Skip to main content

Advertisement

Log in

Ovarian cancer microenvironment: implications for cancer dissemination and chemoresistance acquisition

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Ovarian adenocarcinoma is characterized by a late detection, dissemination of cancer cells into the whole peritoneum, and the frequent acquisition of chemoresistance. If these particularities can be explained in part by intrinsic properties of ovarian cancer cells, an increased number of studies show the importance of the tumor microenvironment in tumor progression. Ovarian cancer cells can regulate the composition of their stroma in promoting the formation of ascitic fluid, rich in cytokines and bioactive lipids, and in stimulating the differentiation of stromal cells into a pro-tumoral phenotype. In return, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, tumor-associated macrophages, or other peritoneal cells, such as adipocytes and mesothelial cells can regulate tumor growth, angiogenesis, dissemination, and chemoresistance. This review focuses on the current knowledge about the roles of stromal cells and the associated secreted factors on tumor progression. We also summarize the different studies showing that targeting the microenvironment represents a great potential for improving the prognosis of patients with ovarian adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Colombo, N., Van, G. T., Parma, G., Amant, F., Gatta, G., Sessa, C., et al. (2006). Ovarian Cancer Critical Reviews Oncology/Hematology, 60(2), 159–179.

    Google Scholar 

  2. Hennessy, B. T., Coleman, R. L., & Markman, M. (2009). Ovarian cancer. Lancet, 374(9698), 1371–1382.

    CAS  PubMed  Google Scholar 

  3. Romero, I., & Bast, R. C., Jr. (2012). Minireview: human ovarian cancer: biology, current management, and paths to personalizing therapy. Endocrinology, 153(4), 1593–1602.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Vaughan, S., Coward, J. I., Bast, R. C., Jr., Berchuck, A., Berek, J. S., Brenton, J. D., et al. (2011). Rethinking ovarian cancer: recommendations for improving outcomes. Nature Reviews Cancer, 11(10), 719–725.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Shih, I., & Kurman, R. J. (2004). Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. The American Journal of Pathology, 164(5), 1511–1518.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Cheng, B., Lu, W., Xiaoyun, W., YaXia, C., & Xie, X. (2009). Extra-abdominal metastases from epithelial ovarian carcinoma: an analysis of 20 cases. International Journal of Gynecological Cancer, 19(4), 611–614.

    PubMed  Google Scholar 

  7. Sekine, M., Yoshihara, K., Komata, D., Haino, K., Nishino, K., & Tanaka, K. (2013). Increased incidence of brain metastases in BRCA1-related ovarian cancers. The Journal of Obstetrics and Gynaecology Research, 39(1), 292–296.

    PubMed  Google Scholar 

  8. Ziegler, J., Gliedman, P., Fass, D., Beckman, M., Neophytides, A., & Steinfeld, A. (1987). Brain metastases from ovarian cancer. Journal of Neuro-Oncology, 5(3), 211–215.

    CAS  PubMed  Google Scholar 

  9. Zhou, J. J., & Miao, X. Y. (2012). Gastric metastasis from ovarian carcinoma: a case report and literature review. World Journal of Gastroenterology, 18(43), 6341–6344.

    PubMed Central  PubMed  Google Scholar 

  10. Castells, M., Thibault, B., Delord, J. P., & Couderc, B. (2012). Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. International Journal of Molecular Sciences, 13(8), 9545–9571.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.

    CAS  PubMed  Google Scholar 

  12. Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell, 21(3), 309–322.

    CAS  PubMed  Google Scholar 

  13. Touboul, C., Lis, R., Al, F. H., Raynaud, C. M., Warfa, M., Althawadi, H., et al. (2013). Mesenchymal stem cells enhance ovarian cancer cell infiltration through IL6 secretion in an amniochorionic membrane based 3D model. Journal of Translational Medicine, 11(1), 28.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Rieppi, M., Vergani, V., Gatto, C., Zanetta, G., Allavena, P., Taraboletti, G., et al. (1999). Mesothelial cells induce the motility of human ovarian carcinoma cells. International Journal of Cancer, 80(2), 303–307.

    CAS  Google Scholar 

  15. Wang, E., Ngalame, Y., Panelli, M. C., Nguyen-Jackson, H., Deavers, M., Mueller, P., et al. (2005). Peritoneal and subperitoneal stroma may facilitate regional spread of ovarian cancer. Clinical Cancer Research, 11(1), 113–122.

    CAS  PubMed  Google Scholar 

  16. Hollingsworth, H. C., Kohn, E. C., Steinberg, S. M., Rothenberg, M. L., & Merino, M. J. (1995). Tumor angiogenesis in advanced stage ovarian carcinoma. The American Journal of Pathology, 147(1), 33–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Duncan, T. J., Al-Attar, A., Rolland, P., Scott, I. V., Deen, S., Liu, D. T., et al. (2008). Vascular endothelial growth factor expression in ovarian cancer: a model for targeted use of novel therapies? Clinical Cancer Research, 14(10), 3030–3035.

    CAS  PubMed  Google Scholar 

  18. Byrne, A. T., Ross, L., Holash, J., Nakanishi, M., Hu, L., Hofmann, J. I., et al. (2003). Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clinical Cancer Research, 9(15), 5721–5728.

    CAS  PubMed  Google Scholar 

  19. Malek, J. A., Martinez, A., Mery, E., Ferron, G., Huang, R., Raynaud, C., et al. (2012). Gene expression analysis of matched ovarian primary tumors and peritoneal metastasis. Journal of Translational Medicine, 10, 121.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Moradi, M. M., Carson, L. F., Weinberg, B., Haney, A. F., Twiggs, L. B., & Ramakrishnan, S. (1993). Serum and ascitic fluid levels of interleukin-1, interleukin-6, and tumor necrosis factor-alpha in patients with ovarian epithelial cancer. Cancer, 72(8), 2433–2440.

    CAS  PubMed  Google Scholar 

  21. Xu, Y., Gaudette, D. C., Boynton, J. D., Frankel, A., Fang, X. J., Sharma, A., et al. (1995). Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. Clinical Cancer Research, 1(10), 1223–1232.

    CAS  PubMed  Google Scholar 

  22. Xu, Y., Shen, Z., Wiper, D. W., Wu, M., Morton, R. E., Elson, P., et al. (1998). Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA, 280(8), 719–723.

    CAS  PubMed  Google Scholar 

  23. Xu, Y., Fang, X. J., Casey, G., & Mills, G. B. (1995). Lysophospholipids activate ovarian and breast cancer cells. Biochemical Journal, 309(Pt 3), 933–940.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Yang, K., Zheng, D., Deng, X., Bai, L., Xu, Y., & Cong, Y. S. (2008). Lysophosphatidic acid activates telomerase in ovarian cancer cells through hypoxia-inducible factor-1alpha and the PI3K pathway. Journal of Cellular Biochemistry, 105(5), 1194–1201.

    CAS  PubMed  Google Scholar 

  25. So, J., Navari, J., Wang, F. Q., & Fishman, D. A. (2004). Lysophosphatidic acid enhances epithelial ovarian carcinoma invasion through the increased expression of interleukin-8. Gynecologic Oncology, 95(2), 314–322.

    CAS  PubMed  Google Scholar 

  26. Schwartz, B. M., Hong, G., Morrison, B. H., Wu, W., Baudhuin, L. M., Xiao, Y. J., et al. (2001). Lysophospholipids increase interleukin-8 expression in ovarian cancer cells. Gynecologic Oncology, 81(2), 291–300.

    CAS  PubMed  Google Scholar 

  27. Fang, X., Schummer, M., Mao, M., Yu, S., Tabassam, F. H., Swaby, R., et al. (2002). Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochimica et Biophysica Acta, 1582(1–3), 257–264.

    CAS  PubMed  Google Scholar 

  28. Fang, X., Yu, S., Bast, R. C., Liu, S., Xu, H. J., Hu, S. X., et al. (2004). Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. The Journal of Biological Chemistry, 279(10), 9653–9661.

    CAS  PubMed  Google Scholar 

  29. Hu, Y. L., Tee, M. K., Goetzl, E. J., Auersperg, N., Mills, G. B., Ferrara, N., et al. (2001). Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. Journal of the National Cancer Institute, 93(10), 762–768.

    CAS  PubMed  Google Scholar 

  30. Fishman, D. A., Liu, Y., Ellerbroek, S. M., & Stack, M. S. (2001). Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Research, 61(7), 3194–3199.

    CAS  PubMed  Google Scholar 

  31. Said, N. A., Elmarakby, A. A., Imig, J. D., Fulton, D. J., & Motamed, K. (2008). SPARC ameliorates ovarian cancer-associated inflammation. Neoplasia, 10(10), 1092–1104.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Sengupta, S., Kim, K. S., Berk, M. P., Oates, R., Escobar, P., Belinson, J., et al. (2007). Lysophosphatidic acid downregulates tissue inhibitor of metalloproteinases, which are negatively involved in lysophosphatidic acid-induced cell invasion. Oncogene, 26(20), 2894–2901.

    CAS  PubMed  Google Scholar 

  33. Li, H., Wang, D., Zhang, H., Kirmani, K., Zhao, Z., Steinmetz, R., et al. (2009). Lysophosphatidic acid stimulates cell migration, invasion, and colony formation as well as tumorigenesis/metastasis of mouse ovarian cancer in immunocompetent mice. Molecular Cancer Therapeutics, 8(6), 1692–1701.

    CAS  PubMed  Google Scholar 

  34. Wang, G. L., Wen, Z. Q., Xu, W. P., Wang, Z. Y., Du, X. L., & Wang, F. (2008). Inhibition of lysophosphatidic acid receptor-2 expression by RNA interference decreases lysophosphatidic acid-induced urokinase plasminogen activator activation, cell invasion, and migration in ovarian cancer SKOV-3 cells. Croatian Medical Journal, 49(2), 175–181.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Wang, C., Michener, C. M., Belinson, J. L., Vaziri, S., Ganapathi, R., & Sengupta, S. (2010). Role of the 18:1 lysophosphatidic acid-ovarian cancer immunoreactive antigen domain containing 1 (OCIAD1)-integrin axis in generating late-stage ovarian cancer. Molecular Cancer Therapeutics, 9(6), 1709–1718.

    CAS  PubMed  Google Scholar 

  36. Sengupta, S., Michener, C. M., Escobar, P., Belinson, J., & Ganapathi, R. (2008). Ovarian cancer immuno-reactive antigen domain containing 1 (OCIAD1), a key player in ovarian cancer cell adhesion. Gynecologic Oncology, 109(2), 226–233.

    CAS  PubMed  Google Scholar 

  37. Frankel, A., & Mills, G. B. (1996). Peptide and lipid growth factors decrease cis-diamminedichloroplatinum-induced cell death in human ovarian cancer cells. Clinical Cancer Research, 2(8), 1307–1313.

    CAS  PubMed  Google Scholar 

  38. Hong, G., Baudhuin, L. M., & Xu, Y. (1999). Sphingosine-1-phosphate modulates growth and adhesion of ovarian cancer cells. FEBS Letters, 460(3), 513–518.

    CAS  PubMed  Google Scholar 

  39. Smicun, Y., Reierstad, S., Wang, F. Q., Lee, C., & Fishman, D. A. (2006). S1P regulation of ovarian carcinoma invasiveness. Gynecologic Oncology, 103(3), 952–959.

    CAS  PubMed  Google Scholar 

  40. Devine, K. M., Smicun, Y., Hope, J. M., & Fishman, D. A. (2008). S1P induced changes in epithelial ovarian cancer proteolysis, invasion, and attachment are mediated by Gi and Rac. Gynecologic Oncology, 110(2), 237–245.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Park, K. S., Kim, M. K., Lee, H. Y., Kim, S. D., Lee, S. Y., Kim, J. M., et al. (2007). S1P stimulates chemotactic migration and invasion in OVCAR3 ovarian cancer cells. Biochemical and Biophysical Research Communications, 356(1), 239–244.

    CAS  PubMed  Google Scholar 

  42. Ali-Fehmi, R., Morris, R. T., Bandyopadhyay, S., Che, M., Schimp, V., Malone, J. M., Jr., et al. (2005). Expression of cyclooxygenase-2 in advanced stage ovarian serous carcinoma: correlation with tumor cell proliferation, apoptosis, angiogenesis, and survival. American Journal of Obstetrics and Gynecology, 192(3), 819–825.

    CAS  PubMed  Google Scholar 

  43. Ferrandina, G., Lauriola, L., Distefano, M. G., Zannoni, G. F., Gessi, M., Legge, F., et al. (2002). Increased cyclooxygenase-2 expression is associated with chemotherapy resistance and poor survival in cervical cancer patients. Journal of Clinical Oncology, 20(4), 973–981.

    CAS  PubMed  Google Scholar 

  44. Munkarah, A. R., Morris, R., Baumann, P., Deppe, G., Malone, J., Diamond, M. P., et al. (2002). Effects of prostaglandin E(2) on proliferation and apoptosis of epithelial ovarian cancer cells. Journal of the Society for Gynecologic Investigation, 9(3), 168–173.

    CAS  PubMed  Google Scholar 

  45. Rask, K., Zhu, Y., Wang, W., Hedin, L., & Sundfeldt, K. (2006). Ovarian epithelial cancer: a role for PGE2-synthesis and signalling in malignant transformation and progression. Molecular Cancer, 5, 62.

    PubMed Central  PubMed  Google Scholar 

  46. Obermajer, N., Muthuswamy, R., Odunsi, K., Edwards, R. P., & Kalinski, P. (2011). PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Research, 71(24), 7463–7470.

    CAS  PubMed  Google Scholar 

  47. Naka, T., Nishimoto, N., & Kishimoto, T. (2002). The paradigm of IL-6: from basic science to medicine. Arthritis Research, 4(Suppl 3), S233–S242.

    PubMed Central  PubMed  Google Scholar 

  48. Nash, M. A., Ferrandina, G., Gordinier, M., Loercher, A., & Freedman, R. S. (1999). The role of cytokines in both the normal and malignant ovary. Endocrine-Related Cancer, 6(1), 93–107.

    CAS  PubMed  Google Scholar 

  49. Nilsson, M. B., Langley, R. R., & Fidler, I. J. (2005). Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Research, 65(23), 10794–10800.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Garg, R., Wollan, M., Galic, V., Garcia, R., Goff, B. A., Gray, H. J., et al. (2006). Common polymorphism in interleukin 6 influences survival of women with ovarian and peritoneal carcinoma. Gynecologic Oncology, 103(3), 793–796.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Plante, M., Rubin, S. C., Wong, G. Y., Federici, M. G., Finstad, C. L., & Gastl, G. A. (1994). Interleukin-6 level in serum and ascites as a prognostic factor in patients with epithelial ovarian cancer. Cancer, 73(7), 1882–1888.

    CAS  PubMed  Google Scholar 

  52. Tempfer, C., Zeisler, H., Sliutz, G., Haeusler, G., Hanzal, E., & Kainz, C. (1997). Serum evaluation of interleukin 6 in ovarian cancer patients. Gynecologic Oncology, 66(1), 27–30.

    CAS  PubMed  Google Scholar 

  53. Penson, R. T., Kronish, K., Duan, Z., Feller, A. J., Stark, P., Cook, S. E., et al. (2000). Cytokines IL-1beta, IL-2, IL-6, IL-8, MCP-1, GM-CSF and TNFalpha in patients with epithelial ovarian cancer and their relationship to treatment with paclitaxel. International Journal of Gynecological Cancer, 10(1), 33–41.

    PubMed  Google Scholar 

  54. Scambia, G., Testa, U., Benedetti, P. P., Foti, E., Martucci, R., Gadducci, A., et al. (1995). Prognostic significance of interleukin 6 serum levels in patients with ovarian cancer. British Journal of Cancer, 71(2), 354–356.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Wang, Y., Niu, X. L., Qu, Y., Wu, J., Zhu, Y. Q., Sun, W. J., et al. (2010). Autocrine production of interleukin-6 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cancer Letters, 295(1), 110–123.

    CAS  PubMed  Google Scholar 

  56. Syed, V., Ulinski, G., Mok, S. C., & Ho, S. M. (2002). Reproductive hormone-induced, STAT3-mediated interleukin 6 action in normal and malignant human ovarian surface epithelial cells. Journal of the National Cancer Institute, 94(8), 617–629.

    CAS  PubMed  Google Scholar 

  57. Obata, N. H., Tamakoshi, K., Shibata, K., Kikkawa, F., & Tomoda, Y. (1997). Effects of interleukin-6 on in vitro cell attachment, migration and invasion of human ovarian carcinoma. Anticancer Research, 17(1A), 337–342.

    CAS  PubMed  Google Scholar 

  58. Rath, K. S., Funk, H. M., Bowling, M. C., Richards, W. E., & Drew, A. F. (2010). Expression of soluble interleukin-6 receptor in malignant ovarian tissue. American Journal of Obstetrics and Gynecology, 203(3), 230–238.

    PubMed  Google Scholar 

  59. Waugh, D. J., & Wilson, C. (2008). The interleukin-8 pathway in cancer. Clinical Cancer Research, 14(21), 6735–6741.

    CAS  PubMed  Google Scholar 

  60. Xu, L., & Fidler, I. J. (2000). Interleukin 8: an autocrine growth factor for human ovarian cancer. Oncology Research, 12(2), 97–106.

    CAS  PubMed  Google Scholar 

  61. Merritt, W. M., Lin, Y. G., Spannuth, W. A., Fletcher, M. S., Kamat, A. A., Han, L. Y., et al. (2008). Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth. Journal of the National Cancer Institute, 100(5), 359–372.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Shahzad, M. M., Arevalo, J. M., Armaiz Pena, G. N., Lu, C., Stone, R. L., Moreno-Smith, M., et al (2010). Stress effects on FOSB and interleukin-8 (IL8) driven ovarian cancer growth and metastasis. J Biol Chem

  63. Kassim, S. K., El Salahy, E. M., Fayed, S. T., Helal, S. A., Helal, T., Azzam, E., et al. (2004). Vascular endothelial growth factor and interleukin-8 are associated with poor prognosis in epithelial ovarian cancer patients. Clinical Biochemistry, 37(5), 363–369.

    CAS  PubMed  Google Scholar 

  64. Huang, S., Robinson, J. B., Deguzman, A., Bucana, C. D., & Fidler, I. J. (2000). Blockade of nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Research, 60(19), 5334–5339.

    CAS  PubMed  Google Scholar 

  65. Lee, L. F., Hellendall, R. P., Wang, Y., Haskill, J. S., Mukaida, N., Matsushima, K., et al. (2000). IL-8 reduced tumorigenicity of human ovarian cancer in vivo due to neutrophil infiltration. Journal of Immunology, 164(5), 2769–2775.

    CAS  Google Scholar 

  66. Ferrara, N., Gerber, H. P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9(6), 669–676.

    CAS  PubMed  Google Scholar 

  67. Kryczek, I., Lange, A., Mottram, P., Alvarez, X., Cheng, P., Hogan, M., et al. (2005). CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Research, 65(2), 465–472.

    CAS  PubMed  Google Scholar 

  68. Mesiano, S., Ferrara, N., & Jaffe, R. B. (1998). Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. The American Journal of Pathology, 153(4), 1249–1256.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Hu, L., Hofmann, J., Zaloudek, C., Ferrara, N., Hamilton, T., & Jaffe, R. B. (2002). Vascular endothelial growth factor immunoneutralization plus Paclitaxel markedly reduces tumor burden and ascites in athymic mouse model of ovarian cancer. The American Journal of Pathology, 161(5), 1917–1924.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Hu, L., Hofmann, J., Holash, J., Yancopoulos, G. D., Sood, A. K., & Jaffe, R. B. (2005). Vascular endothelial growth factor trap combined with paclitaxel strikingly inhibits tumor and ascites, prolonging survival in a human ovarian cancer model. Clinical Cancer Research, 11(19 Pt 1), 6966–6971.

    CAS  PubMed  Google Scholar 

  71. Heitz, F., Harter, P., Barinoff, J., Beutel, B., Kannisto, P., Grabowski, J. P., et al. (2012). Bevacizumab in the treatment of ovarian cancer. Advances in Therapy, 29(9), 723–735.

    CAS  PubMed  Google Scholar 

  72. Scotton, C. J., Wilson, J. L., Scott, K., Stamp, G., Wilbanks, G. D., Fricker, S., et al. (2002). Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Research, 62(20), 5930–5938.

    CAS  PubMed  Google Scholar 

  73. Kajiyama, H., Shibata, K., Terauchi, M., Ino, K., Nawa, A., & Kikkawa, F. (2008). Involvement of SDF-1alpha/CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian carcinoma. International Journal of Cancer, 122(1), 91–99.

    CAS  Google Scholar 

  74. Psyrri, A., Kassar, M., Yu, Z., Bamias, A., Weinberger, P. M., Markakis, S., et al. (2005). Effect of epidermal growth factor receptor expression level on survival in patients with epithelial ovarian cancer. Clinical Cancer Research, 11(24 Pt 1), 8637–8643.

    CAS  PubMed  Google Scholar 

  75. Gui, T. and Shen, K. (2012). The epidermal growth factor receptor as a therapeutic target in epithelial ovarian cancer. Cancer Epidemiol

  76. Schilder, R. J., Pathak, H. B., Lokshin, A. E., Holloway, R. W., Alvarez, R. D., Aghajanian, C., et al. (2009). Phase II trial of single agent cetuximab in patients with persistent or recurrent epithelial ovarian or primary peritoneal carcinoma with the potential for dose escalation to rash. Gynecologic Oncology, 113(1), 21–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Ahmed, N., Maines-Bandiera, S., Quinn, M. A., Unger, W. G., Dedhar, S., & Auersperg, N. (2006). Molecular pathways regulating EGF-induced epithelio-mesenchymal transition in human ovarian surface epithelium. American Journal of Physiology. Cell Physiology, 290(6), C1532–C1542.

    CAS  PubMed  Google Scholar 

  78. Colomiere, M., Ward, A. C., Riley, C., Trenerry, M. K., Cameron-Smith, D., Findlay, J., et al. (2009). Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial-mesenchymal transition in ovarian carcinomas. British Journal of Cancer, 100(1), 134–144.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Balkwill, F. (2009). Tumour necrosis factor and cancer. Nature Reviews Cancer, 9(5), 361–371.

    CAS  PubMed  Google Scholar 

  80. Naylor, M. S., Stamp, G. W., Foulkes, W. D., Eccles, D., & Balkwill, F. R. (1993). Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. Journal Clinical Investigation, 91(5), 2194–2206.

    CAS  Google Scholar 

  81. Kulbe, H., Thompson, R., Wilson, J. L., Robinson, S., Hagemann, T., Fatah, R., et al. (2007). The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Research, 67(2), 585–592.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Charles, K. A., Kulbe, H., Soper, R., Escorcio-Correia, M., Lawrence, T., Schultheis, A., et al. (2009). The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. The Journal of Clinical Investigation, 119(10), 3011–3023.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Elliott, R. L., & Blobe, G. C. (2005). Role of transforming growth factor Beta in human cancer. Journal of Clinical Oncology, 23(9), 2078–2093.

    CAS  PubMed  Google Scholar 

  84. Nakanishi, Y., Kodama, J., Yoshinouchi, M., Tokumo, K., Kamimura, S., Okuda, H., et al. (1997). The expression of vascular endothelial growth factor and transforming growth factor-beta associates with angiogenesis in epithelial ovarian cancer. International Journal of Gynecological Pathology, 16(3), 256–262.

    CAS  PubMed  Google Scholar 

  85. Rodriguez, G. C., Haisley, C., Hurteau, J., Moser, T. L., Whitaker, R., Bast, R. C., Jr., et al. (2001). Regulation of invasion of epithelial ovarian cancer by transforming growth factor-beta. Gynecologic Oncology, 80(2), 245–253.

    CAS  PubMed  Google Scholar 

  86. Thery, C., Zitvogel, L., & Amigorena, S. (2002). Exosomes: composition, biogenesis and function. Nature Reviews Immunology, 2(8), 569–579.

    CAS  PubMed  Google Scholar 

  87. Peng, P., Yan, Y., & Keng, S. (2011). Exosomes in the ascites of ovarian cancer patients: origin and effects on anti-tumor immunity. Oncology Reports, 25(3), 749–762.

    CAS  PubMed  Google Scholar 

  88. Keller, S., Konig, A. K., Marme, F., Runz, S., Wolterink, S., Koensgen, D., et al. (2009). Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Letters, 278(1), 73–81.

    CAS  PubMed  Google Scholar 

  89. Taylor, D. D., & Gercel-Taylor, C. (2005). Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. British Journal of Cancer, 92(2), 305–311.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Cho, J. A., Park, H., Lim, E. H., Kim, K. H., Choi, J. S., Lee, J. H., et al. (2011). Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts. Gynecologic Oncology, 123(2), 379–386.

    CAS  PubMed  Google Scholar 

  91. Liang, B., Peng, P., Chen, S., Li, L., Zhang, M., Cao, D., et al. (2013). Characterization and proteomic analysis of ovarian cancer-derived exosomes. Journal of Proteomics, 80C, 171–182.

    PubMed  Google Scholar 

  92. Taylor, D. D., & Gercel-Taylor, C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic Oncology, 110(1), 13–21.

    CAS  PubMed  Google Scholar 

  93. Escrevente, C., Keller, S., Altevogt, P., & Costa, J. (2011). Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer, 11, 108.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Yin, J., Yan, X., Yao, X., Zhang, Y., Shan, Y., Mao, N., et al. (2012). Secretion of annexin A3 from ovarian cancer cells and its association with platinum resistance in ovarian cancer patients. Journal of Cellular and Molecular Medicine, 16(2), 337–348.

    CAS  PubMed  Google Scholar 

  95. Elmasri, W. M., Casagrande, G., Hoskins, E., Kimm, D., & Kohn, E. C. (2009). Cell adhesion in ovarian cancer. Cancer Treatment and Research, 149, 297–318.

    CAS  PubMed  Google Scholar 

  96. Sodek, K. L., Ringuette, M. J., & Brown, T. J. (2007). MT1-MMP is the critical determinant of matrix degradation and invasion by ovarian cancer cells. British Journal of Cancer, 97(3), 358–367.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Davidson, B., Goldberg, I., Gotlieb, W. H., Kopolovic, J., Ben Baruch, G., Nesland, J. M., et al. (1999). High levels of MMP-2, MMP-9, MT1-MMP and TIMP-2 mRNA correlate with poor survival in ovarian carcinoma. Clinical and Experimental Metastasis, 17(10), 799–808.

    CAS  PubMed  Google Scholar 

  98. Davidson, B., Goldberg, I., Gotlieb, W. H., Kopolovic, J., Ben Baruch, G., Nesland, J. M., et al. (2002). The prognostic value of metalloproteinases and angiogenic factors in ovarian carcinoma. Molecular and Cellular Endocrinology, 187(1–2), 39–45.

    CAS  PubMed  Google Scholar 

  99. Kamat, A. A., Fletcher, M., Gruman, L. M., Mueller, P., Lopez, A., Landen, C. N., Jr., et al. (2006). The clinical relevance of stromal matrix metalloproteinase expression in ovarian cancer. Clinical Cancer Research, 12(6), 1707–1714.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Podhajcer, O. L., Benedetti, L. G., Girotti, M. R., Prada, F., Salvatierra, E., & Llera, A. S. (2008). The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Reviews, 27(4), 691–705.

    CAS  PubMed  Google Scholar 

  101. Mok, S. C., Chan, W. Y., Wong, K. K., Muto, M. G., & Berkowitz, R. S. (1996). SPARC, an extracellular matrix protein with tumor-suppressing activity in human ovarian epithelial cells. Oncogene, 12(9), 1895–1901.

    CAS  PubMed  Google Scholar 

  102. Yiu, G. K., Chan, W. Y., Ng, S. W., Chan, P. S., Cheung, K. K., Berkowitz, R. S., et al. (2001). SPARC (secreted protein acidic and rich in cysteine) induces apoptosis in ovarian cancer cells. The American Journal of Pathology, 159(2), 609–622.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Said, N. A., Najwer, I., Socha, M. J., Fulton, D. J., Mok, S. C., & Motamed, K. (2007). SPARC inhibits LPA-mediated mesothelial-ovarian cancer cell crosstalk. Neoplasia, 9(1), 23–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Said, N., & Motamed, K. (2005). Absence of host-secreted protein acidic and rich in cysteine (SPARC) augments peritoneal ovarian carcinomatosis. The American Journal of Pathology, 167(6), 1739–1752.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Said, N., Socha, M. J., Olearczyk, J. J., Elmarakby, A. A., Imig, J. D., & Motamed, K. (2007). Normalization of the ovarian cancer microenvironment by SPARC. Molecular Cancer Research, 5(10), 1015–1030.

    CAS  PubMed  Google Scholar 

  106. Chang, M. C., Chen, C. A., Chen, P. J., Chiang, Y. C., Chen, Y. L., Mao, T. L., et al. (2012). Mesothelin enhances invasion of ovarian cancer by inducing MMP-7 through MAPK/ERK and JNK pathways. The Biochemical Journal, 442(2), 293–302.

    CAS  PubMed  Google Scholar 

  107. Anttila, M. A., Tammi, R. H., Tammi, M. I., Syrjanen, K. J., Saarikoski, S. V., & Kosma, V. M. (2000). High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer. Cancer Research, 60(1), 150–155.

    CAS  PubMed  Google Scholar 

  108. Voutilainen, K., Anttila, M., Sillanpaa, S., Tammi, R., Tammi, M., Saarikoski, S., et al. (2003). Versican in epithelial ovarian cancer: relation to hyaluronan, clinicopathologic factors and prognosis. International Journal of Cancer, 107(3), 359–364.

    CAS  Google Scholar 

  109. Ween, M. P., Oehler, M. K., & Ricciardelli, C. (2011). Role of versican, hyaluronan and CD44 in ovarian cancer metastasis. International Journal of Molecular Sciences, 12(2), 1009–1029.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Fogel, M., Gutwein, P., Mechtersheimer, S., Riedle, S., Stoeck, A., Smirnov, A., et al. (2003). L1 expression as a predictor of progression and survival in patients with uterine and ovarian carcinomas. Lancet, 362(9387), 869–875.

    CAS  PubMed  Google Scholar 

  111. Stoeck, A., Gast, D., Sanderson, M. P., Issa, Y., Gutwein, P., & Altevogt, P. (2007). L1-CAM in a membrane-bound or soluble form augments protection from apoptosis in ovarian carcinoma cells. Gynecologic Oncology, 104(2), 461–469.

    CAS  PubMed  Google Scholar 

  112. Davidson, B., Goldberg, I., Gotlieb, W. H., Kopolovic, J., Risberg, B., Ben-Baruch, G., et al. (2003). Coordinated expression of integrin subunits, matrix metalloproteinases (MMP), angiogenic genes and Ets transcription factors in advanced-stage ovarian carcinoma: a possible activation pathway? Cancer Metastasis Reviews, 22(1), 103–115.

    CAS  PubMed  Google Scholar 

  113. Shibata, K., Kikkawa, F., Nawa, A., Suganuma, N., & Hamaguchi, M. (1997). Fibronectin secretion from human peritoneal tissue induces Mr 92,000 type IV collagenase expression and invasion in ovarian cancer cell lines. Cancer Research, 57(23), 5416–5420.

    CAS  PubMed  Google Scholar 

  114. Hapke, S., Kessler, H., Luber, B., Benge, A., Hutzler, P., Hofler, H., et al. (2003). Ovarian cancer cell proliferation and motility is induced by engagement of integrin alpha(v)beta3/Vitronectin interaction. Biological Chemistry, 384(7), 1073–1083.

    CAS  PubMed  Google Scholar 

  115. Folkman, J., Watson, K., Ingber, D., & Hanahan, D. (1989). Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature, 339(6219), 58–61.

    CAS  PubMed  Google Scholar 

  116. Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249–257.

    CAS  PubMed  Google Scholar 

  117. Schmid, M. C., & Varner, J. A. (2010). Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation. Journal of Oncology, 2010, 201026.

    PubMed Central  PubMed  Google Scholar 

  118. Su, Y., Zheng, L., Wang, Q., Li, W., Cai, Z., Xiong, S., et al. (2010). Quantity and clinical relevance of circulating endothelial progenitor cells in human ovarian cancer. Journal of Experimental & Clinical Cancer Research, 29, 27.

    Google Scholar 

  119. Peichev, M., Naiyer, A. J., Pereira, D., Zhu, Z., Lane, W. J., Williams, M., et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95(3), 952–958.

    CAS  PubMed  Google Scholar 

  120. Collino, F., Revelli, A., Massobrio, M., Katsaros, D., Schmitt-Ney, M., Camussi, G., et al. (2009). Epithelial–mesenchymal transition of ovarian tumor cells induces an angiogenic monocyte cell population. Experimental Cell Research, 315(17), 2982–2994.

    CAS  PubMed  Google Scholar 

  121. Alvero, A. B., Fu, H. H., Holmberg, J., Visintin, I., Mor, L., Marquina, C. C., et al. (2009). Stem-like ovarian cancer cells can serve as tumor vascular progenitors. Stem Cells, 27(10), 2405–2413.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Kusumbe, A. P., Mali, A. M., & Bapat, S. A. (2009). CD133-expressing stem cells associated with ovarian metastases establish an endothelial hierarchy and contribute to tumor vasculature. Stem Cells, 27(3), 498–508.

    CAS  PubMed  Google Scholar 

  123. Liby, T. A., Spyropoulos, P., Buff, L. H., Eldridge, J., Beeson, C., Hsu, T., et al. (2012). Akt3 controls vascular endothelial growth factor secretion and angiogenesis in ovarian cancer cells. International Journal of Cancer, 130(3), 532–543.

    CAS  Google Scholar 

  124. Su, Y., Zheng, L., Wang, Q., Bao, J., Cai, Z., & Liu, A. (2010). The PI3K/Akt pathway upregulates Id1 and integrin alpha4 to enhance recruitment of human ovarian cancer endothelial progenitor cells. BMC Cancer, 10, 459.

    PubMed Central  PubMed  Google Scholar 

  125. Keyes, K. A., Mann, L., Teicher, B., & Alvarez, E. (2003). Site-dependent angiogenic cytokine production in human tumor xenografts. Cytokine, 21(2), 98–104.

    CAS  PubMed  Google Scholar 

  126. Li, L., Wang, L., Zhang, W., Tang, B., Zhang, J., Song, H., et al. (2004). Correlation of serum VEGF levels with clinical stage, therapy efficacy, tumor metastasis and patient survival in ovarian cancer. Anticancer Research, 24(3b), 1973–1979.

    CAS  PubMed  Google Scholar 

  127. Nascimento, I., Schaer, R., Lemaire, D., Freire, S., Paule, B., Carvalho, S., et al. (2004). Vascular endothelial growth factor (VEGF) levels as a tool to discriminate between malignant and nonmalignant ascites. APMIS, 112(9), 585–587.

    CAS  PubMed  Google Scholar 

  128. Spannuth, W. A., Nick, A. M., Jennings, N. B., Armaiz-Pena, G. N., Mangala, L. S., Danes, C. G., et al. (2009). Functional significance of VEGFR-2 on ovarian cancer cells. International Journal of Cancer, 124(5), 1045–1053.

    CAS  Google Scholar 

  129. Ghosh, S., Albitar, L., LeBaron, R., Welch, W. R., Samimi, G., Birrer, M. J., et al. (2010). Up-regulation of stromal versican expression in advanced stage serous ovarian cancer. Gynecologic Oncology, 119(1), 114–120.

    PubMed Central  PubMed  Google Scholar 

  130. Lin, Y. G., Han, L. Y., Kamat, A. A., Merritt, W. M., Landen, C. N., Deavers, M. T., et al. (2007). EphA2 overexpression is associated with angiogenesis in ovarian cancer. Cancer, 109(2), 332–340.

    CAS  PubMed  Google Scholar 

  131. Hagemann, T., Robinson, S. C., Thompson, R. G., Charles, K., Kulbe, H., & Balkwill, F. R. (2007). Ovarian cancer cell-derived migration inhibitory factor enhances tumor growth, progression, and angiogenesis. Molecular Cancer Therapeutics, 6(7), 1993–2002.

    CAS  PubMed  Google Scholar 

  132. Yabushita, H., Shimazu, M., Noguchi, M., Kishida, T., Narumiya, H., Sawaguchi, K., et al. (2003). Vascular endothelial growth factor activating matrix metalloproteinase in ascitic fluid during peritoneal dissemination of ovarian cancer. Oncology Reports, 10(1), 89–95.

    CAS  PubMed  Google Scholar 

  133. Belotti, D., Calcagno, C., Garofalo, A., Caronia, D., Riccardi, E., Giavazzi, R., et al. (2008). Vascular endothelial growth factor stimulates organ-specific host matrix metalloproteinase-9 expression and ovarian cancer invasion. Molecular Cancer Research, 6(4), 525–534.

    CAS  PubMed  Google Scholar 

  134. Sood, A. K., Seftor, E. A., Fletcher, M. S., Gardner, L. M., Heidger, P. M., Buller, R. E., et al. (2001). Molecular determinants of ovarian cancer plasticity. The American Journal of Pathology, 158(4), 1279–1288.

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Wang, L., Madigan, M. C., Chen, H., Liu, F., Patterson, K. I., Beretov, J., et al. (2009). Expression of urokinase plasminogen activator and its receptor in advanced epithelial ovarian cancer patients. Gynecologic Oncology, 114(2), 265–272.

    CAS  PubMed  Google Scholar 

  136. Agarwal, A., Tressel, S. L., Kaimal, R., Balla, M., Lam, F. H., Covic, L., et al. (2010). Identification of a metalloprotease-chemokine signaling system in the ovarian cancer microenvironment: implications for antiangiogenic therapy. Cancer Research, 70(14), 5880–5890.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Sonoda, T., Kobayashi, H., Kaku, T., Hirakawa, T., & Nakano, H. (2003). Expression of angiogenesis factors in monolayer culture, multicellular spheroid and in vivo transplanted tumor by human ovarian cancer cell lines. Cancer Letters, 196(2), 229–237.

    CAS  PubMed  Google Scholar 

  138. Zhang, Y., Tang, H., Cai, J., Zhang, T., Guo, J., Feng, D., et al. (2011). Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion. Cancer Letters, 303(1), 47–55.

    CAS  PubMed  Google Scholar 

  139. Castells, M., Thibault, B., Mery, E., Golzio, M., Pasquet, M., Hennebelle, I., et al. (2012). Ovarian ascites-derived Hospicells promote angiogenesis via activation of macrophages. Cancer Letters, 326(1), 59–68.

    CAS  PubMed  Google Scholar 

  140. Jeon, E. S., Heo, S. C., Lee, I. H., Choi, Y. J., Park, J. H., Choi, K. U., et al. (2010). Ovarian cancer-derived lysophosphatidic acid stimulates secretion of VEGF and stromal cell-derived factor-1 alpha from human mesenchymal stem cells. Experimental and Molecular Medicine, 42(4), 280–293.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Schmitt, J., & Matei, D. (2012). Targeting angiogenesis in ovarian cancer. Cancer Treatment Reviews, 38(4), 272–283.

    CAS  PubMed  Google Scholar 

  142. Burger, R. A., Brady, M. F., Bookman, M. A., Fleming, G. F., Monk, B. J., Huang, H., et al. (2011). Incorporation of bevacizumab in the primary treatment of ovarian cancer. The New England Journal of Medicine, 365(26), 2473–2483.

    CAS  PubMed  Google Scholar 

  143. Perren, T. J., Swart, A. M., Pfisterer, J., Ledermann, J. A., Pujade-Lauraine, E., Kristensen, G., et al. (2011). A phase 3 trial of bevacizumab in ovarian cancer. The New England Journal of Medicine, 365(26), 2484–2496.

    CAS  PubMed  Google Scholar 

  144. Yang, G., Rosen, D. G., Zhang, Z., Bast, R. C., Jr., Mills, G. B., Colacino, J. A., et al. (2006). The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(44), 16472–16477.

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Lawrenson, K., Grun, B., Benjamin, E., Jacobs, I. J., Dafou, D., & Gayther, S. A. (2010). Senescent fibroblasts promote neoplastic transformation of partially transformed ovarian epithelial cells in a three-dimensional model of early stage ovarian cancer. Neoplasia, 12(4), 317–325.

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Noskova, V., Ahmadi, S., Asander, E., & Casslen, B. (2009). Ovarian cancer cells stimulate uPA gene expression in fibroblastic stromal cells via multiple paracrine and autocrine mechanisms. Gynecologic Oncology, 115(1), 121–126.

    CAS  PubMed  Google Scholar 

  147. Westerlund, A., Hujanen, E., Puistola, U., & Turpeenniemi-Hujanen, T. (1997). Fibroblasts stimulate human ovarian cancer cell invasion and expression of 72-kDa gelatinase A (MMP-2). Gynecologic Oncology, 67(1), 76–82.

    CAS  PubMed  Google Scholar 

  148. Boyd, R. S., & Balkwill, F. R. (1999). MMP-2 release and activation in ovarian carcinoma: the role of fibroblasts. British Journal of Cancer, 80(3–4), 315–321.

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Kenny, H. A., Krausz, T., Yamada, S. D., & Lengyel, E. (2007). Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. International Journal of Cancer, 121(7), 1463–1472.

    CAS  Google Scholar 

  150. Cai, J., Tang, H., Xu, L., Wang, X., Yang, C., Ruan, S., et al. (2012). Fibroblasts in omentum activated by tumor cells promote ovarian cancer growth, adhesion and invasiveness. Carcinogenesis, 33(1), 20–29.

    CAS  PubMed  Google Scholar 

  151. Xing, F., Saidou, J., & Watabe, K. (2010). Cancer associated fibroblasts (CAFs) in tumor microenvironment. Frontiers in Bioscience, 15, 166–179.

    CAS  Google Scholar 

  152. Yao, Q., Qu, X., Yang, Q., Wei, M., & Kong, B. (2009). CLIC4 mediates TGF-beta1-induced fibroblast-to-myofibroblast transdifferentiation in ovarian cancer. Oncology Reports, 22(3), 541–548.

    CAS  PubMed  Google Scholar 

  153. Lai, D., Ma, L., & Wang, F. (2012). Fibroblast activation protein regulates tumor-associated fibroblasts and epithelial ovarian cancer cells. International Journal of Oncology, 41(2), 541–550.

    CAS  PubMed  Google Scholar 

  154. Cannistra, S. A. (2004). Cancer of the ovary. The New England Journal of Medicine, 351(24), 2519–2529.

    CAS  PubMed  Google Scholar 

  155. Niedbala, M. J., Crickard, K., & Bernacki, R. J. (1985). Interactions of human ovarian tumor cells with human mesothelial cells grown on extracellular matrix. An in vitro model system for studying tumor cell adhesion and invasion. Experimental Cell Research, 160(2), 499–513.

    CAS  PubMed  Google Scholar 

  156. Lessan, K., Aguiar, D. J., Oegema, T., Siebenson, L., & Skubitz, A. P. (1999). CD44 and beta1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. The American Journal of Pathology, 154(5), 1525–1537.

    PubMed Central  CAS  PubMed  Google Scholar 

  157. Cannistra, S. A., Kansas, G. S., Niloff, J., DeFranzo, B., Kim, Y., & Ottensmeier, C. (1993). Binding of ovarian cancer cells to peritoneal mesothelium in vitro is partly mediated by CD44H. Cancer Research, 53(16), 3830–3838.

    CAS  PubMed  Google Scholar 

  158. Strobel, T., Swanson, L., & Cannistra, S. A. (1997). In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: a novel role for CD44 in the process of peritoneal implantation. Cancer Research, 57(7), 1228–1232.

    CAS  PubMed  Google Scholar 

  159. Yeo, T. K., Nagy, J. A., Yeo, K. T., Dvorak, H. F., & Toole, B. P. (1996). Increased hyaluronan at sites of attachment to mesentery by CD44-positive mouse ovarian and breast tumor cells. The American Journal of Pathology, 148(6), 1733–1740.

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Burleson, K. M., Casey, R. C., Skubitz, K. M., Pambuccian, S. E., Oegema, T. R., Jr., & Skubitz, A. P. (2004). Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecologic Oncology, 93(1), 170–181.

    CAS  PubMed  Google Scholar 

  161. Offner, F. A., Obrist, P., Stadlmann, S., Feichtinger, H., Klingler, P., Herold, M., et al. (1995). IL-6 secretion by human peritoneal mesothelial and ovarian cancer cells. Cytokine, 7(6), 542–547.

    CAS  PubMed  Google Scholar 

  162. Cronauer, M. V., Stadlmann, S., Klocker, H., Abendstein, B., Eder, I. E., Rogatsch, H., et al. (1999). Basic fibroblast growth factor synthesis by human peritoneal mesothelial cells: induction by interleukin-1. The American Journal of Pathology, 155(6), 1977–1984.

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Stadlmann, S., Amberger, A., Pollheimer, J., Gastl, G., Offner, F. A., Margreiter, R., et al. (2005). Ovarian carcinoma cells and IL-1beta-activated human peritoneal mesothelial cells are possible sources of vascular endothelial growth factor in inflammatory and malignant peritoneal effusions. Gynecologic Oncology, 97(3), 784–789.

    CAS  PubMed  Google Scholar 

  164. Ren, J., Xiao, Y. J., Singh, L. S., Zhao, X., Zhao, Z., Feng, L., et al. (2006). Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Research, 66(6), 3006–3014.

    CAS  PubMed  Google Scholar 

  165. Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews Immunology, 8(9), 726–736.

    CAS  PubMed  Google Scholar 

  166. Jiang, J., Chen, W., Zhuang, R., Song, T., & Li, P. (2010). The effect of endostatin mediated by human mesenchymal stem cells on ovarian cancer cells in vitro. Journal of Cancer Research and Clinical Oncology, 136(6), 873–881.

    CAS  PubMed  Google Scholar 

  167. Jeon, E. S., Moon, H. J., Lee, M. J., Song, H. Y., Kim, Y. M., Cho, M., et al. (2008). Cancer-derived lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblast-like cells. Stem Cells, 26(3), 789–797.

    CAS  PubMed  Google Scholar 

  168. Lis, R., Touboul, C., Mirshahi, P., Ali, F., Mathew, S., Nolan, D. J., et al (2010). Tumor associated mesenchymal stem cells protects ovarian cancer cells from hyperthermia through CXCL12. Int J Cancer

  169. McLean, K., Gong, Y., Choi, Y., Deng, N., Yang, K., Bai, S., et al. (2011). Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. The Journal of Clinical Investigation, 121(8), 3206–3219.

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Rafii, A., Mirshahi, P., Poupot, M., Faussat, A. M., Simon, A., Ducros, E., et al. (2008). Oncologic trogocytosis of an original stromal cells induces chemoresistance of ovarian tumours. PLoS One, 3(12), e3894.

    PubMed Central  PubMed  Google Scholar 

  171. Pasquet, M., Golzio, M., Mery, E., Rafii, A., Benabbou, N., Mirshahi, P., et al. (2010). Hospicells (ascites-derived stromal cells) promote tumorigenicity and angiogenesis. International Journal of Cancer, 126(9), 2090–2101.

    CAS  Google Scholar 

  172. Castells, M., Thibault, B., Mery, E., Golzio, M., Pasquet, M., Hennebelle, I., et al (2012). Ovarian ascites-derived Hospicells promote angiogenesis via activation of macrophages. Cancer Lett

  173. Martinet, L., Poupot, R., Mirshahi, P., Rafii, A., Fournie, J. J., Mirshahi, M., et al. (2010). Hospicells derived from ovarian cancer stroma inhibit T-cell immune responses. International Journal of Cancer, 126(9), 2143–2152.

    CAS  Google Scholar 

  174. Nieman, K. M., Kenny, H. A., Penicka, C. V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M. R., et al. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503.

    CAS  PubMed  Google Scholar 

  175. Zhang, Y., Daquinag, A. C., Amaya-Manzanares, F., Sirin, O., Tseng, C., & Kolonin, M. G. (2012). Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Research, 72(20), 5198–5208.

    CAS  PubMed  Google Scholar 

  176. Altintas, M. M., Azad, A., Nayer, B., Contreras, G., Zaias, J., Faul, C., et al. (2011). Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice. Journal of Lipid Research, 52(3), 480–488.

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Subbaramaiah, K., Howe, L. R., Bhardwaj, P., Du, B., Gravaghi, C., Yantiss, R. K., et al. (2011). Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prevention Research (Philadelphia, Pa.), 4(3), 329–346.

    CAS  Google Scholar 

  178. Roodhart, J. M., Daenen, L. G., Stigter, E. C., Prins, H. J., Gerrits, J., Houthuijzen, J. M., et al. (2011). Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell, 20(3), 370–383.

    CAS  PubMed  Google Scholar 

  179. Ko, S. Y., Barengo, N., Ladanyi, A., Lee, J. S., Marini, F., Lengyel, E., et al. (2012). HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts. The Journal of Clinical Investigation, 122(10), 3603–3617.

    PubMed Central  CAS  PubMed  Google Scholar 

  180. Kidd, S., Spaeth, E., Watson, K., Burks, J., Lu, H., Klopp, A., et al. (2012). Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One, 7(2), e30563.

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Protani, M., Coory, M., & Martin, J. H. (2010). Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Research and Treatment, 123(3), 627–635.

    PubMed  Google Scholar 

  182. Kaaks, R., Lukanova, A., & Kurzer, M. S. (2002). Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. Cancer Epidemiology, Biomarkers and Prevention, 11(12), 1531–1543.

    CAS  PubMed  Google Scholar 

  183. Fotopoulou, C., Richter, R., Braicu, E. I., Kuhberg, M., Feldheiser, A., Schefold, J. C., et al. (2011). Impact of obesity on operative morbidity and clinical outcome in primary epithelial ovarian cancer after optimal primary tumor debulking. Annals of Surgical Oncology, 18(9), 2629–2637.

    PubMed  Google Scholar 

  184. Reeves, G. K., Pirie, K., Beral, V., Green, J., Spencer, E., & Bull, D. (2007). Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ, 335(7630), 1134.

    PubMed Central  PubMed  Google Scholar 

  185. Protani, M. M., Nagle, C. M., & Webb, P. M. (2012). Obesity and ovarian cancer survival: a systematic review and meta-analysis. Cancer Prevention Research (Philadelphia, Pa.), 5(7), 901–910.

    Google Scholar 

  186. Olsen, C. M., Nagle, C. M., Whiteman, D. C., Purdie, D. M., Green, A. C., & Webb, P. M. (2008). Body size and risk of epithelial ovarian and related cancers: a population-based case-control study. International Journal of Cancer, 123(2), 450–456.

    CAS  Google Scholar 

  187. Olsen, C. M., Nagle, C. M., Whiteman, D. C., Ness, R., Pearce, C. L., Pike, M. C., et al. (2013). Obesity and risk of ovarian cancer subtypes: evidence from the Ovarian Cancer Association Consortium. Endocrine-Related Cancer, 20(2), 251–262.

    PubMed  Google Scholar 

  188. Zhang, L., Conejo-Garcia, J. R., Katsaros, D., Gimotty, P. A., Massobrio, M., Regnani, G., et al. (2003). Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. The New England Journal of Medicine, 348(3), 203–213.

    CAS  PubMed  Google Scholar 

  189. Fialova, A., Partlova, S., Sojka, L., Hromadkova, H., Brtnicky, T., Fucikova, J., et al (2012). Dynamics of T-cell infiltration during the course of ovarian cancer: the gradual shift from a Th17 effector cell response to a predominant infiltration by regulatory T-cells. Int J Cancer

  190. Milne, K., Alexander, C., Webb, J. R., Sun, W., Dillon, K., Kalloger, S. E., et al. (2012). Absolute lymphocyte count is associated with survival in ovarian cancer independent of tumor-infiltrating lymphocytes. Journal of Translational Medicine, 10, 33.

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Wei, S., Kryczek, I., Zou, L., Daniel, B., Cheng, P., Mottram, P., et al. (2005). Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Research, 65(12), 5020–5026.

    CAS  PubMed  Google Scholar 

  192. Curiel, T. J., Cheng, P., Mottram, P., Alvarez, X., Moons, L., Evdemon-Hogan, M., et al. (2004). Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Research, 64(16), 5535–5538.

    CAS  PubMed  Google Scholar 

  193. Huarte, E., Cubillos-Ruiz, J. R., Nesbeth, Y. C., Scarlett, U. K., Martinez, D. G., Buckanovich, R. J., et al. (2008). Depletion of dendritic cells delays ovarian cancer progression by boosting antitumor immunity. Cancer Research, 68(18), 7684–7691.

    PubMed Central  CAS  PubMed  Google Scholar 

  194. Labidi-Galy, S. I., Sisirak, V., Meeus, P., Gobert, M., Treilleux, I., Bajard, A., et al. (2011). Quantitative and functional alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian cancer. Cancer Research, 71(16), 5423–5434.

    CAS  PubMed  Google Scholar 

  195. Labidi-Galy, S. I., Treilleux, I., Goddard-Leon, S., Combes, J. D., Blay, J. Y., Ray-Coquard, I., et al. (2012). Plasmacytoid dendritic cells infiltrating ovarian cancer are associated with poor prognosis. Oncoimmunology, 1(3), 380–382.

    PubMed Central  PubMed  Google Scholar 

  196. Sato, E., Olson, S. H., Ahn, J., Bundy, B., Nishikawa, H., Qian, F., et al. (2005). Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18538–18543.

    PubMed Central  CAS  PubMed  Google Scholar 

  197. Hamanishi, J., Mandai, M., Iwasaki, M., Okazaki, T., Tanaka, Y., Yamaguchi, K., et al. (2007). Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3360–3365.

    PubMed Central  CAS  PubMed  Google Scholar 

  198. Lai, D., Wang, F., Chen, Y., Wang, C., Liu, S., Lu, B., et al. (2011). Human ovarian cancer stem-like cells can be efficiently killed by gammadelta T lymphocytes. Immunother: Cancer Immunol.

    Google Scholar 

  199. Peng, D. J., Liu, R., & Zou, W. (2012). Regulatory T cells in human ovarian cancer. Journal of Oncology, 2012, 345164.

    PubMed Central  PubMed  Google Scholar 

  200. Alvero, A. B., Montagna, M. K., Craveiro, V., Liu, L., & Mor, G. (2011). Distinct subpopulations of epithelial ovarian cancer cells can differentially induce macrophages and T regulatory cells toward a pro-tumor phenotype. Immunol: Am J Reprod.

    Google Scholar 

  201. Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Medicine, 10(9), 942–949.

    CAS  PubMed  Google Scholar 

  202. DeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., et al. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16(2), 91–102.

    PubMed Central  CAS  PubMed  Google Scholar 

  203. Gavalas, N. G., Karadimou, A., Dimopoulos, M. A., & Bamias, A. (2010). Immune response in ovarian cancer: how is the immune system involved in prognosis and therapy: potential for treatment utilization. Clinical and Developmental Immunology, 2010, 791603.

    PubMed Central  PubMed  Google Scholar 

  204. Bettelli, E., Korn, T., Oukka, M., & Kuchroo, V. K. (2008). Induction and effector functions of T(H)17 cells. Nature, 453(7198), 1051–1057.

    CAS  PubMed  Google Scholar 

  205. Miyahara, Y., Odunsi, K., Chen, W., Peng, G., Matsuzaki, J., & Wang, R. F. (2008). Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 105(40), 15505–15510.

    PubMed Central  CAS  PubMed  Google Scholar 

  206. Leveque, L., Deknuydt, F., Bioley, G., Old, L. J., Matsuzaki, J., Odunsi, K., et al. (2009). Interleukin 2-mediated conversion of ovarian cancer-associated CD4+ regulatory T cells into proinflammatory interleukin 17-producing helper T cells. Journal of Immunotherapy, 32(2), 101–108.

    CAS  PubMed  Google Scholar 

  207. Lan, C., Huang, X., Lin, S., Huang, H., Cai, Q., Lu, J., et al (2013). High density of IL-17-producing cells is associated with improved prognosis for advanced epithelial ovarian cancer. Cell Tissue Res

  208. Biswas, S. K., Sica, A., & Lewis, C. E. (2008). Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. Journal of Immunology, 180(4), 2011–2017.

    CAS  Google Scholar 

  209. Hagemann, T., Wilson, J., Burke, F., Kulbe, H., Li, N. F., Pluddemann, A., et al. (2006). Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. Journal of Immunology, 176(8), 5023–5032.

    CAS  Google Scholar 

  210. Robinson-Smith, T. M., Isaacsohn, I., Mercer, C. A., Zhou, M., Van, R. N., Husseinzadeh, N., et al. (2007). Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Research, 67(12), 5708–5716.

    CAS  PubMed  Google Scholar 

  211. Duluc, D., Delneste, Y., Tan, F., Moles, M. P., Grimaud, L., Lenoir, J., et al. (2007). Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood, 110(13), 4319–4330.

    CAS  PubMed  Google Scholar 

  212. Kryczek, I., Zou, L., Rodriguez, P., Zhu, G., Wei, S., Mottram, P., et al. (2006). B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. The Journal of Experimental Medicine, 203(4), 871–881.

    PubMed Central  CAS  PubMed  Google Scholar 

  213. Kryczek, I., Wei, S., Zhu, G., Myers, L., Mottram, P., Cheng, P., et al. (2007). Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Research, 67(18), 8900–8905.

    CAS  PubMed  Google Scholar 

  214. Fridlender, Z. G., & Albelda, S. M. (2012). Tumor-associated neutrophils: friend or foe? Carcinogenesis, 33(5), 949–955.

    CAS  PubMed  Google Scholar 

  215. Piccard, H., Muschel, R. J., & Opdenakker, G. (2012). On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Critical Reviews in Oncology/Hematology, 82(3), 296–309.

    CAS  PubMed  Google Scholar 

  216. Gonzalez, M. A., Bratos, R., Marquez, R., Alonso, S., & Chiva, L. (2013). Bevacizumab as front-line treatment for newly diagnosed epithelial cancer. Expert Review of Anticancer Therapy, 13(2), 123–129.

    Google Scholar 

  217. Banerjee, S., & Kaye, S. B. (2013). New strategies in the treatment of ovarian cancer—current clinical perspectives and future potential. Cancer Res: Clin.

    Google Scholar 

Download references

Acknowledgments

The manuscript was revised by AngloScribe, Nîmes for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Couderc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thibault, B., Castells, M., Delord, JP. et al. Ovarian cancer microenvironment: implications for cancer dissemination and chemoresistance acquisition. Cancer Metastasis Rev 33, 17–39 (2014). https://doi.org/10.1007/s10555-013-9456-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9456-2

Keywords

Navigation