Skip to main content

Advertisement

Log in

AR function in promoting metastatic prostate cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Prostate cancer (PCa) remains a leading cause of cancer-related death in the USA. While localized lesions are effectively treated through radical prostatectomy and/or radiation therapy, treatment for metastatic disease leverages the addiction of these tumors on the androgen receptor (AR) signaling axis for growth and disease progression. Though initially effective, tumors resistant to AR-directed therapeutics ultimately arise (a stage of the disease known as castration-resistant prostate cancer) and are responsible for PCa-specific mortality. Importantly, an abundance of clinical and preclinical evidence strongly implicates AR signaling cascades in the development of metastatic disease in both early and late stages, and thus a concerted effort has been made to delineate the AR-specific programs that facilitate progression to metastatic PCa. A multitude of downstream AR targets as well as critical AR cofactors have been identified which impinge upon both the AR pathway as well as associated metastatic phenotypes. This review will highlight the functional significance of these pathways to disseminated disease and define the molecular underpinnings behind these unique, AR-driven, metastatic signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics. CA A Cancer Journal for Clinicians, 62, 10–29.

    Article  PubMed  Google Scholar 

  2. Klein, E. A., Ciezki, J., Kupelian, P. A., & Mahadevan, A. (2009). Outcomes for intermediate risk prostate cancer: are there advantages for surgery, external radiation, or brachytherapy? Urologic Oncology, 27, 67–71.

    Article  PubMed  Google Scholar 

  3. Klotz, L. (2006). Combined androgen blockade: an update. The Urologic Clinics of North America, 33, 161–166. v-vi.

    Article  PubMed  Google Scholar 

  4. Knudsen, K. E., & Scher, H. I. (2009). Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer. Clinical Cancer Research, 15, 4792–4798.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Loblaw, D. A., Virgo, K. S., Nam, R., et al. (2007). Initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2006 update of an American Society of Clinical Oncology practice guideline. Journal of Clinical Oncology, 25, 1596–1605.

    Article  CAS  PubMed  Google Scholar 

  6. Beekman, K. W., & Hussain, M. (2008). Hormonal approaches in prostate cancer: application in the contemporary prostate cancer patient. Urologic Oncology, 26, 415–419.

    Article  CAS  PubMed  Google Scholar 

  7. Berthold, D. R., Sternberg, C. N., & Tannock, I. F. (2005). Management of advanced prostate cancer after first-line chemotherapy. Journal of Clinical Oncology, 23, 8247–8252.

    Article  CAS  PubMed  Google Scholar 

  8. Petrylak, D. P. (1999). Chemotherapy for advanced hormone refractory prostate cancer. Urology, 54, 30–35.

    Article  CAS  PubMed  Google Scholar 

  9. Dreicer, R. (2006). Chemotherapy for advanced prostate cancer: docetaxel and beyond. Hematology/Oncology Clinics of North America, 20, 935–946. x.

    Article  PubMed  Google Scholar 

  10. Knudsen, K. E., & Penning, T. M. (2010). Partners in crime: deregulation of AR activity and androgen synthesis in prostate cancer. Trends in Endocrinology and Metabolism, 21, 315–324.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lukka, H., Waldron, T., Klotz, L., Winquist, E., & Trachtenberg, J. (2006). Maximal androgen blockade for the treatment of metastatic prostate cancer—a systematic review. Current Oncology, 13, 81–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Yuan, X., & Balk, S. P. (2009). Mechanisms mediating androgen receptor reactivation after castration. Urologic Oncology, 27, 36–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Yuan, X., Cai, C., Chen, S., Yu, Z., & Balk, S. P. (2013). Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene. doi:10.1038/onc.2013.235.

    Google Scholar 

  14. Dennis, E. R., Jia, X., Mezheritskiy, I. S., et al. (2012). Bone scan index: a quantitative treatment response biomarker for castration-resistant metastatic prostate cancer. Journal of Clinical Oncology, 30, 519–524.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Cunha, G. R., Ricke, W., Thomson, A., et al. (2004). Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. Journal of Steroid Biochemistry and Molecular Biology, 92, 221–236.

    Article  CAS  PubMed  Google Scholar 

  16. Schiewer, M. J., Augello, M. A., & Knudsen, K. E. (2012). The AR dependent cell cycle: mechanisms and cancer relevance. Molecular and Cellular Endocrinology, 352, 34–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Penning, T. M., Jin, Y., Rizner, T. L., & Bauman, D. R. (2008). Pre-receptor regulation of the androgen receptor. Molecular and Cellular Endocrinology, 281, 1–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Matias, P. M., Donner, P., Coelho, R., et al. (2000). Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. Journal of Biological Chemistry, 275, 26164–26171.

    Article  CAS  PubMed  Google Scholar 

  19. Sack, J. S., Kish, K. F., Wang, C., et al. (2001). Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proceedings of the National Academy of Sciences of the United States of America, 98, 4904–4909.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Centenera, M. M., Harris, J. M., Tilley, W. D., & Butler, L. M. (2008). The contribution of different androgen receptor domains to receptor dimerization and signaling. Molecular Endocrinology, 22, 2373–2382.

    Article  CAS  PubMed  Google Scholar 

  21. Gioeli, D., & Paschal, B. M. (2012). Post-translational modification of the androgen receptor. Molecular and Cellular Endocrinology, 352, 70–78.

    Article  CAS  PubMed  Google Scholar 

  22. Coffey, K., & Robson, C. N. (2012). Regulation of the androgen receptor by post-translational modifications. Journal of Endocrinology, 215, 221–237.

    Article  CAS  PubMed  Google Scholar 

  23. Agoulnik, I. U., & Weigel, N. L. (2008). Androgen receptor coactivators and prostate cancer. Advances in Experimental Medicine and Biology, 617, 245–255.

    Article  CAS  PubMed  Google Scholar 

  24. Huggins, C. (1942). Effect of orchiectomy and irradiation on cancer of the prostate. Annals of Surgery, 115, 1192–1200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Huggins, C. (1943). The diagnosis of cancer of the prostate including the interpretation of serum phosphatase values. Bulletin of the New York Academy of Medicine, 19, 195–200.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Huggins, C. (1944). The treatment of cancer of the prostate: (the 1943 address in surgery before the Royal College of Physicians and Surgeons of Canada). Canadian Medical Association Journal, 50, 301–307.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. van Poppel, H., & Nilsson, S. (2008). Testosterone surge: rationale for gonadotropin-releasing hormone blockers? Urology, 71, 1001–1006.

    Article  PubMed  Google Scholar 

  28. Klotz, L. (2000). Hormone therapy for patients with prostate carcinoma. Cancer, 88, 3009–3014.

    Article  CAS  PubMed  Google Scholar 

  29. Oefelein, M. G. (1998). Time to normalization of serum testosterone after 3-month luteinizing hormone-releasing hormone agonist administered in the neoadjuvant setting: implications for dosing schedule and neoadjuvant study consideration. Journal of Urology, 160, 1685–1688.

    Article  CAS  PubMed  Google Scholar 

  30. Knudsen, K. E., & Kelly, W. K. (2011). Outsmarting androgen receptor: creative approaches for targeting aberrant androgen signaling in advanced prostate cancer. Expert Review of Endocrinology and Metabolism, 6, 483–493.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Cai, C., Chen, S., Ng, P., et al. (2011). Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Research, 71, 6503–6513.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Montgomery, R. B., Mostaghel, E. A., Vessella, R., et al. (2008). Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Research, 68, 4447–4454.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Attard, G., Richards, J., & de Bono, J. S. (2011). New strategies in metastatic prostate cancer: targeting the androgen receptor signaling pathway. Clinical Cancer Research, 17, 1649–1657.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. de Bono, J. S., Logothetis, C. J., Molina, A., et al. (2011). Abiraterone and increased survival in metastatic prostate cancer. New England Journal of Medicine, 364, 1995–2005.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Efstathiou, E., Titus, M., Tsavachidou, D., et al. (2012). Effects of abiraterone acetate on androgen signaling in castrate-resistant prostate cancer in bone. Journal of Clinical Oncology, 30, 637–643.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Bishr, M., & Saad, F. (2013). Overview of the latest treatments for castration-resistant prostate cancer. Nature Reviews. Urology, 10(9), 522–528.

    PubMed  Google Scholar 

  37. Massard, C., & Fizazi, K. (2011). Targeting continued androgen receptor signaling in prostate cancer. Clinical Cancer Research, 17, 3876–3883.

    Article  CAS  PubMed  Google Scholar 

  38. Fizazi, K., Scher, H. I., Molina, A., et al. (2012). Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncology, 13, 983–992.

    Article  CAS  PubMed  Google Scholar 

  39. Scher, H. I., Fizazi, K., Saad, F., et al. (2012). Increased survival with enzalutamide in prostate cancer after chemotherapy. New England Journal of Medicine, 367, 1187–1197.

    Article  CAS  PubMed  Google Scholar 

  40. Dhingra, R., Sharma, T., Singh, S., et al. (2013). Enzalutamide: a novel anti-androgen with prolonged survival rate in CRPC patients. Mini Reviews Medicinal Chemistry, 13, 1475–1486.

    Google Scholar 

  41. Attard, G., & de Bono, J. S. (2011). Translating scientific advancement into clinical benefit for castration-resistant prostate cancer patients. Clinical Cancer Research, 17, 3867–3875.

    Article  CAS  PubMed  Google Scholar 

  42. Bahl, A., Oudard, S., Tombal, B., et al. (2013). Impact of cabazitaxel on 2-year survival and palliation of tumour-related pain in men with metastatic castration-resistant prostate cancer treated in the TROPIC trial. Annals of Oncology, 24(9), 2402–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. de Bono, J. S., Oudard, S., Ozguroglu, M., et al. (2010). Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet, 376, 1147–1154.

    Article  PubMed  CAS  Google Scholar 

  44. Berruti, A., Dogliotti, L., Bitossi, R., et al. (2000). Incidence of skeletal complications in patients with bone metastatic prostate cancer and hormone refractory disease: predictive role of bone resorption and formation markers evaluated at baseline. Journal of Urology, 164, 1248–1253.

    Article  CAS  PubMed  Google Scholar 

  45. Bubendorf, L., Schopfer, A., Wagner, U., et al. (2000). Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Human Pathology, 31, 578–583.

    Article  CAS  PubMed  Google Scholar 

  46. Parker, C., Nilsson, S., Heinrich, D., et al. (2013). Alpha emitter radium-223 and survival in metastatic prostate cancer. New England Journal of Medicine, 369, 213–223.

    Article  CAS  PubMed  Google Scholar 

  47. Furusato, B., Mohamed, A., Uhlen, M., & Rhim, J. S. (2010). CXCR4 and cancer. Pathology International, 60, 497–505.

    Article  CAS  PubMed  Google Scholar 

  48. Sun, X., Cheng, G., Hao, M., et al. (2010). CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer and Metastasis Reviews, 29, 709–722.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Vindrieux, D., Escobar, P., & Lazennec, G. (2009). Emerging roles of chemokines in prostate cancer. Endocrine-Related Cancer, 16, 663–673.

    Article  CAS  PubMed  Google Scholar 

  50. Frigo, D. E., Sherk, A. B., Wittmann, B. M., et al. (2009). Induction of Kruppel-like factor 5 expression by androgens results in increased CXCR4-dependent migration of prostate cancer cells in vitro. Molecular Endocrinology, 23, 1385–1396.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Shulby, S. A., Dolloff, N. G., Stearns, M. E., Meucci, O., & Fatatis, A. (2004). CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Research, 64, 4693–4698.

    Article  CAS  PubMed  Google Scholar 

  52. McGrath, K. E., Koniski, A. D., Maltby, K. M., McGann, J. K., & Palis, J. (1999). Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Developmental Biology, 213, 442–456.

    Article  CAS  PubMed  Google Scholar 

  53. Sun, Y. X., Wang, J., Shelburne, C. E., et al. (2003). Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. Journal of Cellular Biochemistry, 89, 462–473.

    Article  CAS  PubMed  Google Scholar 

  54. Sun, Y. X., Schneider, A., Jung, Y., et al. (2005). Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. Journal of Bone and Mineral Research, 20, 318–329.

    Article  CAS  PubMed  Google Scholar 

  55. Wang, Q., Li, W., Zhang, Y., et al. (2009). Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell, 138, 245–256.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Massie, C. E., Lynch, A., Ramos-Montoya, A., et al. (2011). The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO Journal, 30, 2719–2733.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Chen, Y., Chi, P., Rockowitz, S., et al. (2013). ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nature Medicine, 19, 1023–1029.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Yeh, S., Tsai, M. Y., Xu, Q., et al. (2002). Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proceedings of the National Academy of Sciences of the United States of America, 99, 13498–13503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Jamieson, W. L., Shimizu, S., D'Ambrosio, J. A., Meucci, O., & Fatatis, A. (2008). CX3CR1 is expressed by prostate epithelial cells and androgens regulate the levels of CX3CL1/fractalkine in the bone marrow: potential role in prostate cancer bone tropism. Cancer Research, 68, 1715–1722.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Fong, A. M., Robinson, L. A., Steeber, D. A., et al. (1998). Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. Journal of Experimental Medicine, 188, 1413–1419.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Goda, S., Imai, T., Yoshie, O., et al. (2000). CX3C-chemokine, fractalkine-enhanced adhesion of THP-1 cells to endothelial cells through integrin-dependent and -independent mechanisms. Journal of Immunology, 164, 4313–4320.

    Article  CAS  Google Scholar 

  62. Umehara, H., Goda, S., Imai, T., et al. (2001). Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunology and Cell Biology, 79, 298–302.

    Article  CAS  PubMed  Google Scholar 

  63. Lupien, M., Eeckhoute, J., Meyer, C. A., et al. (2008). FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell, 132, 958–970.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Lupien, M., & Brown, M. (2009). Cistromics of hormone-dependent cancer. Endocrine-Related Cancer, 16, 381–389.

    Article  CAS  PubMed  Google Scholar 

  65. Serandour, A. A., Avner, S., Percevault, F., et al. (2011). Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Research, 21, 555–565.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Lupien, M., Eeckhoute, J., Meyer, C. A., et al. (2009). Coactivator function defines the active estrogen receptor alpha cistrome. Molecular and Cellular Biology, 29, 3413–3423.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Robinson, J. L., & Carroll, J. S. (2012). FoxA1 is a key mediator of hormonal response in breast and prostate cancer. Frontiers Endocrinology (Lausanne), 3, 68.

    CAS  Google Scholar 

  68. Sahu, B., Laakso, M., Pihlajamaa, P., et al. (2013). FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells. Cancer Research, 73, 1570–1580.

    Article  CAS  PubMed  Google Scholar 

  69. Sahu, B., Laakso, M., Ovaska, K., et al. (2011). Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO Journal, 30, 3962–3976.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Augello, M. A., Hickey, T. E., & Knudsen, K. E. (2011). FOXA1: master of steroid receptor function in cancer. EMBO Journal, 30, 3885–3894.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Zhang, C., Wang, L., Wu, D., et al. (2011). Definition of a FoxA1 cistrome that is crucial for G1 to S-phase cell-cycle transit in castration-resistant prostate cancer. Cancer Research, 71, 6738–6748.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Gerhardt, J., Montani, M., Wild, P., et al. (2012). FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer. American Journal of Pathology, 180, 848–861.

    Article  CAS  PubMed  Google Scholar 

  73. Jin, H. J., Zhao, J. C., Ogden, I., Bergan, R. C., & Yu, J. (2013). Androgen receptor-independent function of FoxA1 in prostate cancer metastasis. Cancer Research, 73, 3725–3736.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Jain, R. K., Mehta, R. J., Nakshatri, H., Idrees, M. T., & Badve, S. S. (2011). High-level expression of forkhead-box protein A1 in metastatic prostate cancer. Histopathology, 58, 766–772.

    Article  PubMed  Google Scholar 

  75. Grasso, C. S., Wu, Y. M., Robinson, D. R., et al. (2012). The mutational landscape of lethal castration-resistant prostate cancer. Nature, 487, 239–243.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Barbieri, C. E., Baca, S. C., Lawrence, M. S., et al. (2012). Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nature Genetics, 44, 685–689.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Robinson, J. L., Holmes, K. A., & Carroll, J. S. (2013). FOXA1 mutations in hormone-dependent cancers. Frontiers Oncology, 3, 20.

    Article  Google Scholar 

  78. Wu, J. I. (2012). Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer. Acta Biochimica Biophysica Sinica (Shanghai), 44, 54–69.

    Article  CAS  Google Scholar 

  79. Weissman, B., & Knudsen, K. E. (2009). Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer. Cancer Research, 69, 8223–8230.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Wu, J. I., Lessard, J., & Crabtree, G. R. (2009). Understanding the words of chromatin regulation. Cell, 136, 200–206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Link, K. A., Balasubramaniam, S., Sharma, A., et al. (2008). Targeting the BAF57 SWI/SNF subunit in prostate cancer: a novel platform to control androgen receptor activity. Cancer Research, 68, 4551–4558.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Balasubramaniam, S., Comstock, C. E., Ertel, A., et al. (2013). Aberrant BAF57 signaling facilitates prometastatic phenotypes. Clinical Cancer Research, 19, 2657–2667.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Link, K. A., Burd, C. J., Williams, E., et al. (2005). BAF57 governs androgen receptor action and androgen-dependent proliferation through SWI/SNF. Molecular and Cellular Biology, 25, 2200–2215.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Knudsen, K. E. (2006). The cyclin D1b splice variant: an old oncogene learns new tricks. Cell Division, 1, 15.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Lu, F., Gladden, A. B., & Diehl, J. A. (2003). An alternatively spliced cyclin D1 isoform, cyclin D1b, is a nuclear oncogene. Cancer Research, 63, 7056–7061.

    CAS  PubMed  Google Scholar 

  86. Kim, C. J., Nishi, K., Isono, T., et al. (2009). Cyclin D1b variant promotes cell invasiveness independent of binding to CDK4 in human bladder cancer cells. Molecular Carcinogenesis, 48, 953–964.

    Article  CAS  PubMed  Google Scholar 

  87. Wang, Y., Dean, J. L., Millar, E. K., et al. (2008). Cyclin D1b is aberrantly regulated in response to therapeutic challenge and promotes resistance to estrogen antagonists. Cancer Research, 68, 5628–5638.

    Article  CAS  PubMed  Google Scholar 

  88. Burd, C. J., Petre, C. E., Moghadam, H., Wilson, E. M., & Knudsen, K. E. (2005). Cyclin D1 binding to the androgen receptor (AR) NH2-terminal domain inhibits activation function 2 association and reveals dual roles for AR corepression. Molecular Endocrinology, 19, 607–620.

    Article  CAS  PubMed  Google Scholar 

  89. Comstock, C. E., Augello, M. A., Schiewer, M. J., et al. (2011). Cyclin D1 is a selective modifier of androgen-dependent signaling and androgen receptor function. Journal of Biological Chemistry, 286, 8117–8127.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Petre, C. E., Wetherill, Y. B., Danielsen, M., & Knudsen, K. E. (2002). Cyclin D1: mechanism and consequence of androgen receptor co-repressor activity. Journal of Biological Chemistry, 277, 2207–2215.

    Article  CAS  PubMed  Google Scholar 

  91. Petre-Draviam, C. E., Williams, E. B., Burd, C. J., et al. (2005). A central domain of cyclin D1 mediates nuclear receptor corepressor activity. Oncogene, 24, 431–444.

    Article  CAS  PubMed  Google Scholar 

  92. Burd, C. J., Petre, C. E., Morey, L. M., et al. (2006). Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation. Proceedings of the National Academy of Sciences of the United States of America, 103, 2190–2195.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Knudsen, K. E., Diehl, J. A., Haiman, C. A., & Knudsen, E. S. (2006). Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene, 25, 1620–1628.

    Article  CAS  PubMed  Google Scholar 

  94. Augello, M. A., Burd, C. J., Birbe, R., et al. (2013). Convergence of oncogenic and hormone receptor pathways promotes metastatic phenotypes. Journal of Clinical Investigation, 123, 493–508.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Emadi Baygi, M., Soheili, Z. S., Essmann, F., et al. (2010). Slug/SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines. Tumour Biology, 31, 297–307.

    Article  CAS  PubMed  Google Scholar 

  96. Wu, K., Gore, C., Yang, L., et al. (2012). Slug, a unique androgen-regulated transcription factor, coordinates androgen receptor to facilitate castration resistance in prostate cancer. Molecular Endocrinology, 26, 1496–1507.

    Article  CAS  PubMed  Google Scholar 

  97. Kelly WK HS, Carducci MA, et al. (2012). Liver metastases (LM) to predict for short overall survival (OS) in metastatic castration-resistant prostate cancer (mCRPC) patients (pts). 2012 ASCO Annual Meeting. Chicago, IL: Journal of Clinical Oncology; p. Abstract 4655.

  98. Barry, M., Perner, S., Demichelis, F., & Rubin, M. A. (2007). TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer: clinical and biologic implications. Urology, 70, 630–633.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Berger, M. F., Lawrence, M. S., Demichelis, F., et al. (2011). The genomic complexity of primary human prostate cancer. Nature, 470, 214–220.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Mehra, R., Tomlins, S. A., Shen, R., et al. (2007). Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Modern Pathology, 20, 538–544.

    Article  CAS  PubMed  Google Scholar 

  101. Mosquera, J. M., Mehra, R., Regan, M. M., et al. (2009). Prevalence of TMPRSS2-ERG fusion prostate cancer among men undergoing prostate biopsy in the United States. Clinical Cancer Research, 15, 4706–4711.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Tomlins, S. A., Bjartell, A., Chinnaiyan, A. M., et al. (2009). ETS gene fusions in prostate cancer: from discovery to daily clinical practice. European Urology, 56, 275–286.

    Article  CAS  PubMed  Google Scholar 

  103. Tomlins, S. A., Laxman, B., Dhanasekaran, S. M., et al. (2007). Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature, 448, 595–599.

    Article  CAS  PubMed  Google Scholar 

  104. Weischenfeldt, J., Simon, R., Feuerbach, L., et al. (2013). Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell, 23, 159–170.

    Article  CAS  PubMed  Google Scholar 

  105. Helgeson, B. E., Tomlins, S. A., Shah, N., et al. (2008). Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Research, 68, 73–80.

    Article  CAS  PubMed  Google Scholar 

  106. Kumar-Sinha, C., Tomlins, S. A., & Chinnaiyan, A. M. (2008). Recurrent gene fusions in prostate cancer. Nature Reviews Cancer, 8, 497–511.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Mani, R. S., Tomlins, S. A., Callahan, K., et al. (2009). Induced chromosomal proximity and gene fusions in prostate cancer. Science, 326, 1230.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Lin, C., Yang, L., Tanasa, B., et al. (2009). Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell, 139, 1069–1083.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Demichelis, F., Fall, K., Perner, S., et al. (2007). TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene, 26, 4596–4599.

    Article  CAS  PubMed  Google Scholar 

  110. Tomlins, S. A., Laxman, B., Varambally, S., et al. (2008). Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia, 10, 177–188.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. King, J. C., Xu, J., Wongvipat, J., et al. (2009). Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nature Genetics, 41, 524–526.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Yu, J., Mani, R. S., Cao, Q., et al. (2010). An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell, 17, 443–454.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Varambally, S., Dhanasekaran, S. M., Zhou, M., et al. (2002). The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 419, 624–629.

    Article  CAS  PubMed  Google Scholar 

  114. Yu, J., Rhodes, D. R., Tomlins, S. A., et al. (2007). A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Research, 67, 10657–10663.

    Article  CAS  PubMed  Google Scholar 

  115. Xu, K., Wu, Z. J., Groner, A. C., et al. (2012). EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science, 338, 1465–1469.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Schepers, G. E., Teasdale, R. D., & Koopman, P. (2002). Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Developmental Cell, 3, 167–170.

    Article  CAS  PubMed  Google Scholar 

  117. Pritchett, J., Athwal, V., Roberts, N., Hanley, N. A., & Hanley, K. P. (2011). Understanding the role of SOX9 in acquired diseases: lessons from development. Trends in Molecular Medicine, 17, 166–174.

    Article  CAS  PubMed  Google Scholar 

  118. Seymour, P. A., Freude, K. K., Tran, M. N., et al. (2007). SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proceedings of the National Academy of Sciences of the United States of America, 104, 1865–1870.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Seymour, P. A., Shih, H. P., Patel, N. A., et al. (2012). A Sox9/Fgf feed-forward loop maintains pancreatic organ identity. Development, 139, 3363–3372.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Furuyama, K., Kawaguchi, Y., Akiyama, H., et al. (2011). Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nature Genetics, 43, 34–41.

    Article  CAS  PubMed  Google Scholar 

  121. Thomsen, M. K., Butler, C. M., Shen, M. M., & Swain, A. (2008). Sox9 is required for prostate development. Developmental Biology, 316, 302–311.

    Article  CAS  PubMed  Google Scholar 

  122. Thomsen, M. K., Ambroisine, L., Wynn, S., et al. (2010). SOX9 elevation in the prostate promotes proliferation and cooperates with PTEN loss to drive tumor formation. Cancer Research, 70, 979–987.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Wang, H., Leav, I., Ibaragi, S., et al. (2008). SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion. Cancer Research, 68, 1625–1630.

    Article  CAS  PubMed  Google Scholar 

  124. Cai, C., Wang, H., He, H. H., et al. (2013). ERG induces androgen receptor-mediated regulation of SOX9 in prostate cancer. Journal of Clinical Investigation, 123, 1109–1122.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Garcia, J. A., & Dreicer, R. (2011). Immunotherapy in castration-resistant prostate cancer: integrating sipuleucel-T into our current treatment paradigm. Oncology (Williston Park), 25, 242–249.

    Google Scholar 

  126. Magi-Galluzzi, C., Zhou, M., Reuther, A. M., Dreicer, R., & Klein, E. A. (2007). Neoadjuvant docetaxel treatment for locally advanced prostate cancer: a clinicopathologic study. Cancer, 110, 1248–1254.

    Article  CAS  PubMed  Google Scholar 

  127. Dreicer, R., Agus, D. B., MacVicar, G. R., Wang, J., MacLean, D., & Stadler, W. M. (2010). Safety, pharmacokinetics, and efficacy of TAK-700 in metastatic castration-resistant prostate cancer: a phase I/II, open-label study. Journal of Clinical Oncology, 28, 15s. (suppl; abstr 3084) 2010.

    Google Scholar 

  128. Ryan, C. J., Smith, M. R., de Bono, J. S., et al. (2013). Abiraterone in metastatic prostate cancer without previous chemotherapy. New England Journal of Medicine, 368, 138–148.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Pacey, S., Wilson, R. H., Walton, M., et al. (2011). A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors. Clinical Cancer Research, 17, 1561–1570.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Knudsen Lab for insightful discussions; Dr. T. Mankanme, M. Urban, and C. McNair critical reading of the manuscript; W.K. Kelly for expert assistance and feedback on clinical topics; and E. Schade for expert graphical and technical support.

Disclosure

The authors have no disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen E. Knudsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augello, M.A., Den, R.B. & Knudsen, K.E. AR function in promoting metastatic prostate cancer. Cancer Metastasis Rev 33, 399–411 (2014). https://doi.org/10.1007/s10555-013-9471-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9471-3

Keywords

Navigation