Skip to main content

Advertisement

Log in

The dual functions of YAP-1 to promote and inhibit cell growth in human malignancy

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The major functions of Hippo (Hpo) signaling pathway are to control cell growth, proliferation, and apoptosis. As its important downstream player, yes-associated protein (YAP)-1 was originally found to promote cell proliferation and transformation. Overexpression of YAP-1 has been linked to tumor progression and worse survival in certain malignancies. However, it has been recently recognized as a tumor suppressor gene as well since it also induces apoptosis. Decreased or absent expression of YAP-1 is highly correlated with tumor progression and worse survival in other tumors such as breast cancer. It is clear that YAP-1 plays a dual role as oncogene and tumor suppressor gene in human oncogenesis, depending on the specific tissue type involved. Here, we reviewed the recent research on both the oncogenic and tumor suppressor function of YAP-1 and its significance in human malignancy. The clinical implication of YAP-1 expression in cancer prognosis and the development of targeted therapy will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhao, B., et al. (2013). The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nature Cell Biology, 13, 877–883.

    Article  CAS  Google Scholar 

  2. Zhou, D., et al. (2011). Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proceedings of the National Academy of Sciences of the United States of America, 108, E1312–E1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tamm, C., et al. (2011). Regulation of mouse embryonic stem cell self-renewal by a Yes-YAP-TEAD2 signaling pathway downstream of LIF. Journal of Cell Science, 124, 1136–1144.

    Article  PubMed  Google Scholar 

  4. Zhang, H., et al. (2011). Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proceedings of the National Academy of Sciences of the United States of America, 108, 2270–2275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu, F. X., et al. (2012). Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell, 150(4), 780–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao, B., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes and Development, 21, 2747–2761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lapi, E., et al. (2008). PML, YAP, and p73 are components of a proapoptotic autoregulatory feedback loop. Molecular Cell, 32, 803–814.

    Article  CAS  PubMed  Google Scholar 

  8. Strano, S., et al. (2007). The transcriptional coactivator Yes-associated protein drives p73 gene-target specificity in response to DNA damage. Molecular Cell, 18, 447–459.

    Article  CAS  Google Scholar 

  9. Yuan, M., et al. (2008). Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death and Differentiation, 15, 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  10. Bertini, E. (2009). YAP: at the crossroad between transformation and tumor suppression. Cell Cycle, 8, 49–57.

    Article  CAS  PubMed  Google Scholar 

  11. Zender, L., et al. (2006). Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell, 125, 1253–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Overholtzer, M., et al. (2006). Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proceedings of the National Academy of Sciences of the United States of America, 103, 12405–12410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao, B., et al. (2008). TEAD mediates YAP-dependent gene induction and growth control. Genes and Development, 22, 1962–1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barry, E. R., et al. (2013). Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature, 493, 106–110.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Hao, Y., et al. (2008). Tumor suppressor LATS1 is a negative regulator of oncogene YAP. Journal of Biological Chemistry, 283, 5496–5509.

    Article  CAS  PubMed  Google Scholar 

  16. Oka, T., et al. (2008). Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). Journal of Biological Chemistry, 283, 27534–27546.

    Article  CAS  PubMed  Google Scholar 

  17. Ren, F. L., et al. (2010). Hippo signaling regulates Yorkie nuclear localization and activity through 14-3-3 dependent and independent mechanisms. Developmental Biology, 337, 303–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao, B., et al. (2010). A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes and Development, 24, 72–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Basu, S., et al. (2003). Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Molecular Cell, 11, 11–23.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, B., et al. (2011). Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes and Development, 25, 51–63.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Oka, T., et al. (2010). Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling. The Biochemical Journal, 432, 461–472.

    Article  CAS  PubMed  Google Scholar 

  22. Remue, E., et al. (2010). TAZ interacts with zonula occludens-1 and -2 proteins in a PDZ-1 dependent manner. FEBS Letters, 584, 4175–4180.

    Article  CAS  PubMed  Google Scholar 

  23. Wu, S., et al. (2003). Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell, 114, 445–456.

    Article  CAS  PubMed  Google Scholar 

  24. Harvey, K. F., et al. (2003). The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell, 114, 457–467.

    Article  CAS  PubMed  Google Scholar 

  25. Callus, B. A., et al. (2006). Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. The FEBS Journal, 273, 4264–4276.

    Article  CAS  PubMed  Google Scholar 

  26. Chan, E. H., et al. (2005). Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene, 24, 2076–2086.

    Article  CAS  PubMed  Google Scholar 

  27. Praskova, M., et al. (2008). MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Current Biology: CB, 18, 311–321.

    Article  CAS  PubMed  Google Scholar 

  28. Oka, T. V., et al. (2008). Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). Journal of Biological Chemistry, 283, 27534–27546.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, L., et al. (2008). The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Developmental Cell, 14, 377–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu, S., et al. (2008). The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Developmental Cell, 14(2008), 388–398.

    Article  CAS  PubMed  Google Scholar 

  31. Ziosi, M., et al. (2010). dMyc functions downstream of Yorkie to promote the supercompetitive behavior of hippo pathway mutant cells. PLoS Genetics, 6(9), e1001140. doi:10.1371/journal.pgen.1001140.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Neto-Silva, R. M., et al. (2010). Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of Yap. Developmental Cell, 19, 507–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, J., et al. (2009). YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nature Cell Biology, 11, 1444–1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alarcon, C., et al. (2009). Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell, 139, 757–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vitolo, M. I., et al. (2007). The RUNX2 transcription factor cooperates with the YES-associated protein, YAP65, to promote cell transformation. Cancer Biology & Therapy, 6, 856–863.

    Article  CAS  Google Scholar 

  36. Komuro, A., et al. (2003). WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. Journal of Biological Chemistry, 278, 33334–33341.

    Google Scholar 

  37. Strano, S., et al. (2001). Physical interaction with Yes-associated protein enhances p73 transcriptional activity. Journal of Biological Chemistry, 276, 15164–15173.

    Article  CAS  PubMed  Google Scholar 

  38. Lamar, J. M., et al. (2012). The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proceedings of the National Academy of Sciences of the United States of America, 109, E2441–E2450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu, M. Z., et al. (2011). AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene, 30, 1229–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ehsanian, R., et al. (2010). YAP dysregulation by phosphorylation or DeltaNp63-mediated gene repression promotes proliferation, survival and migration in head and neck cancer subsets. Oncogene, 29, 6160–6171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu,S.J., et al. (2013). MicroRNA-200a promotes anoikis resistance and metastasis by targeting YAP1 in human breast cancer. Clinical Cancer Research, 19, 1389–1399.

    Google Scholar 

  42. Espanel, X., et al. (2001). Yes-associated protein and p53-binding protein-2 interact through their WW and SH3 domains. Journal of Biological Chemistry, 276, 14514–14523.

    CAS  PubMed  Google Scholar 

  43. Danovi, S. A., et al. (2008). Yes-associated protein (YAP) is a critical mediator of c-Jun-dependent apoptosis. Cell Death and Differentiation, 15, 217–219.

    Article  CAS  PubMed  Google Scholar 

  44. Levy, D., et al. (2008). Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Molecular Cell, 29, 350–361.

    Article  CAS  PubMed  Google Scholar 

  45. Levy, D., et al. (2007). The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73. Cell Death and Differentiation, 14, 743–751.

    Google Scholar 

  46. Okazaki, T., et al. (2012). Up-regulation of endogenous PML induced by a combination of interferon-beta and temozolomide enhances p73/YAP-mediated apoptosis in glioblastoma. Cancer Letters, 323, 199–207.

    Article  CAS  PubMed  Google Scholar 

  47. Yee, K.S., et al. (2012). A RASSF1A polymorphism restricts p53/p73 activation and associates with poor survival and accelerated age of onset of soft tissue sarcoma. Cancer Research, 72, 2206–2217.

    Google Scholar 

  48. Matallanas, D., et al. (2007). RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Molecular Cell, 27, 962–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Camargo, F. D., et al. (2007). YAP1 increases organ size and expands undifferentiated progenitor cells. Current Biology, 17(23), 2054–2060.

    Article  CAS  PubMed  Google Scholar 

  50. Lian, I., et al. (2010). The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes & Development, 24(11), 1106–1118.

    Article  CAS  Google Scholar 

  51. Zhou, D., et al. (2011). Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proceedings of the National Academy of Sciences of the United States of America, 108(49), E1312–E1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Varelas, X., et al. (2010). The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Developmental Cell, 19, 831–844.

    Article  CAS  PubMed  Google Scholar 

  53. Yi, C., et al. (2010). Merlin in organ size control and tumorigenesis: hippo versus EGFR? Genes and Development, 24, 1673–1679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fan, R., et al. (2013). Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proceedings of the National Academy of Sciences of the United States of America, 110(7), 2569–2574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fernandez, L. A., et al. (2009). YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes and Development, 23, 2729–2741.

    Article  CAS  Google Scholar 

  56. Tumaneng, K., et al. (2012). YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29. Nature Cell Biology, 14, 1322–1329.

    Article  CAS  PubMed  Google Scholar 

  57. Rosenbluh, J., et al. (2012). â-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell, 151(7), 1457–1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tschaharganeh, D. F., et al. (2013). Yes-associated protein up-regulates Jagged-1 and activates the Notch pathway in human hepatocellular carcinoma. Gastroenterology, 144(7), 1530–1542.

    Article  CAS  PubMed  Google Scholar 

  59. Muramatsu, T., et al. (2011). YAP is a candidate oncogene for esophageal squamous cell carcinoma. Carcinogenesis, 32, 389–398.

    Article  CAS  PubMed  Google Scholar 

  60. Imoto, I., et al. (2001). Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Research, 61, 6629–6634.

    CAS  PubMed  Google Scholar 

  61. Liu, T., et al. (2013). Clinical significance of yes-associated protein overexpression in cervical carcinoma: the differential effects based on histotypes. International Journal of Gynecological Cancer, 23, 735–742.

    Article  PubMed  Google Scholar 

  62. Tang, S.C., et al. (2002). BAG-1, an anti-apoptotic tumour marker. IUBMB Life, 53, 99–105.

    Google Scholar 

  63. Tang, S. C., et al. (1999). Expression of BAG-1 in invasive breast carcinomas. Journal of Clinical Oncology, 17, 1710–1719.

    CAS  PubMed  Google Scholar 

  64. Turner, B. C., et al. (2001). BAG-1: a novel biomarker predicting long-term survival in early-stage breast cancer. Journal of Clinical Oncology, 19, 992–1000.

    CAS  PubMed  Google Scholar 

  65. Xu, M. Z., et al. (2009). Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer, 115, 4576–4585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Song, M., et al. (2012). Nuclear expression of Yes-associated protein 1 correlates with poor prognosis in intestinal type gastric cancer. Anticancer Research, 32, 3827–3834.

    PubMed  Google Scholar 

  67. Wang, Y., et al. (2010). Overexpression of yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Cancer Science, 101, 1279–1285.

    Article  CAS  PubMed  Google Scholar 

  68. Su, L. L., et al. (2012). Expression of Yes-associated protein in non-small cell lung cancer and its relationship with clinical pathological factors. Chinese Medical Journal, 125, 4003–4008.

    CAS  PubMed  Google Scholar 

  69. Carter, S. L., et al. (1994). Loss of heterozygosity at 11q22-q23 in breast cancer. Cancer Research, 54, 6270–6274.

    CAS  PubMed  Google Scholar 

  70. Winqvist, R., et al. (1995). Loss of heterozygosity for chromosome 11 in primary human breast tumors is associated with poor survival after metastasis. Cancer Research, 55, 2660–2664.

    CAS  PubMed  Google Scholar 

  71. Gudmundsson, J., et al. (1995). Loss of heterozygosity at chromosome 11 in breast cancer: association of prognostic factors with genetic alterations. British Journal of Cancer, 72, 696–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hampton, G. M., et al. (1994). Loss of heterozygosity in sporadic human breast carcinoma: a common region between 11q22 and 11q23.3. Cancer Research, 54, 4586–4589.

    CAS  PubMed  Google Scholar 

  73. Tomlinson, I. P., et al. (1995). Loss of heterozygosity on chromosome 11 q in breast cancer. Journal of Clinical Pathology, 48, 424–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tufail, R., et al. (2012). Loss of Yes-associated protein (YAP) expression is associated with estrogen and progesterone receptors negativity in invasive breast carcinomas. Breast Cancer Research and Treatment, 131, 743–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, Y., et al. (2013). Clinical and prognostic significance of Yes-associated protein in colorectal cancer. Tumour Biology, 34(4), 2169–2174.

    Article  CAS  PubMed  Google Scholar 

  76. Fujii, M., et al. (2012). Exploration of a new drug that targets YAP. Journal of Biochemistry, 152(3), 209–211.

    Article  CAS  PubMed  Google Scholar 

  77. Bao, Y., et al. (2011). A cell-based assay to screen stimulators of the Hippo pathway reveals the inhibitory effect of dobutamine on the YAP-dependent gene transcription. Journal of Biochemistry, 150(2), 199–208.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Ching Tang.

Additional information

Hai Wang and Yu-Chen Du made equal contribution to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Du, YC., Zhou, Xj. et al. The dual functions of YAP-1 to promote and inhibit cell growth in human malignancy. Cancer Metastasis Rev 33, 173–181 (2014). https://doi.org/10.1007/s10555-013-9463-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9463-3

Keywords

Navigation