Skip to main content
Log in

Chromosomal instability and transcriptome dynamics in cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Whole transcriptome profiling has long been proposed as a method of identifying cancer-specific gene expression profiles. Indeed, a multitude of these studies have generated vast amounts of expression data for many types of cancer, and most have identified specific gene signatures associated with a given cancer. These studies however, often contradict with each other, and gene lists only rarely overlap, challenging clinical application of cancer gene signatures. To understand this issue, the biological basis of transcriptome dynamics needs to be addressed. Chromosome instability (CIN) is the main contributor to genome heterogeneity and system dynamics, therefore the relationship between CIN, genome heterogeneity, and transcriptome dynamics has important implications for cancer research. In this review, we discuss CIN and its effects on the transcriptome during cancer progression, specifically how stochastic chromosome change results in transcriptome dynamics. This discussion is further applied to metastasis and drug resistance both of which have been linked to multiple diverse molecular mechanisms but are in fact driven by CIN. The diverse molecular mechanisms that drive each process are linked to karyotypic heterogeneity through the evolutionary mechanism of cancer. Karyotypic change and the resultant transcriptome change alter network function within cells increasing the evolutionary potential of the tumor. Future studies must embrace this instability-induced heterogeneity in order to devise new research and treatment modalities that focus on the evolutionary process of cancer rather than the individual genes that are uniquely changed in each tumor. Care is also needed in evaluating results from experimental systems which measure average values of a population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403, 503–511.

    Article  PubMed  CAS  Google Scholar 

  2. Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., et al. (2000). Molecular portraits of human breast tumours. Nature, 406, 747–752.

    Article  PubMed  CAS  Google Scholar 

  3. Rimm, D. L. (2000). Molecular biology in cytopathology: current applications and future directions. Cancer, 90, 1–9.

    Article  PubMed  CAS  Google Scholar 

  4. van't Veer, L. J., Dai, H. Y., van de Vijver, M. J., He, Y. D. D., Hart, A. A. M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530–536.

    Article  Google Scholar 

  5. Buyse, M., Loi, S., van't Veer, L., Viale, G., Delorenzi, M., et al. (2006). Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Nat Cancer Inst, 98, 1183–1192.

    Article  PubMed  CAS  Google Scholar 

  6. Lehmann, T., & Wrzesinski, T. (2012). The molecular basis of adrenocortical cancer. Cancer Genet, 205, 131–137.

    Article  PubMed  CAS  Google Scholar 

  7. Lucas, S. M., & Heath, E. I. (2012). Current challenges in development of differentially expressed and prognostic prostate cancer biomarkers. Prostate Cancer, 2012, 640968.

    Article  PubMed  Google Scholar 

  8. Simon, R., Radmacher, M. D., Dobbin, K., & McShane, L. M. (2003). Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. Journal of the National Cancer Institute, 95, 14–18.

    Article  PubMed  CAS  Google Scholar 

  9. Ein-Dor, L., Zuk, O., & Domany, E. (2006). Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proceedings of the National Academy of Sciences of the United States of America, 103, 5923–5928.

    Article  PubMed  CAS  Google Scholar 

  10. Venet, D., Dumont, J. E., & Detours, V. (2011). Most random gene expression signatures are significantly associated with breast cancer outcome. PLoS Computational Biology, 7, e1002240.

    Article  PubMed  CAS  Google Scholar 

  11. Kitano, H. (2002). Systems biology: a brief overview. Science, 295, 1662–1664.

    Article  PubMed  CAS  Google Scholar 

  12. Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489: 519–525.

    Google Scholar 

  13. Brock, A., Chang, H., & Huang, S. (2009). Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nature Reviews Genetics, 10, 336–342.

    Article  PubMed  CAS  Google Scholar 

  14. Yurov, Y. B., Iourov, I. Y., Monakhov, V. V., Soloviev, I. V., Vostrikov, V. M., et al. (2005). The variation of aneuploidy frequency in the developing and adult human brain revealed by an interphase FISH study. Journal of Histochemistry and Cytochemistry, 53, 385–390.

    Article  PubMed  CAS  Google Scholar 

  15. Heng, H. H. (2013). Biocomplexity: challenging reductionism. In J. P. Sturmberg & C. C. Martin (Eds.), Handbook on systems and complexity in health. London: Springer.

    Google Scholar 

  16. Duncan, A. W., Hanlon Newell, A. E., Smith, L., Wilson, E. M., Olson, S. B., et al. (2012). Frequent aneuploidy among normal human hepatocytes. Gastroenterology, 142, 25–28.

    Article  PubMed  Google Scholar 

  17. Rehen, S. K., Yung, Y. C., McCreight, M. P., Kaushal, D., Yang, A. H., et al. (2005). Constitutional aneuploidy in the normal human brain. Journal Neurosci, 25, 2176–2180.

    Article  CAS  Google Scholar 

  18. Iourov, I. Y., Vorsanova, S. G., & Yurov, Y. B. (2008). Chromosomal mosaicism goes global. Molecular Cytogen, 1, 26.

    Article  Google Scholar 

  19. Stevens, J.B., Abdallah, B.Y., Horne, S.D., Liu, G., Bremer, S.W., et al. (2011). Genetic and epigenetic heterogeneity in cancer. encyclopedia of life sciences. New York: Wiley

  20. Heng, H. H., Stevens, J. B., Bremer, S. W., Liu, G., Abdallah, B. Y., et al. (2011). Evolutionary mechanisms and diversity in cancer. Advances in Cancer Research, 112, 217–253.

    Article  PubMed  CAS  Google Scholar 

  21. Heng, H. H., Liu, G., Stevens, J. B., Bremer, S. W., Ye, K. J., et al. (2010). Genetic and epigenetic heterogeneity in cancer: the ultimate challenge for drug therapy. Current Drug Targets, 11, 1304–1316.

    Article  PubMed  CAS  Google Scholar 

  22. Bielas, J. H., & Loeb, L. A. (2005). Quantification of random genomic mutations. Nature Methods, 2, 285–290.

    Article  PubMed  CAS  Google Scholar 

  23. Gao, C., Furge, K., Koeman, J., Dykema, K., Su, Y., et al. (2007). Chromosome instability, chromosome transcriptome, and clonal evolution of tumor cell populations. Proceedings of the National Academy of Sciences of the United States of America, 104, 8995–9000.

    Article  PubMed  CAS  Google Scholar 

  24. Tsafrir, D., Bacolod, M., Selvanayagam, Z., Tsafrir, I., Shia, J., et al. (2006). Relationship of gene expression and chromosomal abnormalities in colorectal cancer. Cancer Research, 66, 2129–2137.

    Article  PubMed  CAS  Google Scholar 

  25. Cheng, L., Wang, P., Yang, S., Yang, Y., Zhang, Q., et al. (2012). Identification of genes with a correlation between copy number and expression in gastric cancer. BMC Medical Genomics, 5, 14.

    Article  PubMed  Google Scholar 

  26. Heng, H. H., Liu, G., Stevens, J. B., Bremer, S. W., Ye, K. J., et al. (2011). Decoding the genome beyond sequencing: the new phase of genomic research. Genomics, 98, 242–252.

    Article  PubMed  CAS  Google Scholar 

  27. Heng, H. H., Stevens, J. B., Liu, G., Bremer, S. W., Ye, K. J., et al. (2006). Stochastic cancer progression driven by non-clonal chromosome aberrations. Journal of Cellular Physiology, 208, 461–472.

    Article  PubMed  CAS  Google Scholar 

  28. Heng, H. H., Bremer, S. W., Stevens, J., Ye, K. J., Miller, F., et al. (2006). Cancer progression by non-clonal chromosome aberrations. Journal of Cellular Biochemistry, 98, 1424–1435.

    Article  PubMed  CAS  Google Scholar 

  29. Creekmore, A. L., Silkworth, W. T., Cimini, D., Jensen, R. V., Roberts, P. C., et al. (2011). Changes in gene expression and cellular architecture in an ovarian cancer progression model. PloS One, 6, e17676.

    Article  PubMed  CAS  Google Scholar 

  30. Lawrenson, L. (2010). Tracking profiles of genomic instability in spontaneous transformation and tumorigenesis. Detroit: Wayne State University School of Medicine.

    Google Scholar 

  31. Okamura, K., Feuk, L., Marques-Bonet, T., Navarro, A., & Scherer, S. W. (2006). Frequent appearance of novel protein-coding sequences by frameshift translation. Genomics, 88, 690–697.

    Article  PubMed  CAS  Google Scholar 

  32. Nicke, B., Bastien, J., Khanna, S. J., Warne, P. H., Cowling, V., et al. (2005). Involvement of MINK, a Ste20 family kinase, in Ras oncogene-induced growth arrest in human ovarian surface epithelial cells. Molecular Cell, 20, 673–685.

    Article  PubMed  CAS  Google Scholar 

  33. Roberts, P. C., Mottillo, E. P., Baxa, A. C., Heng, H. H., Doyon-Reale, N., et al. (2005). Sequential molecular and cellular events during neoplastic progression: a mouse syngeneic ovarian cancer model. Neoplasia, 7, 944–956.

    Article  PubMed  CAS  Google Scholar 

  34. Pavelka, N., Rancati, G., Zhu, J., Bradford, W. D., Saraf, A., et al. (2010). Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature, 468, 321–325.

    Article  PubMed  CAS  Google Scholar 

  35. Rancati, G., Pavelka, N., Fleharty, B., Noll, A., Trimble, R., et al. (2008). Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell, 135, 879–893.

    Article  PubMed  CAS  Google Scholar 

  36. Springer, M., Weissman, J. S., & Kirschner, M. W. (2010). A general lack of compensation for gene dosage in yeast. Mol Sys Biol, 6, 368.

    Google Scholar 

  37. Sheltzer, J. M., Torres, E. M., Dunham, M. J., & Amon, A. (2012). Transcriptional consequences of aneuploidy. Proceedings of the National Academy of Sciences, 109, 12644–12649.

    Article  CAS  Google Scholar 

  38. FitzPatrick, D. R., Ramsay, J., McGill, N. I., Shade, M., Carothers, A. D., et al. (2002). Transcriptome analysis of human autosomal trisomy. Human Molecular Genetics, 11, 3249–3256.

    Article  PubMed  CAS  Google Scholar 

  39. Ait Yahya-Graison, E., Aubert, J., Dauphinot, L., Rivals, I., Prieur, M., et al. (2007). Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. American Journal of Human Genetics, 81, 475–491.

    Article  PubMed  CAS  Google Scholar 

  40. Stingele, S., Stoehr, G., Peplowska, K., Cox, J., Mann, M., et al. (2012). Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Molecular Systems Biology, 8, 608.

    Article  PubMed  Google Scholar 

  41. Kuijjer, M. L., Rydbeck, H., Kresse, S. H., Buddingh, E. P., Lid, A. B., et al. (2012). Identification of osteosarcoma driver genes by integrative analysis of copy number and gene expression data. Genes, Chromosomes & Cancer, 51, 696–706.

    Article  CAS  Google Scholar 

  42. Huang, S. (2009). Non-genetic heterogeneity of cells in development: more than just noise. Development, 136, 3853–3862.

    Article  PubMed  CAS  Google Scholar 

  43. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E., & Huang, S. (2008). Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453, 544–547.

    Article  PubMed  CAS  Google Scholar 

  44. Ye, C. J., Stevens, J. B., Liu, G., Bremer, S. W., Jaiswal, A. S., et al. (2009). Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer. Journal of Cellular Physiology, 219, 288–300.

    Article  PubMed  CAS  Google Scholar 

  45. Mi, R., Pan, C., Bian, X., Song, L., Tian, W., et al. (2012). Fusion between tumor cells enhances melanoma metastatic potential. Journal of Cancer Research and Clinical Oncology, 138, 1651–1658.

    Article  PubMed  CAS  Google Scholar 

  46. Pinto, A. E., Silva, G. L., Pereira, T., Cabrera, R. A., Santos, J. R., et al. (2012). S-phase fraction and ploidy as predictive markers in primary disease and recurrence of papillary thyroid carcinoma. Clinical Endocrinology, 77, 302–309.

    Article  PubMed  Google Scholar 

  47. Jasmine, F., Rahaman, R., Dodsworth, C., Roy, S., Paul, R., et al. (2012). A genome-wide study of cytogenetic changes in colorectal cancer using snp microarrays: opportunities for future personalized treatment. PloS One, 7, e31968.

    Article  PubMed  CAS  Google Scholar 

  48. Duesberg, P., Li, R., Fabarius, A., & Hehlmann, R. (2006). Aneuploidy and cancer: from correlation to causation. Contributions to Microbiology, 13, 16–44.

    Article  PubMed  Google Scholar 

  49. Braun, S., Auer, D., & Marth, C. (2009). The prognostic impact of bone marrow micrometastases in women with breast cancer. Cancer Investigation, 27, 598–603.

    Article  PubMed  CAS  Google Scholar 

  50. Habermann, J. K., Paulsen, U., Roblick, U. J., Upender, M. B., McShane, L. M., et al. (2007). Stage-specific alterations of the genome, transcriptome, and proteome during colorectal carcinogenesis. Genes, Chromosomes & Cancer, 46, 10–26.

    Article  CAS  Google Scholar 

  51. Lu, X., Lu, X., & Kang, Y. (2010). Organ-specific enhancement of metastasis by spontaneous ploidy duplication and cell size enlargement. Cell Research, 20, 1012–1022.

    Article  PubMed  Google Scholar 

  52. Adeyinka, A., Kytola, S., Mertens, F., Pandis, N., & Larsson, C. (2000). Spectral karyotyping and chromosome banding studies of primary breast carcinomas and their lymph node metastases. International Journal of Molecular Medicine, 5, 235–240.

    PubMed  CAS  Google Scholar 

  53. Popescu, N. C., & Zimonjic, D. B. (2002). Chromosome and gene alterations in breast cancer as markers for diagnosis and prognosis as well as pathogenetic targets for therapy. American Journal of Medical Genetics, 115, 142–149.

    Article  PubMed  Google Scholar 

  54. Bieche, I., & Lidereau, R. (1995). Genetic alterations in breast-cancer. Genes, Chromosomes & Cancer, 14, 227–251.

    Article  CAS  Google Scholar 

  55. Goodison, S., Viars, C., & Urquidi, V. (2005). Molecular cytogenetic analysis of a human breast metastasis model: identification of phenotype-specific chromosomal rearrangements. Cancer Genetics and Cytogenetics, 156, 37–48.

    Article  PubMed  CAS  Google Scholar 

  56. Klein, C. A., Blankenstein, T. J., Schmidt-Kittler, O., Petronio, M., Polzer, B., et al. (2002). Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet, 360, 683–689.

    Article  PubMed  CAS  Google Scholar 

  57. Malkhosyan, S., Yasuda, J., Soto, J. L., Sekiya, T., Yokota, J., et al. (1998). Molecular karyotype (amplotype) of metastatic colorectal cancer by unbiased arbitrarily primed PCR DNA fingerprinting. Proceedings of the National Academy of Sciences of the United States of America, 95, 10170–10175.

    Article  PubMed  CAS  Google Scholar 

  58. Barbazan, J., Alonso-Alconada, L., Muinelo-Romay, L., Vieito, M., Abalo, A., et al. (2012). Molecular characterization of circulating tumor cells in human metastatic colorectal cancer. PloS One, 7, e40476.

    Article  PubMed  CAS  Google Scholar 

  59. Gupta, G. P., Nguyen, D. X., Chiang, A. C., Bos, P. D., Kim, J. Y., et al. (2007). Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature, 446, 765–770.

    Article  PubMed  CAS  Google Scholar 

  60. Lunt, S. J., Chaudary, N., & Hill, R. P. (2009). The tumor microenvironment and metastatic disease. Clinical & Experimental Metastasis, 26, 19–34.

    Article  Google Scholar 

  61. Ellsworth, R., Ellsworth, D., Patney, H., Deyarmin, B., Hooke, J., et al. (2008). Genomic alterations associated with early stages of breast tumor metastasis. Annals of Surgical Oncology, 15, 1989–1995.

    Article  PubMed  Google Scholar 

  62. Heng, H.H., Bremer, S.W., Stevens, J.B., Horne, S.D., Liu, G., et al. (2013). Chromosomal instability (CIN): what is it and why it is crucial to cancer evolution. Cancer and Metastasis Reviews (in press).

  63. Sethi, N., & Kang, Y. (2011). Unravelling the complexity of metastasis—molecular understanding and targeted therapies. Nature Reviews Cancer, 11, 735–748.

    Article  PubMed  CAS  Google Scholar 

  64. Frost, P., Kerbel, R. S., Hunt, B., Man, S., & Pathak, S. (1987). Selection of metastatic variants with identifiable karyotypic changes from a nonmetastatic murine tumor after treatment with 2′-deoxy-5-azacytidine or hydroxyurea: implications for the mechanisms of tumor progression. Cancer Research, 47, 2690–2695.

    PubMed  CAS  Google Scholar 

  65. Ince, T. A., Richardson, A. L., Bell, G. W., Saitoh, M., Godar, S., et al. (2007). Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell, 12, 160–170.

    Article  PubMed  CAS  Google Scholar 

  66. Ton, N. C., & Jayson, G. C. (2004). Resistance to anti-VEGF agents. Current Pharmaceutical Design, 10, 51–64.

    Article  PubMed  CAS  Google Scholar 

  67. Horne, S.D., Stevens, J.B., Abdallah, B.Y., Liu, G., Bremer, S.W., et al. (2013). Why Gleevec remains the exception of cancer research—a genome-based evolutionary perspective. Journal of Cellular Physiology 228:665–670

    Google Scholar 

  68. Higgins, C. F. (2007). Multiple molecular mechanisms for multidrug resistance transporters. Nature, 446, 749–757.

    Article  PubMed  CAS  Google Scholar 

  69. Duesberg, P., Stindl, R., & Hehlmann, R. (2001). Origin of multidrug resistance in cells with and without multidrug resistance genes: chromosome reassortments catalyzed by aneuploidy. Proceedings of the National Academy of Sciences of the United States of America, 98, 11283–11288.

    Article  PubMed  CAS  Google Scholar 

  70. Heng, H.H., Liu, G., Stevens, J.B., Abdallah, B.Y., Horne, S.D., et al. (2013). Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenetic and Genome Research, 2, 144–157.

    Google Scholar 

  71. Forment, J. V., Kaidi, A., & Jackson, S. P. (2012). Chromothripsis and cancer: causes and consequences of chromosome shattering. Nature Reviews Cancer, 12, 663–670.

    Article  PubMed  CAS  Google Scholar 

  72. Foraker, A. B., Camus, S. M., Evans, T. M., Majeed, S. R., Chen, C.-Y., et al. (2012). Clathrin promotes centrosome integrity in early mitosis through stabilization of centrosomal ch-TOG. The Journal of Cell Biology, 198, 591–605.

    Article  PubMed  CAS  Google Scholar 

  73. Maher, C. A., Palanisamy, N., Brenner, J. C., Cao, X., Kalyana-Sundaram, S., et al. (2009). Chimeric transcript discovery by paired-end transcriptome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 106, 12353–12358.

    Article  PubMed  CAS  Google Scholar 

  74. Maher, J., Brentjens, R. J., Gunset, G., Riviere, I., & Sadelain, M. (2002). Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCR[ζ]/CD28 receptor. Nature Biotechnology, 20, 70–75.

    Article  PubMed  CAS  Google Scholar 

  75. Blount, Z. D., Barrick, J. E., Davidson, C. J., & Lenski, R. E. (2012). Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature, 489, 513–518.

    Article  PubMed  CAS  Google Scholar 

  76. Heng, H. H. (2009). The genome-centric concept: resynthesis of evolutionary theory. Bioessays, 31, 512–525.

    Article  PubMed  Google Scholar 

  77. Gillies, R. J., Verduzco, D., & Gatenby, R. A. (2012). Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nature Reviews Cancer, 12, 487–493.

    Article  PubMed  CAS  Google Scholar 

  78. Heng, H.H. (2013). 4-D Genomics: genome dynamics and constraint in evolution: New York: Springer

Download references

Acknowledgments

This manuscript is part of a series of studies entitled “The mechanism of somatic and organismal evolution.” This work was partially supported by grants to HHQH from the Komen Foundation, SeeDNA Inc., the National CFIDS Foundation, the Nancy Taylor Foundation for Chronic Diseases, and the US Department of Defense (GW093028). JBS was supported by a WSU CMMG post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry H. Heng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, J.B., Horne, S.D., Abdallah, B.Y. et al. Chromosomal instability and transcriptome dynamics in cancer. Cancer Metastasis Rev 32, 391–402 (2013). https://doi.org/10.1007/s10555-013-9428-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9428-6

Keywords

Navigation