the tumor mass correlates with impaired CD8+ T cell function and poor prognosis of breast cancer. Clinical Immunology, 135(3), 466–475.

    CAS  PubMed  Google Scholar 

  70. Nishikawa, H., & Sakaguchi, S. (2014). Regulatory T cells in cancer immunotherapy. Current Opinion in Immunology, 27, 1–7.

    CAS  PubMed  Google Scholar 

  71. Kryczek, I., Wu, K., Zhao, E., Wei, S., Vatan, L., Szeliga, W., et al. (2011). IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. Journal of Immunology, 186(7), 4388–4395.

    CAS  Google Scholar 

  72. Mandapathil, M., Hilldorfer, B., Szczepanski, M. J., Czystowska, M., Szajnik, M., Ren, J., et al. (2010). Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFoxp3+ regulatory T cells. Journal of Biological Chemistry, 285(10), 7176–7186.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Schuler, P. J., Schilling, B., Harasymczuk, M., Hoffmann, T. K., Johnson, J., Lang, S., et al. (2012). Phenotypic and functional characteristics of CD4+ CD39+ Foxp3+ and CD4+ CD39+ Foxp3neg T-cell subsets in cancer patients. European Journal of Immunology, 42(7), 1876–1885.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Sugiyama, D., Nishikawa, H., Maeda, Y., Nishioka, M., Tanemura, A., Katayama, I., et al. (2013). Anti-CCR4 mAb selectively depletes effector-type Foxp3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proceedings of the National Academy of Sciences of the United States of America, 110(44), 17945–17950.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Crome, S. Q., Clive, B., Wang, A. Y., Kang, C. Y., Chow, V., Yu, J., et al. (2010). Inflammatory effects of ex vivo human Th17 cells are suppressed by regulatory T cells. Journal of Immunology, 185(6), 3199–3208.

    CAS  Google Scholar 

  76. Bates, G. J., Fox, S. B., Han, C., Leek, R. D., Garcia, J. F., Harris, A. L., et al. (2006). Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. Journal of Clinical Oncology, 24(34), 5373–5380.

    PubMed  Google Scholar 

  77. Liyanage, U. K., Moore, T. T., Joo, H. G., Tanaka, Y., Herrmann, V., Doherty, G., et al. (2002). Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. Journal of Immunology, 169(5), 2756–2761.

    CAS  Google Scholar 

  78. Aruga, T., Suzuki, E., Saji, S., Horiguchi, S., Horiguchi, K., Sekine, S., et al. (2009). A low number of tumor-infiltrating Foxp3-positive cells during primary systemic chemotherapy correlates with favorable anti-tumor response in patients with breast cancer. Oncology Reports, 22(2), 273–278.

    CAS  PubMed  Google Scholar 

  79. Liu, F., Lang, R., Zhao, J., Zhang, X., Pringle, G. A., Fan, Y., et al. (2011). CD8(+) cytotoxic T cell and Foxp3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Research and Treatment, 130(2), 645–655.

    CAS  PubMed  Google Scholar 

  80. Yan, M., Jene, N., Byrne, D., Millar, E. K., O’Toole, S. A., McNeil, C. M., et al. (2011). Recruitment of regulatory T cells is correlated with hypoxia-induced CXCR4 expression, and is associated with poor prognosis in basal-like breast cancers. Breast Cancer Research, 13(2), R47.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. West, N. R., Kost, S. E., Martin, S. D., Milne, K., Deleeuw, R. J., Nelson, B. H., et al. (2013). Tumour-infiltrating Foxp3(+) lymphocytes are associated with cytotoxic immune responses and good clinical outcome in oestrogen receptor-negative breast cancer. British Journal of Cancer, 108(1), 155–162.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. de Kruijf, E. M., van Nes, J. G., Sajet, A., Tummers, Q. R., Putter, H., Osanto, S., et al. (2010). The predictive value of HLA class I tumor cell expression and presence of intratumoral Tregs for chemotherapy in patients with early breast cancer. Clinical Cancer Research, 16(4), 1272–1280.

    PubMed  Google Scholar 

  83. Mahmoud, S. M., Paish, E. C., Powe, D. G., Macmillan, R. D., Lee, A. H., Ellis, I. O., et al. (2011). An evaluation of the clinical significance of Foxp3+ infiltrating cells in human breast cancer. Breast Cancer Research and Treatment, 127(1), 99–108.

    CAS  PubMed  Google Scholar 

  84. Ali, H. R., Provenzano, E., Dawson, S. J., Blows, F. M., Liu, B., Shah, M., et al. (2014). Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Annals of Oncology, 25(8), 1536–1543.

    CAS  PubMed  Google Scholar 

  85. Yang, Y., Guan, X., You, J. CLOPE: a fast and effective clustering algorithm for transactional data. In Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, Edmonton, Alberta, Canada, 2002 (pp. 682–687): ACM

  86. Mahmoud, S. M. (2011). Inflammation and immunosurveillance in breast Cancer [PhD thesis]. Nottingham, UK: The University of Nottingham. http://etheses.nottingham.ac.uk/1827/

  87. Ladoire, S., Arnould, L., Mignot, G., Coudert, B., Rebe, C., Chalmin, F., et al. (2011). Presence of Foxp3 expression in tumor cells predicts better survival in HER2-overexpressing breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Research and Treatment, 125(1), 65–72.

    CAS  PubMed  Google Scholar 

  88. Zuo, T., Liu, R., Zhang, H., Chang, X., Liu, Y., Wang, L., et al. (2007). Foxp3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. Journal of Clinical Investigation, 117(12), 3765–3773.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Douglass, S., Meeson, A. P., Overbeck-Zubrzycka, D., Brain, J. G., Bennett, M. R., Lamb, C. A., et al. (2014). Breast cancer metastasis: demonstration that Foxp3 regulates CXCR4 expression and the response to CXCL12. Journal of Pathology, 234 (1), 74–85.

  90. von Minckwitz, G., Untch, M., Blohmer, J. U., Costa, S. D., Eidtmann, H., Fasching, P. A., et al. (2012). Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. Journal of Clinical Oncology, 30(15), 1796–1804.

    Google Scholar 

  91. Demir, L., Yigit, S., Ellidokuz, H., Erten, C., Somali, I., Kucukzeybek, Y., et al. (2013). Predictive and prognostic factors in locally advanced breast cancer: effect of intratumoral Foxp3+ Tregs. Clinical and Experimental Metastasis, 30(8), 1047–1062.

    CAS  PubMed  Google Scholar 

  92. Ladoire, S., Arnould, L., Apetoh, L., Coudert, B., Martin, F., Chauffert, B., et al. (2008). Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating Foxp3+ regulatory T cells. Clinical Cancer Research, 14(8), 2413–2420.

    CAS  PubMed  Google Scholar 

  93. Verma, C., Eremin, J. M., Robins, A., Bennett, A. J., Cowley, G. P., El-Sheemy, M. A., et al. (2013). Abnormal T regulatory cells (Tregs: Foxp3+, CTLA-4+), myeloid-derived suppressor cells (MDSCs: monocytic, granulocytic) and polarised T helper cell profiles (Th1, Th2, Th17) in women with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC) and surgery: failure of abolition of abnormal Treg profile with treatment and correlation of Treg levels with pathological response to NAC. Journal of Translational Medicine, 11, 16.

    PubMed Central  PubMed  Google Scholar 

  94. Decker, T., Fischer, G., Bucke, W., Bucke, P., Stotz, F., Gruneberger, A., et al. (2012). Increased number of regulatory T cells (T-regs) in the peripheral blood of patients with HER-2/neu-positive early breast cancer. Journal of Cancer Research and Clinical Oncology, 138(11), 1945–1950.

    CAS  PubMed  Google Scholar 

  95. Lal, A., Chan, L., Devries, S., Chin, K., Scott, G. K., Benz, C. C., et al. (2013). Foxp3-positive regulatory T lymphocytes and epithelial Foxp3 expression in synchronous normal, ductal carcinoma in situ, and invasive cancer of the breast. Breast Cancer Research and Treatment, 139(2), 381–390.

    CAS  PubMed  Google Scholar 

  96. Recchia, F., Candeloro, G., Necozione, S., Desideri, G., Cesta, A., Recchia, L., et al. (2013). Vascular endothelial growth factor expression and T-regulatory cells in premenopausal breast cancer. Oncology Letters, 5(4), 1117–1122.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Takenaka, M., Seki, N., Toh, U., Hattori, S., Kawahara, A., Yamaguchi, T., et al. (2013). Foxp3 expression in tumor cells and tumor-infiltrating lymphocytes is associated with breast cancer prognosis. Molecular and Clinical Oncology, 1(4), 625–632.

    PubMed Central  PubMed  Google Scholar 

  98. Zhou, S., Xu, S., Tao, H., Zhen, Z., Chen, G., Zhang, Z., et al. (2013). CCR7 expression and intratumoral Foxp3+ regulatory T cells are correlated with overall survival and lymph node metastasis in gastric cancer. PloS One, 8(9), e74430.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Huen, N. Y., Pang, A. L., Tucker, J. A., Lee, T. L., Vergati, M., Jochems, C., et al. (2013). Up-regulation of proliferative and migratory genes in regulatory T cells from patients with metastatic castration-resistant prostate cancer. International Journal of Cancer, 133(2), 373–382.

    CAS  Google Scholar 

  100. Kang, M. J., Kim, K. M., Bae, J. S., Park, H. S., Lee, H., Chung, M. J., et al. (2013). Tumor-infiltrating PD1-positive lymphocytes and Foxp3-positive regulatory T cells predict distant metastatic relapse and survival of clear cell renal cell carcinoma. Translational Oncology, 6(3), 282–289.

    PubMed Central  PubMed  Google Scholar 

  101. French, J. D., Kotnis, G. R., Said, S., Raeburn, C. D., McIntyre, R. C., Jr., Klopper, J. P., et al. (2012). Programmed death-1+ T cells and regulatory T cells are enriched in tumor-involved lymph nodes and associated with aggressive features in papillary thyroid cancer. Journal of Clinical Endocrinology and Metabolism, 97(6), E934–E943.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Fu, H. Y., Li, C., Yang, W., Gai, X. D., Jia, T., Lei, Y. M., et al. (2013). Foxp3 and TLR4 protein expression are correlated in non-small cell lung cancer: implications for tumor progression and escape. Acta Histochemica, 115(2), 151–157.

    CAS  PubMed  Google Scholar 

  103. Efimova, O. V., & Kelley, T. W. (2009). Induction of granzyme B expression in T-cell receptor/CD28-stimulated human regulatory T cells is suppressed by inhibitors of the PI3K-mTOR pathway. BMC Immunology, 10, 59.

    PubMed Central  PubMed  Google Scholar 

  104. Garin, M. I., Chu, C. C., Golshayan, D., Cernuda-Morollon, E., Wait, R., & Lechler, R. I. (2007). Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood, 109(5), 2058–2065.

    CAS  PubMed  Google Scholar 

  105. Borsellino, G., Kleinewietfeld, M., Di Mitri, D., Sternjak, A., Diamantini, A., Giometto, R., et al. (2007). Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood, 110(4), 1225–1232.

    CAS  PubMed  Google Scholar 

  106. Spranger, S., Spaapen, R. M., Zha, Y., Williams, J., Meng, Y., Ha, T. T., et al. (2013). Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Science Translational Medicine, 5(200), 200ra116.

    PubMed Central  PubMed  Google Scholar 

  107. Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., et al. (2008). CTLA-4 control over Foxp3+ regulatory T cell function. Science, 322(5899), 271–275.

    CAS  PubMed  Google Scholar 

  108. Bos, P. D., Plitas, G., Rudra, D., Lee, S. Y., & Rudensky, A. Y. (2013). Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. Journal of Experimental Medicine, 210(11), 2435–2466.

    PubMed Central  PubMed  Google Scholar 

  109. Camisaschi, C., Casati, C., Rini, F., Perego, M., De Filippo, A., Triebel, F., et al. (2010). LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites. Journal of Immunology, 184(11), 6545–6551.

    CAS  Google Scholar 

  110. Delgoffe, G. M., Woo, S. R., Turnis, M. E., Gravano, D. M., Guy, C., Overacre, A. E., et al. (2013). Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature, 501(7466), 252–256.

    CAS  PubMed  Google Scholar 

  111. Facciabene, A., Santoro, S., & Coukos, G. (2012). Know thy enemy: why are tumor-infiltrating regulatory T cells so deleterious? Oncoimmunology, 1(4), 575–577.

    PubMed Central  PubMed  Google Scholar 

  112. Whiteside, T. L. (2008). The tumor microenvironment and its role in promoting tumor growth. Oncogene, 27(45), 5904–5912.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Karavitis, J., Hix, L. M., Shi, Y. H., Schultz, R. F., Khazaie, K., & Zhang, M. (2012). Regulation of COX2 expression in mouse mammary tumor cells controls bone metastasis and PGE2-induction of regulatory T cell migration. PloS One, 7(9), e46342.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Kudo-Saito, C., Shirako, H., Ohike, M., Tsukamoto, N., & Kawakami, Y. (2013). CCL2 is critical for immunosuppression to promote cancer metastasis. Clinical and Experimental Metastasis, 30(4), 393–405.

    CAS  PubMed  Google Scholar 

  115. Hansen, W., Hutzler, M., Abel, S., Alter, C., Stockmann, C., Kliche, S., et al. (2012). Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth. Journal of Experimental Medicine, 209(11), 2001–2016.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Wada, J., Suzuki, H., Fuchino, R., Yamasaki, A., Nagai, S., Yanai, K., et al. (2009). The contribution of vascular endothelial growth factor to the induction of regulatory T-cells in malignant effusions. Anticancer Research, 29(3), 881–888.

    CAS  PubMed  Google Scholar 

  117. Gupta, S., Joshi, K., Wig, J. D., & Arora, S. K. (2007). Intratumoral Foxp3 expression in infiltrating breast carcinoma: its association with clinicopathologic parameters and angiogenesis. Acta Oncologica, 46(6), 792–797.

    CAS  PubMed  Google Scholar 

  118. Boyce, B. F., & Xing, L. (2007). Biology of RANK, RANKL, and osteoprotegerin. Arthritis Research and Therapy, 9(Suppl 1), S1.

    PubMed Central  PubMed  Google Scholar 

  119. Faghih, Z., Erfani, N., Haghshenas, M. R., Safaei, A., Talei, A. R., & Ghaderi, A. (2014). Immune profiles of CD4+ lymphocyte subsets in breast cancer tumor draining lymph nodes. Immunology Letters, 158(1–2), 57–65.

    CAS  PubMed  Google Scholar 

  120. Kashimura, S., Saze, Z., Terashima, M., Soeta, N., Ohtani, S., Osuka, F., et al. (2012). CD83(+) dendritic cells and Foxp3(+) regulatory T cells in primary lesions and regional lymph nodes are inversely correlated with prognosis of gastric cancer. Gastric Cancer, 15(2), 144–153.

    CAS  PubMed  Google Scholar 

  121. Mansfield, A. S., Heikkila, P. S., Vaara, A. T., von Smitten, K. A., Vakkila, J. M., & Leidenius, M. H. (2009). Simultaneous Foxp3 and IDO expression is associated with sentinel lymph node metastases in breast cancer. BMC Cancer, 9, 231.

    PubMed Central  PubMed  Google Scholar 

  122. Tsiatas, M. L., Gyftaki, R., Liacos, C., Politi, E., Rodolakis, A., Dimopoulos, M. A., et al. (2009). Study of T lymphocytes infiltrating peritoneal metastases in advanced ovarian cancer: associations with vascular endothelial growth factor levels and prognosis in patients receiving platinum-based chemotherapy. International Journal of Gynecological Cancer, 19(8), 1329–1334.

    PubMed  Google Scholar 

  123. Abadi, Y. M., Jeon, H., Ohaegbulam, K. C., Scandiuzzi, L., Ghosh, K., Hofmeyer, K. A., et al. (2013). Host b7x promotes pulmonary metastasis of breast cancer. Journal of Immunology, 190(7), 3806–3814.

    CAS  Google Scholar 

  124. Biragyn, A., Bodogai, M., Olkhanud, P. B., Denny-Brown, S. R., Puri, N., Ayukawa, K., et al. (2013). Inhibition of lung metastasis by chemokine CCL17-mediated in vivo silencing of genes in CCR4+ Tregs. Journal of Immunotherapy, 36(4), 258–267.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Chopra, M., Riedel, S. S., Biehl, M., Krieger, S., von Krosigk, V., Bauerlein, C. A., et al. (2013). Tumor necrosis factor receptor 2-dependent homeostasis of regulatory T cells as a player in TNF-induced experimental metastasis. Carcinogenesis, 34(6), 1296–1303.

    CAS  PubMed  Google Scholar 

  126. Dalotto-Moreno, T., Croci, D. O., Cerliani, J. P., Martinez-Allo, V. C., Dergan-Dylon, S., Mendez-Huergo, S. P., et al. (2013). Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Research, 73(3), 1107–1117.

    CAS  PubMed  Google Scholar 

  127. Ghochikyan, A., Davtyan, A., Hovakimyan, A., Davtyan, H., Poghosyan, A., Bagaev, A., et al. (2014). Primary 4T1 tumor resection provides critical “window of opportunity” for immunotherapy. Clinical and Experimental Metastasis, 31(2), 185–198.

    CAS  PubMed  Google Scholar 

  128. Kim, P. S., Jochems, C., Grenga, I., Donahue, R. N., Tsang, K. Y., Gulley, J. L., et al. (2014). Pan-Bcl-2 inhibitor, GX15-070 (obatoclax), decreases human T regulatory lymphocytes while preserving effector T lymphocytes: a rationale for its use in combination immunotherapy. Journal of Immunology, 192(6), 2622–2633.

    CAS  Google Scholar 

  129. Mandl, S. J., Rountree, R. B., Dalpozzo, K., Do, L., Lombardo, J. R., Schoonmaker, P. L., et al. (2012). Immunotherapy with MVA-BN(R)-HER2 induces HER-2-specific Th1 immunity and alters the intratumoral balance of effector and regulatory T cells. Cancer Immunology, Immunotherapy, 61(1), 19–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Olkhanud, P. B., Baatar, D., Bodogai, M., Hakim, F., Gress, R., Anderson, R. L., et al. (2009). Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Research, 69(14), 5996–6004.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Olkhanud, P. B., Damdinsuren, B., Bodogai, M., Gress, R. E., Sen, R., Wejksza, K., et al. (2011). Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Research, 71(10), 3505–3515.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Tanikawa, T., Wilke, C. M., Kryczek, I., Chen, G. Y., Kao, J., Nunez, G., et al. (2012). Interleukin-10 ablation promotes tumor development, growth, and metastasis. Cancer Research, 72(2), 420–429.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Lee-Chang, C., Bodogai, M., Martin-Montalvo, A., Wejksza, K., Sanghvi, M., Moaddel, R., et al. (2013). Inhibition of breast cancer metastasis by resveratrol-mediated inactivation of tumor-evoked regulatory B cells. Journal of Immunology, 191(8), 4141–4151.

    CAS  Google Scholar 

  134. Vadrevu, S. K., Chintala, N. K., Sharma, S. K., Sharma, P., Cleveland, C., Riediger, L., et al. (2014). Complement C5a receptor facilitates cancer metastasis by altering T-cell responses in the metastatic niche. Cancer Research, 74(13), 3454–3465.

    CAS  PubMed  Google Scholar 

  135. Weiss, J. M., Subleski, J. J., Back, T., Chen, X., Watkins, S. K., Yagita, H., et al. (2014). Regulatory T cells and myeloid-derived suppressor cells in the tumor microenvironment undergo Fas-dependent cell death during IL-2/alphaCD40 therapy. Journal of Immunology, 192(12), 5821–5829.

    CAS  Google Scholar 

  136. Kim, R., Emi, M., & Tanabe, K. (2007). Cancer immunoediting from immune surveillance to immune escape. Immunology, 121(1), 1–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Spranger, S., Koblish, H. K., Horton, B., Scherle, P. A., Newton, R., & Gajewski, T. F. (2014). Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. Journal of Immunotherapy of Cancer, 2, 3.

    Google Scholar 

  138. Byrne, W. L., Mills, K. H., Lederer, J. A., & O’Sullivan, G. C. (2011). Targeting regulatory T cells in cancer. Cancer Research, 71(22), 6915–6920.

    CAS  PubMed  Google Scholar 

  139. von Boehmer, H., & Daniel, C. (2013). Therapeutic opportunities for manipulating T(Reg) cells in autoimmunity and cancer. Nature Reviews Drug Discovery, 12(1), 51–63.

    Google Scholar 

  140. Kozawa, E., Sugiura, H., Wasa, J., Kohyama, K., Yamada, K., Nishioka, A., et al. (2010). Suppression of tumour metastasis in a murine osteosarcoma model with anti-CD25 monoclonal antibody treatment. Anticancer Research, 30(12), 5019–5022.

    PubMed  Google Scholar 

  141. Allard, B., Pommey, S., Smyth, M. J., & Stagg, J. (2013). Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clinical Cancer Research, 19(20), 5626–5635.

    CAS  PubMed  Google Scholar 

  142. Ge, Y., Domschke, C., Stoiber, N., Schott, S., Heil, J., Rom, J., et al. (2012). Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome. Cancer Immunology, Immunotherapy, 61(3), 353–362.

    CAS  PubMed  Google Scholar 

  143. Kaji, W., Tanaka, S., Tsukimoto, M., & Kojima, S. (2014). Adenosine A(2B) receptor antagonist PSB603 suppresses tumor growth and metastasis by inhibiting induction of regulatory T cells. Journal of Toxicological Sciences, 39(2), 191–198.

    CAS  PubMed  Google Scholar 

  144. Li, C. X., Wong, B. L., Ling, C. C., Ma, Y. Y., Shao, Y., Geng, W., et al. (2014). A novel oxygen carrier “YQ23” suppresses the liver tumor metastasis by decreasing circulating endothelial progenitor cells and regulatory T cells. BMC Cancer, 14(1), 293.

    PubMed Central  PubMed  Google Scholar 

  145. Pohla, H., Buchner, A., Stadlbauer, B., Frankenberger, B., Stevanovic, S., Walter, S., et al. (2012). High immune response rates and decreased frequencies of regulatory T cells in metastatic renal cell carcinoma patients after tumor cell vaccination. Molecular Medicine, 18, 1499–1508.

    CAS  PubMed Central  Google Scholar 

  146. Shahabi, V., Seavey, M. M., Maciag, P. C., Rivera, S., & Wallecha, A. (2011). Development of a live and highly attenuated Listeria monocytogenes-based vaccine for the treatment of HER2/neu-overexpressing cancers in human. Cancer Gene Therapy, 18(1), 53–62.

    CAS  PubMed  Google Scholar 

  147. Maciag, P. C., Radulovic, S., & Rothman, J. (2009). The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine, 27(30), 3975–3983.

    CAS  PubMed  Google Scholar 

  148. Wallecha, A., Singh, R., & Malinina, I. (2013). Listeria monocytogenes (Lm)-LLO immunotherapies reduce the immunosuppressive activity of myeloid-derived suppressor cells and regulatory T cells in the tumor microenvironment. Journal of Immunotherapy, 36(9), 468–476.

    CAS  PubMed  Google Scholar 

  149. Audia, S., Nicolas, A., Cathelin, D., Larmonier, N., Ferrand, C., Foucher, P., et al. (2007). Increase of CD4+CD25+ regulatory T cells in the peripheral blood of patients with metastatic carcinoma: a phase I clinical trial using cyclophosphamide and immunotherapy to eliminate CD4+CD25+ T lymphocytes. Clinical and Experimental Immunology, 150(3), 523–530.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Emmenegger, U., Francia, G., Chow, A., Shaked, Y., Kouri, A., Man, S., et al. (2011). Tumors that acquire resistance to low-dose metronomic cyclophosphamide retain sensitivity to maximum tolerated dose cyclophosphamide. Neoplasia, 13(1), 40–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Simpson, T. R., Li, F., Montalvo-Ortiz, W., Sepulveda, M. A., Bergerhoff, K., Arce, F., et al. (2013). Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. Journal of Experimental Medicine, 210(9), 1695–1710.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Galon, J., Pages, F., Marincola, F. M., Angell, H. K., Thurin, M., Lugli, A., et al. (2012). Cancer classification using the immunoscore: a worldwide task force. Journal of Translational Medicine, 10, 205.

    PubMed Central  PubMed  Google Scholar 

  153. Galon, J., Mlecnik, B., Bindea, G., Angell, H. K., Berger, A., Lagorce, C., et al. (2014). Towards the introduction of the ‘immunoscore’ in the classification of malignant tumours. Journal of Pathology, 232(2), 199–209.

    CAS  PubMed  Google Scholar 

  154. Gonzalez, L., Strbo, N., & Podack, E. R. (2013). Humanized mice: novel model for studying mechanisms of human immune-based therapies. Immunologic Research, 57(1–3), 326–334.

    CAS  PubMed  Google Scholar 

  155. Budiu, R. A., Elishaev, E., Brozick, J., Lee, M., Edwards, R. P., Kalinski, P., et al. (2013). Immunobiology of human mucin 1 in a preclinical ovarian tumor model. Oncogene, 32(32), 3664–3675.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Drennan, S., Stafford, N. D., Greenman, J., & Green, V. L. (2013). Increased frequency and suppressive activity of CD127(low/-) regulatory T cells in the peripheral circulation of patients with head and neck squamous cell carcinoma are associated with advanced stage and nodal involvement. Immunology, 140(3), 335–343.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Schneider, T., Kimpfler, S., Warth, A., Schnabel, P. A., Dienemann, H., Schadendorf, D., et al. (2011). Foxp3(+) regulatory T cells and natural killer cells distinctly infiltrate primary tumors and draining lymph nodes in pulmonary adenocarcinoma. Journal of Thoracic Oncology, 6(3), 432–438.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institutes of Health Research (Grant MOP-126138) and the BC Cancer Foundation. E.C.H. is supported by a Frederick Banting and Charles Best Canada Graduate Scholarship from the Canadian Institutes of Health Research and by a 4-year doctoral fellowship from the University of British Columbia. K.L.B. is a Michael Smith Foundation for Health Research Biomedical Research scholar.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin L. Bennewith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halvorsen, E.C., Mahmoud, S.M. & Bennewith, K.L. Emerging roles of regulatory T cells in tumour progression and metastasis. Cancer Metastasis Rev 33, 1025–1041 (2014). https://doi.org/10.1007/s10555-014-9529-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9529-x

Keywords

Navigation