Skip to main content

Advertisement

Log in

Ovarian cancer molecular pathology

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Ovarian cancer (OVC) is the fourth leading cause of cancer mortality among women in Europe and the United States. Its early detection is difficult due to the lack of specificity of clinical symptoms. Unfortunately, late diagnosis is a major contributor to the poor survival rates for OVC, which can be attributed to the lack of specific sets of markers. Aside from patients sharing a strong family history of ovarian and breast cancer, including the BRCA1 and BRCA2 tumor suppressor genes mutations, the most used biomarker is the Cancer-antigen 125 (CA-125). CA-125 has a sensitivity of 80 % and a specificity of 97 % in epithelial cancer (stage III or IV). However, its sensitivity is 30 % in stage I cancer, as its increase is linked to several physiological phenomena and benign situations. CA-125 is particularly useful for at-risk population diagnosis and to assess response to treatment. It is clear that alone, CA-125 is inadequate as a biomarker for OVC diagnosis. There is an unmet need to identify additional biomarkers. Novel and more sensitive proteomic strategies such as MALDI mass spectrometry imaging studies are well suited to identify better markers for both diagnosis and prognosis. In the present review, we will focus on such proteomic strategies in regards to OVC signaling pathways, OVC development and escape from the immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Longuespée RB, C., Kerdraon, O., Vinatier, D., Fournier, I., Day, R., Salzet, M. (2012). MALDI MSI and Ovarian cancer Biomarkers. Advances in Cancer Management; Ed R. Mohan, Chap. 10, 211–236.

  2. Jelovac, D., Armstrong, D.K. Recent progress in the diagnosis and treatment of ovarian cancer. CA: A Cancer Journal for Clinicians, 61, 183–203.

  3. Konishi, H., Mohseni, M., Tamaki, A, et al. 2011. Mutation of a single allele of the cancer susceptibility gene BRCA1 leads to genomic instability in human breast epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 108, 17773–17778.

  4. Saunders, K.H., Nazareth, S., Pressman, P.I. (2011). Case report: BRCA in the Ashkenazi population: are current testing guidelines too exclusive? Heredity Cancer Clinical Practice, 9(1), 3.

    Google Scholar 

  5. Jazaeri, A. A. (2009). Molecular profiles of hereditary epithelial ovarian cancers and their implications for the biology of this disease. Molecular Oncology, 3, 151–156.

    PubMed  CAS  Google Scholar 

  6. Bast, R. C., Jr., Hennessy, B., & Mills, G. B. (2009). The biology of ovarian cancer: new opportunities for translation. Nature Reviews. Cancer, 9, 415–428.

    PubMed  CAS  Google Scholar 

  7. Moore, L.E., Pfeiffer, R.M., Zhang, Z., Lu, K.H., Fung, E.T., Bast, R.C., Jr. (2012). Proteomic biomarkers in combination with CA 125 for detection of epithelial ovarian cancer using prediagnostic serum samples from the prostate, lung, colorectal, and ovarian (PLCO) cancer screening trial. Cancer, 118(1), 91–100.

    Google Scholar 

  8. Vaughan, S., Coward, J. I., Bast, R. C., Jr., et al. (2011). Rethinking ovarian cancer: recommendations for improving outcomes. Nature Reviews. Cancer, 11, 719–725.

    PubMed  CAS  Google Scholar 

  9. Moore, R. G., MacLaughlan, S., & Bast, R. C., Jr. (2010). Current state of biomarker development for clinical application in epithelial ovarian cancer. Gynecologic Oncology, 116, 240–245.

    PubMed  CAS  Google Scholar 

  10. Lu, Z., & Bast, R. C., Jr. (2009). Tumor suppressor genes. Cancer Treatment and Research, 149, 109–129.

    PubMed  CAS  Google Scholar 

  11. Samanta, A. K., Huang, H. J., Le, X. F., et al. (2009). MEKK3 expression correlates with nuclear factor kappa B activity and with expression of antiapoptotic genes in serous ovarian carcinoma. Cancer, 115, 3897–3908.

    PubMed  CAS  Google Scholar 

  12. Huang, S., Chang, I.S., Lin, W., et al. 2009. ARHI (DIRAS3), an imprinted tumour suppressor gene, binds to importins and blocks nuclear import of cargo proteins. Bioscience Reports, 30, 159–168.

    Google Scholar 

  13. Kan, Z., Jaiswal, B. S., Stinson, J., et al. (2011). Diverse somatic mutation patterns and pathway alterations in human cancers. Nature, 466, 869–873.

    Google Scholar 

  14. Bast, R. C., Jr., & Spriggs, D. R. (2011). More than a biomarker: CA125 may contribute to ovarian cancer pathogenesis. Gynecologic Oncology, 121, 429–430.

    PubMed  Google Scholar 

  15. Zhu, C. S., Pinsky, P. F., Cramer, D. W., et al. (2011). A framework for evaluating biomarkers for early detection: validation of biomarker panels for ovarian cancer. Cancer Prevention Research (Philadelphia, Pa.), 4, 375–383.

    Google Scholar 

  16. Kalachand, R., Hennessy, B. T., & Markman, M. (2011). Molecular targeted therapy in ovarian cancer: what is on the horizon? Drugs, 71, 947–967.

    PubMed  CAS  Google Scholar 

  17. Wilson, E. B., El-Jawhari, J. J., Neilson, A. L., et al. (2001). Human tumour immune evasion via TGF-beta blocks NK cell activation but not survival allowing therapeutic restoration of anti-tumour activity. PLoS One, 6, e22842.

    Google Scholar 

  18. Papacleovoulou, G., Critchley, H., Hillier, S.G., Mason, J.I. (2011). IL-1{alpha} and IL-4 signalling in human ovarian surface epithelial cells. Journal of Endocrinology, 211(3), 273–283.

    Google Scholar 

  19. Barbolina, M. V., Burkhalter, R. J., & Stack, M. S. (2011). Diverse mechanisms for activation of Wnt signalling in the ovarian tumour microenvironment. Biochemistry Journal, 437, 1–12.

    CAS  Google Scholar 

  20. Comamala, M., Pinard, M., Theriault, C., et al. (2011). Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells. British Journal of Cancer, 104, 989–999.

    PubMed  CAS  Google Scholar 

  21. Mazzoletti, M., & Broggini, M. (2010). PI3K/AKT/mTOR inhibitors in ovarian cancer. Current Medicinal Chemistry, 17, 4433–4447.

    PubMed  CAS  Google Scholar 

  22. Hipp, S., Berg, D., Ergin, B., et al. (2010). Interaction of Snail and p38 mitogen-activated protein kinase results in shorter overall survival of ovarian cancer patients. Virchows Archiv, 457, 705–713.

    PubMed  CAS  Google Scholar 

  23. Bolitho, C., Hahn, M. A., Baxter, R. C., & Marsh, D. J. (2010). The chemokine CXCL1 induces proliferation in epithelial ovarian cancer cells by transactivation of the epidermal growth factor receptor. Endocrine-Related Cancer, 17, 929–940.

    PubMed  CAS  Google Scholar 

  24. Mertens-Walker, I., Bolitho, C., Baxter, R. C., & Marsh, D. J. (2010). Gonadotropin-induced ovarian cancer cell migration and proliferation require extracellular signal-regulated kinase 1/2 activation regulated by calcium and protein kinase C{delta}. Endocrine-Related Cancer, 17, 335–349.

    PubMed  CAS  Google Scholar 

  25. Falasca, M., Chiozzotto, D., Godage, H. Y., et al. (2010). A novel inhibitor of the PI3K/Akt pathway based on the structure of inositol 1,3,4,5,6-pentakisphosphate. British Journal of Cancer, 102, 104–114.

    PubMed  CAS  Google Scholar 

  26. Drummond, A. E., & Fuller, P. J. (2010). The importance of ERbeta signalling in the ovary. Journal of Endocrinology, 205, 15–23.

    PubMed  CAS  Google Scholar 

  27. Herrera, B., van Dinther, M., Ten Dijke, P., & Inman, G. J. (2009). Autocrine bone morphogenetic protein-9 signals through activin receptor-like kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation. Cancer Research, 69, 9254–9262.

    PubMed  CAS  Google Scholar 

  28. Helleman, J., Jansen, M. P., Burger, C., van der Burg, M. E., & Berns, E. M. (2010). Integrated genomics of chemotherapy resistant ovarian cancer: a role for extracellular matrix, TGFbeta and regulating microRNAs. The International Journal of Biochemistry & Cell Biology, 42, 25–30.

    CAS  Google Scholar 

  29. Papachroni, K.K., Piperi, C., Levidou, G., et al. Lysyl oxidase interacts with AGE signalling to modulate collagen synthesis in polycystic ovarian tissue. 2010. Journal of Cellular and Molecular Medicine, 14, 2460–2469.

  30. Wang, Y., Nicholls, P. K., Stanton, P. G., et al. (2009). Extra-ovarian expression and activity of growth differentiation factor 9. Journal of Endocrinology, 202, 419–430.

    PubMed  CAS  Google Scholar 

  31. Drake, J., Shearwood, A. M., White, J., et al. (2009). Expression of secreted frizzled-related protein 4 (SFRP4) in primary serous ovarian tumours. European Journal of Gynaecological Oncology, 30, 133–141.

    PubMed  CAS  Google Scholar 

  32. Santra, M. K., Wajapeyee, N., & Green, M. R. (2009). F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature, 459, 722–725.

    PubMed  CAS  Google Scholar 

  33. Trinh, X. B., Tjalma, W. A., Vermeulen, P. B., et al. (2009). The VEGF pathway and the AKT/mTOR/p70S6K1 signalling pathway in human epithelial ovarian cancer. British Journal of Cancer, 100, 971–978.

    PubMed  CAS  Google Scholar 

  34. Colomiere, M., Ward, A. C., Riley, C., et al. (2009). Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial-mesenchymal transition in ovarian carcinomas. British Journal of Cancer, 100, 134–144.

    PubMed  CAS  Google Scholar 

  35. Kolasa, I. K., Rembiszewska, A., Felisiak, A., et al. (2009). PIK3CA amplification associates with resistance to chemotherapy in ovarian cancer patients. Cancer Biology & Therapy, 8, 21–26.

    CAS  Google Scholar 

  36. Noske, A., Lindenberg, J. L., Darb-Esfahani, S., et al. (2008). Activation of mTOR in a subgroup of ovarian carcinomas: correlation with p-eIF-4E and prognosis. Oncology Reports, 20, 1409–1417.

    PubMed  CAS  Google Scholar 

  37. Colomiere, M., Findlay, J., Ackland, L., & Ahmed, N. (2009). Epidermal growth factor-induced ovarian carcinoma cell migration is associated with JAK2/STAT3 signals and changes in the abundance and localization of alpha6beta1 integrin. The International Journal of Biochemistry & Cell Biology, 41, 1034–1045.

    CAS  Google Scholar 

  38. Papacleovoulou, G., Edmondson, R. J., Critchley, H. O., Hillier, S. G., & Mason, J. I. (2009). 3beta-Hydroxysteroid dehydrogenases and pre-receptor steroid metabolism in the human ovarian surface epithelium. Molecular and Cellular Endocrinology, 301, 65–73.

    PubMed  CAS  Google Scholar 

  39. de Graeff, P., Crijns, A. P., Ten Hoor, K. A., et al. (2008). The ErbB signalling pathway: protein expression and prognostic value in epithelial ovarian cancer. British Journal of Cancer, 99, 341–349.

    PubMed  Google Scholar 

  40. Bleeker, F. E., Felicioni, L., Buttitta, F., et al. (2008). AKT1(E17K) in human solid tumours. Oncogene, 27, 5648–5650.

    PubMed  CAS  Google Scholar 

  41. Guo, R. X., Qiao, Y. H., Zhou, Y., Li, L. X., Shi, H. R., & Chen, K. S. (2008). Increased staining for phosphorylated AKT and nuclear factor-kappaB p65 and their relationship with prognosis in epithelial ovarian cancer. Pathology International, 58, 749–756.

    PubMed  CAS  Google Scholar 

  42. Guo, L. M., Pu, Y., Han, Z., et al. (2009). MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB1. FEBS Journal, 276, 5537–5546.

    PubMed  CAS  Google Scholar 

  43. Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441, 431–436.

    PubMed  CAS  Google Scholar 

  44. Karin, M. (2006). NF-kappaB and cancer: mechanisms and targets. Molecular Carcinogenesis, 45, 355–361.

    PubMed  CAS  Google Scholar 

  45. Karin, M., Lawrence, T., & Nizet, V. (2006). Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell, 124, 823–835.

    PubMed  CAS  Google Scholar 

  46. Manzano, R. G., Montuenga, L. M., Dayton, M., et al. (2002). CL100 expression is down-regulated in advanced epithelial ovarian cancer and its re-expression decreases its malignant potential. Oncogene, 21, 4435–4447.

    PubMed  CAS  Google Scholar 

  47. Lengyel, E., Stepp, E., Gum, R., & Boyd, D. (1995). Involvement of a mitogen-activated protein kinase signaling pathway in the regulation of urokinase promoter activity by c-Ha-ras. Journal of Biological Chemistry, 270, 23007–23012.

    PubMed  CAS  Google Scholar 

  48. Felip, E., Encabo, G., Vidal, M. T., Vera, R., del Campo, J. M., & Rubio, D. (1995). C-erbB-2 protein in ovarian epithelial cancer: correlation between expression in tumor tissue and blood levels. Medicina Clínica (Barcelona), 105, 5–8.

    CAS  Google Scholar 

  49. Felip, E., Del Campo, J. M., Rubio, D., Vidal, M. T., Colomer, R., & Bermejo, B. (1995). Overexpression of c-erbB-2 in epithelial ovarian cancer. Prognostic value and relationship with response to chemotherapy. Cancer, 75, 2147–2152.

    PubMed  CAS  Google Scholar 

  50. Teixeira, J., Maheswaran, S., & Donahoe, P. K. (2001). Mullerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications. Endocrine Reviews, 22, 657–674.

    PubMed  CAS  Google Scholar 

  51. Braun, A. H., & Coffey, R. J. (2005). Lysophosphatidic acid, a disintegrin and metalloprotease-17 and heparin-binding epidermal growth factor-like growth factor in ovarian cancer: the first word, not the last. Clinical Cancer Research, 11, 4639–4643.

    PubMed  CAS  Google Scholar 

  52. Gewinner, C., Wang, Z. C., Richardson, A., et al. (2009). Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell, 16, 115–125.

    PubMed  CAS  Google Scholar 

  53. Imamov, O., Shim, G. J., Warner, M., & Gustafsson, J. A. (2005). Estrogen receptor beta in health and disease. Biology of Reproduction, 73, 866–871.

    PubMed  CAS  Google Scholar 

  54. Lindgren, P. R., Cajander, S., Backstrom, T., Gustafsson, J. A., Makela, S., & Olofsson, J. I. (2004). Estrogen and progesterone receptors in ovarian epithelial tumors. Molecular and Cellular Endocrinology, 221, 97–104.

    PubMed  CAS  Google Scholar 

  55. Li, A. J., Baldwin, R. L., & Karlan, B. Y. (2003). Estrogen and progesterone receptor subtype expression in normal and malignant ovarian epithelial cell cultures. American Journal of Obstetrics and Gynecology, 189, 22–27.

    PubMed  CAS  Google Scholar 

  56. Lazennec, G. (2005). Retraction: article on estrogen receptor beta in ovarian carcinogenesis. Cancer Research, 65, 5480.

    PubMed  Google Scholar 

  57. Ye, B., Cramer, D. W., Skates, S. J., et al. (2003). Haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer: identification and characterization using proteomic profiling and mass spectrometry. Clinical Cancer Research, 9, 2904–2911.

    PubMed  CAS  Google Scholar 

  58. Yu, J. K., Zheng, S., Tang, Y., & Li, L. (2005). An integrated approach utilizing proteomics and bioinformatics to detect ovarian cancer. Journal of Zhejiang University. Science. B, 6, 227–231.

    PubMed  Google Scholar 

  59. Conrads, T. P., Fusaro, V. A., Ross, S., et al. (2004). High-resolution serum proteomic features for ovarian cancer detection. Endocrine-Related Cancer, 11, 163–178.

    PubMed  CAS  Google Scholar 

  60. Zhu, Y., Wu, R., Sangha, N., et al. (2006). Classifications of ovarian cancer tissues by proteomic patterns. Proteomics, 6, 5846–5856.

    PubMed  CAS  Google Scholar 

  61. Kim, H., Wu, R., Cho, K. R., et al. (2008). Comparative proteomic analysis of low stage and high stage endometrioid ovarian adenocarcinomas. Proteomics. Clinical Applications, 2, 571–584.

    PubMed  CAS  Google Scholar 

  62. Lemaire, R., Menguellet, S. A., Stauber, J., et al. (2007). Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11 S proteasome activator complex, Reg alpha fragment, is a new potential ovary cancer biomarker. Journal of Proteome Research, 6, 4127–4134.

    PubMed  CAS  Google Scholar 

  63. Franck, J., Arafah, K., Elayed, M., et al. (2009). MALDI imaging mass spectrometry: state of the art technology in clinical proteomics. Molecular & Cellular Proteomics, 8, 2023–2033.

    CAS  Google Scholar 

  64. Gustafsson, J. O., Oehler, M. K., McColl, S. R., & Hoffmann, P. (2010). Citric acid antigen retrieval (CAAR) for tryptic peptide imaging directly on archived formalin-fixed paraffin-embedded tissue. Journal of Proteome Research, 9, 4315–4328.

    PubMed  CAS  Google Scholar 

  65. Gustafsson, J. O., Oehler, M. K., Ruszkiewicz, A., McColl, S. R., & Hoffmann, P. (2011). MALDI Imaging Mass Spectrometry (MALDI-IMS)-Application of Spatial Proteomics for Ovarian Cancer Classification and Diagnosis. International Journal of Molecular Sciences, 12, 773–794.

    PubMed  CAS  Google Scholar 

  66. Kikuchi, N., Horiuchi, A., Osada, R., et al. (2006). Nuclear expression of S100A4 is associated with aggressive behavior of epithelial ovarian carcinoma: an important autocrine/paracrine factor in tumor progression. Cancer Science, 97, 1061–1069.

    PubMed  CAS  Google Scholar 

  67. El Ayed, M., Bonnel, D., Longuespee, R., et al. (2010). MALDI imaging mass spectrometry in ovarian cancer for tracking, identifying, and validating biomarkers. Medical Science Monitor, 16, BR233–BR245.

    PubMed  Google Scholar 

  68. Gortzak-Uzan, L., Ignatchenko, A., Evangelou, A. I., et al. (2008). A proteome resource of ovarian cancer ascites: integrated proteomic and bioinformatic analyses to identify putative biomarkers. Journal of Proteome Research, 7, 339–351.

    PubMed  CAS  Google Scholar 

  69. Makino, E., Sakaguchi, M., Iwatsuki, K., & Huh, N. H. (2004). Introduction of an N-terminal peptide of S100C/A11 into human cells induces apoptotic cell death. Journal of Molecular Medicine, 82, 612–620.

    PubMed  CAS  Google Scholar 

  70. Sakaguchi, M., Miyazaki, M., Sonegawa, H., et al. (2004). PKCalpha mediates TGFbeta-induced growth inhibition of human keratinocytes via phosphorylation of S100C/A11. The Journal of Cell Biology, 164, 979–984.

    PubMed  CAS  Google Scholar 

  71. Yang, Z., Tao, T., Raftery, M. J., Youssef, P., Di Girolamo, N., & Geczy, C. L. (2001). Proinflammatory properties of the human S100 protein S100A12. Journal of Leukocyte Biology, 69, 986–994.

    PubMed  CAS  Google Scholar 

  72. Do, T. V., Kubba, L. A., Du, H., Sturgis, C. D., & Woodruff, T. K. (2008). Transforming growth factor-beta1, transforming growth factor-beta2, and transforming growth factor-beta3 enhance ovarian cancer metastatic potential by inducing a Smad3-dependent epithelial-to-mesenchymal transition. Molecular Cancer Research, 6, 695–705.

    PubMed  CAS  Google Scholar 

  73. Rodriguez, G. C., Haisley, C., Hurteau, J., et al. (2001). Regulation of invasion of epithelial ovarian cancer by transforming growth factor-beta. Gynecologic Oncology, 80, 245–253.

    PubMed  CAS  Google Scholar 

  74. Sood, A. K., Fletcher, M. S., Coffin, J. E., et al. (2004). Functional role of matrix metalloproteinases in ovarian tumor cell plasticity. American Journal of Obstetrics and Gynecology, 190, 899–909.

    PubMed  CAS  Google Scholar 

  75. Sood, A. K., Seftor, E. A., Fletcher, M. S., et al. (2001). Molecular determinants of ovarian cancer plasticity. American Journal of Pathology, 158, 1279–1288.

    PubMed  CAS  Google Scholar 

  76. Vergara, D., Merlot, B., Lucot, J.P., et al. (2010). Epithelial-mesenchymal transition in ovarian cancer. Cancer Letters, 291(1), 59–66.

    Google Scholar 

  77. Giuntoli, R. L., 2nd, Webb, T. J., Zoso, A., et al. (2009). Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity. Anticancer Research, 29, 2875–2884.

    PubMed  CAS  Google Scholar 

  78. Xie, X., Ye, D., Chen, H., Lu, W., Cheng, B., & Zhong, H. (2004). Interleukin-7 and suppression of local peritoneal immunity in ovarian carcinoma. International Journal of Gynaecology and Obstetrics, 85, 151–158.

    PubMed  CAS  Google Scholar 

  79. Lambeck, A. J., Crijns, A. P., Leffers, N., et al. (2007). Serum cytokine profiling as a diagnostic and prognostic tool in ovarian cancer: a potential role for interleukin 7. Clinical Cancer Research, 13, 2385–2391.

    PubMed  CAS  Google Scholar 

  80. Kitagawa, K., Murata, A., Matsuura, N., et al. (1996). Epithelial-mesenchymal transformation of a newly established cell line from ovarian adenosarcoma by transforming growth factor-beta1. International Journal of Cancer, 66, 91–97.

    CAS  Google Scholar 

  81. Keshamouni, V. G., Michailidis, G., Grasso, C. S., et al. (2006). Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial–mesenchymal transition reveals a migratory/invasive phenotype. Journal of Proteome Research, 5, 1143–1154.

    PubMed  CAS  Google Scholar 

  82. Vergara, D., Merlot, B., Lucot, J. P., et al. (2010). Epithelial–mesenchymal transition in ovarian cancer. Cancer Letters, 291, 59–66.

    PubMed  CAS  Google Scholar 

  83. Mor, G., Visintin, I., Lai, Y., et al. (2005). Serum protein markers for early detection of ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 102, 7677–7682.

    PubMed  CAS  Google Scholar 

  84. Choi, J. H., Lee, K. T., & Leung, P. C. (2011). Estrogen receptor alpha pathway is involved in leptin-induced ovarian cancer cell growth. Carcinogenesis, 32, 589–596.

    PubMed  CAS  Google Scholar 

  85. Levina, V. V., Nolen, B., Su, Y., et al. (2009). Biological significance of prolactin in gynecologic cancers. Cancer Research, 69, 5226–5233.

    PubMed  CAS  Google Scholar 

  86. Song, G., Cai, Q. F., Mao, Y. B., Ming, Y. L., Bao, S. D., & Ouyang, G. L. (2008). Osteopontin promotes ovarian cancer progression and cell survival and increases HIF-1alpha expression through the PI3-K/Akt pathway. Cancer Science, 99, 1901–1907.

    PubMed  CAS  Google Scholar 

  87. Lee, E. J., Mircean, C., Shmulevich, I., et al. (2005). Insulin-like growth factor binding protein 2 promotes ovarian cancer cell invasion. Molecular Cancer, 4, 7.

    PubMed  Google Scholar 

  88. Guo, X., Liu, G., Schauer, I. G., et al. (2011). Overexpression of the beta subunit of human chorionic gonadotropin promotes the transformation of human ovarian epithelial cells and ovarian tumorigenesis. American Journal of Pathology, 179, 1385–1393.

    PubMed  CAS  Google Scholar 

  89. Boss, D.S., Glen, H., Beijnen, J.H., et al. Serum beta-HCG and CA-125 as tumor markers in a patient with osteosarcoma: case report. Tumori, 97, 109–114.

  90. Pejcic, I., Vrbic, S., Filipovic, S., et al. (2010). [Significance of serum tumor markers monitoring metastases in carcinomas of unknown primary site]. Vojnosanitetski Pregled, 67, 723–731.

    Google Scholar 

  91. Tavares Murta, B. M., Cunha Fde, Q., Miranda, R., Adad, S. J., & Murta, E. F. (2004). Differential tumor microenvironment in human ovarian cystic tumors. Tumori, 90, 491–497.

    PubMed  Google Scholar 

  92. Perkins, G. L., Slater, E. D., Sanders, G. K., & Prichard, J. G. (2003). Serum tumor markers. American Family Physician, 68, 1075–1082.

    PubMed  Google Scholar 

  93. Clarke, B., Tinker, A. V., Lee, C. H., et al. (2009). Intraepithelial T cells and prognosis in ovarian carcinoma: novel associations with stage, tumor type, and BRCA1 loss. Modern Pathology, 22, 393–402.

    PubMed  CAS  Google Scholar 

  94. Curiel, T. J., Coukos, G., Zou, L., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Medicine, 10, 942–949.

    PubMed  CAS  Google Scholar 

  95. Preston, C. C., Goode, E. L., Hartmann, L. C., Kalli, K. R., & Knutson, K. L. (2011). Immunity and immune suppression in human ovarian cancer. Immunotherapy, 3, 539–556.

    PubMed  Google Scholar 

  96. Yigit, R., Massuger, L. F., Figdor, C. G., & Torensma, R. (2010). Ovarian cancer creates a suppressive microenvironment to escape immune elimination. Gynecologic Oncology, 117, 366–372.

    PubMed  CAS  Google Scholar 

  97. Nonaka, H., Saga, Y., Fujiwara, H., et al. (2011). Indoleamine 2,3-dioxygenase promotes peritoneal dissemination of ovarian cancer through inhibition of natural killercell function and angiogenesis promotion. International Journal of Oncology, 38, 113–120.

    PubMed  CAS  Google Scholar 

  98. Ino, K. (2011). Indoleamine 2,3-dioxygenase and immune tolerance in ovarian cancer. Current Opinion in Obstetrics and Gynecology, 23, 13–18.

    PubMed  Google Scholar 

  99. Inaba, T., Ino, K., Kajiyama, H., et al. (2009). Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecologic Oncology, 115, 185–192.

    PubMed  CAS  Google Scholar 

  100. Okamoto, A., Nikaido, T., Ochiai, K., et al. (2005). Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clinical Cancer Research, 11, 6030–6039.

    PubMed  CAS  Google Scholar 

  101. Nelson, B. H. (2009). IDO and outcomes in ovarian cancer. Gynecologic Oncology, 115, 179–180.

    PubMed  Google Scholar 

  102. Loercher, A. E., Nash, M. A., Kavanagh, J. J., Platsoucas, C. D., & Freedman, R. S. (1999). Identification of an IL-10-producing HLA-DR-negative monocyte subset in the malignant ascites of patients with ovarian carcinoma that inhibits cytokine protein expression and proliferation of autologous T cells. The Journal of Immunology, 163, 6251–6260.

    PubMed  CAS  Google Scholar 

  103. Wei, S., Kryczek, I., Zou, L., et al. (2005). Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Research, 65, 5020–5026.

    PubMed  CAS  Google Scholar 

  104. Jung, Y. W., Kim, Y. T., Kim, S. W., et al. (2009). Correlation of human leukocyte antigen-G (HLA-G) expression and disease progression in epithelial ovarian cancer. Reproductive Sciences, 16, 1103–1111.

    PubMed  CAS  Google Scholar 

  105. Menier, C., Prevot, S., Carosella, E. D., & Rouas-Freiss, N. (2009). Human leukocyte antigen-G is expressed in advanced-stage ovarian carcinoma of high-grade histology. Human Immunology, 70, 1006–1009.

    PubMed  CAS  Google Scholar 

  106. Sheu, J. J., & Shih Ie, M. (2007). Clinical and biological significance of HLA-G expression in ovarian cancer. Seminars in Cancer Biology, 17, 436–443.

    PubMed  CAS  Google Scholar 

  107. Rebmann, V., Regel, J., Stolke, D., & Grosse-Wilde, H. (2003). Secretion of sHLA-G molecules in malignancies. Seminars in Cancer Biology, 13, 371–377.

    PubMed  CAS  Google Scholar 

  108. Singer, G., Rebmann, V., Chen, Y. C., et al. (2003). HLA-G is a potential tumor marker in malignant ascites. Clinical Cancer Research, 9, 4460–4464.

    PubMed  CAS  Google Scholar 

  109. Mach, P., Blecharz, P., Basta, P., et al. (2010). Differences in the soluble HLA-G blood serum concentration levels in patients with ovarian cancer and ovarian and deep endometriosis. American Journal of Reproductive Immunology, 63, 387–395.

    PubMed  CAS  Google Scholar 

  110. Lin, A., Yan, W. H., Xu, H. H., et al. (2007). HLA-G expression in human ovarian carcinoma counteracts NK cell function. Annals of Oncology, 18, 1804–1809.

    PubMed  CAS  Google Scholar 

  111. Simon, I., & Katsaros, D. (2007). Rigault de la Longrais I, et al. B7-H4 is over-expressed in early-stage ovarian cancer and is independent of CA125 expression. Gynecologic Oncology, 106, 334–341.

    PubMed  CAS  Google Scholar 

  112. Simon, I., Liu, Y., Krall, K. L., et al. (2007). Evaluation of the novel serum markers B7-H4, Spondin 2, and DcR3 for diagnosis and early detection of ovarian cancer. Gynecologic Oncology, 106, 112–118.

    PubMed  CAS  Google Scholar 

  113. Simon, I., Zhuo, S., Corral, L., et al. (2006). B7-h4 is a novel membrane-bound protein and a candidate serum and tissue biomarker for ovarian cancer. Cancer Research, 66, 1570–1575.

    PubMed  CAS  Google Scholar 

  114. Gubbels, J. A., Felder, M., Horibata, S., et al. (2010). MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells. Molecular Cancer, 9.

  115. Krockenberger, M., Dombrowski, Y., Weidler, C., et al. (2008). Macrophage migration inhibitory factor contributes to the immune escape of ovarian cancer by down-regulating NKG2D. The Journal of Immunology, 180, 7338–7348.

    PubMed  CAS  Google Scholar 

  116. Agarwal, R., Whang, D. H., Alvero, A. B., et al. (2007). Macrophage migration inhibitory factor expression in ovarian cancer. American Journal of Obstetrics and Gynecology, 196, 348 e1–348 e5.

    Google Scholar 

  117. Sonoda, K., Miyamoto, S., Yotsumoto, F., et al. (2007). Clinical significance of RCAS1 as a biomarker of ovarian cancer. Oncology Reports, 17, 623–628.

    PubMed  CAS  Google Scholar 

  118. McGilvray, R. W., Eagle, R. A., Rolland, P., Jafferji, I., Trowsdale, J., & Durrant, L. G. (2010). ULBP2 and RAET1E NKG2D ligands are independent predictors of poor prognosis in ovarian cancer patients. International Journal of Cancer, 127, 1412–1420.

    CAS  Google Scholar 

  119. Franck, J., Longuespee, R., Wisztorski, M., et al. (2010). MALDI mass spectrometry imaging of proteins exceeding 30,000 daltons. Medical Science Monitor, 16, BR293–BR299.

    PubMed  CAS  Google Scholar 

  120. Lemaire, R., Lucot, J. P., Collinet, P., Vinatier, D., Tabet, J. C., Salzet, M., & Fournier, I. (2005). New developments in direct analyses by MALDI mass spectrometry for study ovarian cancer. Molecular & Cellular Proteomics, 4, S305–S308.

    Google Scholar 

  121. Yang, Y., Fruh, K., Ahn, K., & Peterson, P. A. (1995). in vivo assembly of the proteasomal complexes, implications for antigen processing. Journal of Biological Chemistry, 270, 27687–27694.

    PubMed  CAS  Google Scholar 

  122. Kloetzel, P. M. (1998). The proteasome system: a neglected tool for improvement of novel therapeutic strategies? Gene Therapy, 5, 1297–1298.

    PubMed  CAS  Google Scholar 

  123. Rivett, A. J., & Gardner, R. C. (2000). Proteasome inhibitors: from in vitro uses to clinical trials. Journal of Peptide Science, 6, 478–488.

    PubMed  CAS  Google Scholar 

  124. Rotem-Yehudar, R., Groettrup, M., Soza, A., Kloetzel, P. M., & Ehrlich, R. (1996). LMP-associated proteolytic activities and TAP-dependent peptide transport for class 1 MHC molecules are suppressed in cell lines transformed by the highly oncogenic adenovirus 12. The Journal of Experimental Medicine, 183, 499–514.

    PubMed  CAS  Google Scholar 

  125. Kuckelkorn, U., Ruppert, T., Strehl, B., et al. (2002). Link between organ-specific antigen processing by 20S proteasomes and CD8(+) T cell-mediated autoimmunity. The Journal of Experimental Medicine, 195, 983–990.

    PubMed  CAS  Google Scholar 

  126. Regad, T., Saib, A., Lallemand-Breitenbach, V., Pandolfi, P. P., de The, H., & Chelbi-Alix, M. K. (2001). PML mediates the interferon-induced antiviral state against a complex retrovirus via its association with the viral transactivator. EMBO Journal, 20, 3495–3505.

    PubMed  CAS  Google Scholar 

  127. Delp, K., Momburg, F., Hilmes, C., Huber, C., & Seliger, B. (2000). Functional deficiencies of components of the MHC class I antigen pathway in human tumors of epithelial origin. Bone Marrow Transplantation, 25(Suppl 2), S88–S95.

    PubMed  Google Scholar 

  128. Sorem, J., Jardetzky, T. S., & Longnecker, R. (2009). Cleavage and secretion of Epstein-Barr virus glycoprotein 42 promote membrane fusion with B lymphocytes. Journal of Virology, 83, 6664–6672.

    PubMed  CAS  Google Scholar 

  129. Sorem, J., & Longnecker, R. (2009). Cleavage of Epstein-Barr virus glycoprotein B is required for full function in cell–cell fusion with both epithelial and B cells. Journal of General Virology, 90, 591–595.

    PubMed  CAS  Google Scholar 

  130. Pudney, V. A., Leese, A. M., Rickinson, A. B., & Hislop, A. D. (2005). CD8+ immunodominance among Epstein-Barr virus lytic cycle antigens directly reflects the efficiency of antigen presentation in lytically infected cells. The Journal of Experimental Medicine, 201, 349–360.

    PubMed  CAS  Google Scholar 

  131. Elg, S. A., Mayer, A. R., Carson, L. F., Twiggs, L. B., Hill, R. B., & Ramakrishnan, S. (1997). Alpha-1 acid glycoprotein is an immunosuppressive factor found in ascites from ovaria carcinoma. Cancer, 80, 1448–1456.

    PubMed  CAS  Google Scholar 

  132. Nosov, V., Su, F., Amneus, M., et al. (2009). Validation of serum biomarkers for detection of early-stage ovarian cancer. American Journal of Obstetrics and Gynecology, 200, 639 e1–639 e5.

    Google Scholar 

  133. Kim, K. D., Lim, H. Y., Lee, H. G., et al. (2005). Apolipoprotein A-I induces IL-10 and PGE2 production in human monocytes and inhibits dendritic cell differentiation and maturation. Biochemical and Biophysical Research Communications, 338, 1126–1136.

    PubMed  CAS  Google Scholar 

  134. Liang, X., Lin, T., Sun, G., Beasley-Topliffe, L., Cavaillon, J. M., & Warren, H. S. (2009). Hemopexin down-regulates LPS-induced proinflammatory cytokines from macrophages. Journal of Leukocyte Biology, 86, 229–235.

    PubMed  CAS  Google Scholar 

  135. Leygue, E., Snell, L., Dotzlaw, H., et al. (1998). Expression of lumican in human breast carcinoma. Cancer Research, 58, 1348–1352.

    PubMed  CAS  Google Scholar 

  136. Leygue, E., Snell, L., Dotzlaw, H., et al. (2000). Lumican and decorin are differentially expressed in human breast carcinoma. The Journal of Pathology, 192, 313–320.

    PubMed  CAS  Google Scholar 

  137. Babelova, A., Moreth, K., Tsalastra-Greul, W., et al. (2009). Biglycan: A danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. Journal of Biological Chemistry, 284(36), 24035–24048.

    Google Scholar 

  138. Schaefer, L., Babelova, A., Kiss, E., et al. (2005). The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. Journal of Clinical Investigation, 115, 2223–2233.

    PubMed  CAS  Google Scholar 

  139. Salzet, M., Capron, A., & Stefano, G. B. (2000). Molecular crosstalk in host-parasite relationships: schistosome- and leech-host interactions. Parasitology Today, 16, 536–540.

    PubMed  CAS  Google Scholar 

  140. Huber, M. A., Kraut, N., & Beug, H. (2005). Molecular requirements for epithelial-mesenchymal transition during tumor progression. Current Opinion in Cell Biology, 17, 548–558.

    PubMed  CAS  Google Scholar 

  141. Cavallaro, U., & Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nature Reviews. Cancer, 4, 118–132.

    PubMed  CAS  Google Scholar 

  142. Ponnusamy, M. P., Lakshmanan, I., Jain, M., et al. (2010). MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene, 29, 5741–5754.

    PubMed  CAS  Google Scholar 

  143. Hudson, L. G., Zeineldin, R., & Stack, M. S. (2008). Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clinical & Experimental Metastasis, 25, 643–655.

    CAS  Google Scholar 

  144. Imai, T., Horiuchi, A., Wang, C., et al. (2003). Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. American Journal of Pathology, 163, 1437–1447.

    PubMed  CAS  Google Scholar 

  145. Byrne, A. T., Ross, L., Holash, J., et al. (2003). Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clinical Cancer Research, 9, 5721–5728.

    PubMed  CAS  Google Scholar 

  146. Bartlett, J. M., Langdon, S. P., Simpson, B. J., et al. (1996). The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer. British Journal of Cancer, 73, 301–306.

    PubMed  CAS  Google Scholar 

  147. Symowicz, J., Adley, B. P., Gleason, K. J., et al. (2007). Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Research, 67, 2030–2039.

    PubMed  CAS  Google Scholar 

  148. Ellerbroek, S. M., Halbleib, J. M., Benavidez, M., et al. (2001). Phosphatidylinositol 3-kinase activity in epidermal growth factor-stimulated matrix metalloproteinase-9 production and cell surface association. Cancer Research, 61, 1855–1861.

    PubMed  CAS  Google Scholar 

  149. Nagy, J. A., Masse, E. M., Herzberg, K. T., et al. (1995). Pathogenesis of ascites tumor growth: vascular permeability factor, vascular hyperpermeability, and ascites fluid accumulation. Cancer Research, 55, 360–368.

    PubMed  CAS  Google Scholar 

  150. Casey, R. C., Burleson, K. M., Skubitz, K. M., et al. (2001). Beta 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. American Journal of Pathology, 159, 2071–2080.

    PubMed  CAS  Google Scholar 

  151. Shield, K., Riley, C., Quinn, M. A., Rice, G. E., Ackland, M. L., & Ahmed, N. (2007). Alpha2beta1 integrin affects metastatic potential of ovarian carcinoma spheroids by supporting disaggregation and proteolysis. Journal of Carcinogenesis, 6, 11.

    PubMed  Google Scholar 

  152. Moss, N. M., Barbolina, M. V., Liu, Y., Sun, L., Munshi, H. G., & Stack, M. S. (2009). Ovarian cancer cell detachment and multicellular aggregate formation are regulated by membrane type 1 matrix metalloproteinase: a potential role in I.p. metastatic dissemination. Cancer Research, 69, 7121–7129.

    PubMed  CAS  Google Scholar 

  153. Davidson, B., Goldberg, I., Berner, A., et al. (2001). Expression of membrane-type 1, 2, and 3 matrix metalloproteinases messenger RNA in ovarian carcinoma cells in serous effusions. American Journal of Clinical Pathology, 115, 517–524.

    PubMed  CAS  Google Scholar 

  154. Slack-Davis, J. K., Atkins, K. A., Harrer, C., Hershey, E. D., & Conaway, M. (2009). Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer Research, 69, 1469–1476.

    PubMed  CAS  Google Scholar 

  155. Cannistra, S. A., Kansas, G. S., Niloff, J., DeFranzo, B., Kim, Y., & Ottensmeier, C. (1993). Binding of ovarian cancer cells to peritoneal mesothelium in vitro is partly mediated by CD44H. Cancer Research, 53, 3830–3838.

    PubMed  CAS  Google Scholar 

  156. Zecchini, S., Bombardelli, L., Decio, A., et al. (2011). The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling. EMBO Molecular Medicine, 3, 480–494.

    PubMed  CAS  Google Scholar 

  157. Kenny, H. A., Kaur, S., Coussens, L. M., & Lengyel, E. (2008). The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. Journal of Clinical Investigation, 118, 1367–1379.

    PubMed  CAS  Google Scholar 

  158. Kenny, H. A., & Lengyel, E. (2009). MMP-2 functions as an early response protein in ovarian cancer metastasis. Cell Cycle, 8, 683–688.

    PubMed  CAS  Google Scholar 

  159. Huang, S., Van Arsdall, M., Tedjarati, S., et al. (2002). Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. Journal of the National Cancer Institute, 94, 1134–1142.

    PubMed  CAS  Google Scholar 

  160. Satpathy, M., Shao, M., Emerson, R., Donner, D. B., & Matei, D. (2009). Tissue transglutaminase regulates matrix metalloproteinase-2 in ovarian cancer by modulating cAMP-response element-binding protein activity. Journal of Biological Chemistry, 284, 15390–15399.

    PubMed  CAS  Google Scholar 

  161. Dorn, J., Harbeck, N., Kates, R., et al. Impact of expression differences of kallikrein-related peptidases and of uPA and PAI-1 between primary tumor and omentum metastasis in advanced ovarian cancer. Annals of Oncology, 22, 877–883.

  162. Nishida, N., Yano, H., Komai, K., Nishida, T., Kamura, T., & Kojiro, M. (2004). Vascular endothelial growth factor C and vascular endothelial growth factor receptor 2 are related closely to the prognosis of patients with ovarian carcinoma. Cancer, 101, 1364–1374.

    PubMed  CAS  Google Scholar 

  163. Zhu, M., Fejzo, M. S., Anderson, L., et al. (2011). Periostin promotes ovarian cancer angiogenesis and metastasis. Gynecologic Oncology, 119, 337–344.

    Google Scholar 

  164. Popple, A., Durrant, L. G., Spendlove, I., et al. (2012). The chemokine, CXCL12, is an independent predictor of poor survival in ovarian cancer. British Journal of Cancer, 106, 1306–1313.

    PubMed  CAS  Google Scholar 

  165. Johnson, E. L., Singh, R., Singh, S., et al. (2010). CCL25-CCR9 interaction modulates ovarian cancer cell migration, metalloproteinase expression, and invasion. World Journal of Surgical Oncology, 8, 62.

    PubMed  Google Scholar 

  166. Nieman, K.M., Kenny, H.A., Penicka, C.V., et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Natural Medicines, 17, 1498–1503.

  167. Zhang, Y., Tang, H., Cai, J., et al. (2011). Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion. Cancer Letters, 303, 47–55.

    PubMed  CAS  Google Scholar 

  168. He, Y., Wu, X., Liu, X., Yan, G., & Xu, C. (2010). LC-MS/MS analysis of ovarian cancer metastasis-related proteins using a nude mouse model: 14-3-3 zeta as a candidate biomarker. Journal of Proteome Research, 9, 6180–6190.

    PubMed  CAS  Google Scholar 

  169. Yaffe, M. B., Rittinger, K., Volinia, S., et al. (1997). The structural basis for 14-3-3:phosphopeptide binding specificity. Cell, 91, 961–971.

    PubMed  CAS  Google Scholar 

  170. Ogihara, T., Isobe, T., Ichimura, T., et al. (1997). 14-3-3 protein binds to insulin receptor substrate-1, one of the binding sites of which is in the phosphotyrosine binding domain. Journal of Biological Chemistry, 272, 25267–25274.

    PubMed  CAS  Google Scholar 

  171. Deakin, N. O., Bass, M. D., Warwood, S., et al. (2009). An integrin-alpha4-14-3-3zeta-paxillin ternary complex mediates localised Cdc42 activity and accelerates cell migration. Journal of Cell Science, 122, 1654–1664.

    PubMed  CAS  Google Scholar 

  172. Ravi, D., Chen, Y., Karia, B., et al. 14-3-3 sigma expression effects G2/M response to oxygen and correlates with ovarian cancer metastasis. PLoS One, 6, e15864.

  173. Fong, M.Y., McDunn, J., Kakar, S.S. Identification of metabolites in the normal ovary and their transformation in primary and metastatic ovarian cancer. PLoS One, 6, e19963.

  174. Ozols, R. F., Bookman, M. A., Connolly, D. C., et al. (2004). Focus on epithelial ovarian cancer. Cancer Cell, 5, 19–24.

    PubMed  CAS  Google Scholar 

  175. Bast, R. C., Jr., Klug, T. L., St John, E., et al. (1983). A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. The New England Journal of Medicine, 309, 883–887.

    PubMed  Google Scholar 

  176. Nustad, K., Bast, R. C., Jr., Brien, T. J., et al. (1996). Specificity and affinity of 26 monoclonal antibodies against the CA 125 antigen: first report from the ISOBM TD-1 workshop. International Society for Oncodevelopmental Biology and Medicine. Tumour Biology, 17, 196–219.

    PubMed  CAS  Google Scholar 

  177. Ripley, D., Shoup, B., Majewski, A., & Chegini, N. (2004). Differential expression of interleukins IL-13 and IL-15 in normal ovarian tissue and ovarian carcinomas. Gynecologic Oncology, 92, 761–768.

    PubMed  CAS  Google Scholar 

  178. Kioi, M., Kawakami, M., Shimamura, T., Husain, S. R., & Puri, R. K. (2006). Interleukin-13 receptor alpha2 chain: a potential biomarker and molecular target for ovarian cancer therapy. Cancer, 107, 1407–1418.

    PubMed  CAS  Google Scholar 

  179. Hellstrom, I., Raycraft, J., Hayden-Ledbetter, M., et al. (2003). The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Research, 63, 3695–3700.

    PubMed  Google Scholar 

  180. Suzuki, M., Ohwada, M., Aida, I., Tamada, T., Hanamura, T., & Nagatomo, M. (1993). Macrophage colony-stimulating factor as a tumor marker for epithelial ovarian cancer. Obstetrics and Gynecology, 82, 946–950.

    PubMed  CAS  Google Scholar 

  181. Xu, F. J., Ramakrishnan, S., Daly, L., et al. (1991). Increased serum levels of macrophage colony-stimulating factor in ovarian cancer. American Journal of Obstetrics and Gynecology, 165, 1356–1362.

    PubMed  CAS  Google Scholar 

  182. Chechlinska, M., Kaminska, J., Markowska, J., Kramar, A., & Steffen, J. (2007). Peritoneal fluid cytokines and the differential diagnosis of benign and malignant ovarian tumors and residual/recurrent disease examination. The International Journal of Biological Markers, 22, 172–180.

    PubMed  CAS  Google Scholar 

  183. Xu, Y., Shen, Z., Wiper, D. W., et al. (1998). Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. Journal of the American Medical Association, 280, 719–723.

    PubMed  CAS  Google Scholar 

  184. Woolas, R. P., Conaway, M. R., Xu, F., et al. (1995). Combinations of multiple serum markers are superior to individual assays for discriminating malignant from benign pelvic masses. Gynecologic Oncology, 59, 111–116.

    PubMed  CAS  Google Scholar 

  185. Zhang, Z., Barnhill, S. D., Zhang, H., et al. (1999). Combination of multiple serum markers using an artificial neural network to improve specificity in discriminating malignant from benign pelvic masses. Gynecologic Oncology, 73, 56–61.

    PubMed  CAS  Google Scholar 

  186. Visintin, I., Feng, Z., Longton, G., et al. (2008). Diagnostic markers for early detection of ovarian cancer. Clinical Cancer Research, 14, 1065–1072.

    PubMed  CAS  Google Scholar 

  187. Moore, R. G., & Maclaughlan, S. (2010). Current clinical use of biomarkers for epithelial ovarian cancer. Current Opinion in Oncology, 22, 492–497.

    PubMed  CAS  Google Scholar 

  188. Kurman, R.J., McConnell, T.G. Characterization and comparison of precursors of ovarian and endometrial carcinoma: parts I and II. International Journal of Surgical Pathology, 18, 181S-189S.

  189. Kurman, R. J., & McConnell, T. G. (2010). Precursors of endometrial and ovarian carcinoma. Virchows Archiv, 456, 1–12.

    PubMed  Google Scholar 

  190. Kurman, R. J., & Shih Ie, M. (2010). The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. The American Journal of Surgical Pathology, 34, 433–443.

    PubMed  Google Scholar 

  191. Longuespé, R.B., CCastellier, C., Jacquet, E., Desmons, A., Kerdraon, O., Vinatier, D., Day, R., Fournier, I., Salzet, M. The C-terminal fragment of the immunoproteasome PA28S (Reg Alpha) as an early diagnosis and tumor-relapse biomarker: evidence from mass spectrometry profiling. Histochem and Cell Biochem 2012; in press: D.O.I. 10.1007/s00418-012-0953-0.

  192. Tinelli, A., Vergara, D., Martignago, R., et al. (2007). Ovarian cancer biomarkers: a focus on genomic and proteomic findings. Current Genomics, 8, 335–342.

    PubMed  CAS  Google Scholar 

  193. Diefenbach, C. S., Soslow, R. A., Iasonos, A., et al. (2006). Lysophosphatidic acid acyltransferase-beta (LPAAT-beta) is highly expressed in advanced ovarian cancer and is associated with aggressive histology and poor survival. Cancer, 107, 1511–1519.

    PubMed  CAS  Google Scholar 

  194. Kim, H., Watkinson, J., Varadan, V., & Anastassiou, D. (2010). Multi-cancer computational analysis reveals invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1. BMC Medical Genomics, 3, 51.

    PubMed  Google Scholar 

  195. Oikonomopoulou, K., Batruch, I., Smith, C. R., Soosaipillai, A., Diamandis, E. P., & Hollenberg, M. D. (2010). Functional proteomics of kallikrein-related peptidases in ovarian cancer ascites fluid. Biological Chemistry, 391, 381–390.

    PubMed  CAS  Google Scholar 

  196. Ahmed, A. S., Dew, T., Lawton, F. G., et al. (2007). Tumour M2-PK as a predictor of surgical outcome in ovarian cancer, a prospective cohort study. European Journal of Gynaecological Oncology, 28, 103–108.

    PubMed  CAS  Google Scholar 

  197. Ayhan, A., Ertunc, D., & Tok, E. C. (2005). Expression of the c-Met in advanced epithelial ovarian cancer and its prognostic significance. International Journal of Gynecological Cancer, 15, 618–623.

    PubMed  CAS  Google Scholar 

  198. Tang, M.K., Zhou, H.Y., Yam, J.W., Wong, A.S. c-Met overexpression contributes to the acquired apoptotic resistance of nonadherent ovarian cancer cells through a cross talk mediated by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Neoplasia, 12, 128–138.

  199. Zhou, H. Y., Pon, Y. L., & Wong, A. S. (2008). HGF/MET signaling in ovarian cancer. Current Molecular Medicine, 8, 469–480.

    PubMed  CAS  Google Scholar 

  200. Coffelt, S. B., Marini, F. C., Watson, K., et al. (2009). The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 3806–3811.

    PubMed  CAS  Google Scholar 

  201. Zohny, S. F., & Fayed, S. T. (2010). Clinical utility of circulating matrix metalloproteinase-7 (MMP-7), CC chemokine ligand 18 (CCL18) and CC chemokine ligand 11 (CCL11) as markers for diagnosis of epithelial ovarian cancer. Medical Oncology, 27, 1246–1253.

    PubMed  CAS  Google Scholar 

  202. Landen, C. N., Kinch, M. S., & Sood, A. K. (2005). EphA2 as a target for ovarian cancer therapy. Expert Opinion on Therapeutic Targets, 9, 1179–1187.

    PubMed  CAS  Google Scholar 

  203. Lu, C., Shahzad, M. M., Wang, H., et al. (2008). EphA2 overexpression promotes ovarian cancer growth. Cancer Biology & Therapy, 7, 1098–1103.

    CAS  Google Scholar 

  204. Thaker, P. H., Deavers, M., Celestino, J., et al. (2004). EphA2 expression is associated with aggressive features in ovarian carcinoma. Clinical Cancer Research, 10, 5145–5150.

    PubMed  CAS  Google Scholar 

  205. Kobel, M., Kalloger, S. E., Boyd, N., et al. (2008). Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLoS Medicine, 5, e232.

    PubMed  Google Scholar 

  206. Lim, R., Ahmed, N., Borregaard, N., et al. (2007). Neutrophil gelatinase-associated lipocalin (NGAL) an early-screening biomarker for ovarian cancer: NGAL is associated with epidermal growth factor-induced epithelio-mesenchymal transition. International Journal of Cancer, 120, 2426–2434.

    CAS  Google Scholar 

  207. Bjorge, L., Hakulinen, J., Vintermyr, O. K., et al. (2005). Ascitic complement system in ovarian cancer. British Journal of Cancer, 92, 895–905.

    PubMed  CAS  Google Scholar 

  208. Fischer, D. C., Noack, K., Runnebaum, I. B., et al. (2004). Expression of splicing factors in human ovarian cancer. Oncology Reports, 11, 1085–1090.

    PubMed  CAS  Google Scholar 

  209. Surowiak, P., Materna, V., Maciejczyk, A., et al. (2006). CD46 expression is indicative of shorter revival-free survival for ovarian cancer patients. Anticancer Research, 26, 4943–4948.

    PubMed  CAS  Google Scholar 

  210. Rousseau, J., Tetu, B., Caron, D., et al. (2002). RCAS1 is associated with ductal breast cancer progression. Biochemical and Biophysical Research Communications, 293, 1544–1549.

    PubMed  CAS  Google Scholar 

  211. Tilli, T. M., Franco, V. F., Robbs, B. K., et al. (2011). Osteopontin-c splicing isoform contributes to ovarian cancer progression. Molecular Cancer Research, 9(3), 280–293.

    PubMed  CAS  Google Scholar 

  212. Yan, X. D., & Pan, L. Y. (2006). Proteomic analysis of human ovarian cancer cell lines and their platinum-resistant clones. Zhonghua Fu Chan Ke Za Zhi, 41, 584–587.

    PubMed  Google Scholar 

  213. Yan, X. D., Pan, L. Y., Yuan, Y., Lang, J. H., & Mao, N. (2007). Identification of platinum-resistance associated proteins through proteomic analysis of human ovarian cancer cells and their platinum-resistant sublines. Journal of Proteome Research, 6, 772–780.

    PubMed  CAS  Google Scholar 

  214. Nishimura, S., Tsuda, H., Kataoka, F., et al. (2011). Overexpression of cofilin 1 can predict progression-free survival in patients with epithelial ovarian cancer receiving standard therapy. Human Pathology, 42(4), 516–521.

    PubMed  CAS  Google Scholar 

  215. Jones, M. B., Krutzsch, H., Shu, H., et al. (2002). Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics, 2, 76–84.

    PubMed  CAS  Google Scholar 

  216. Alper, T., Kahraman, H., Cetinkaya, M. B., et al. (2004). Serum leptin and body composition in polycystic ovarian syndrome. Annals of Saudi Medicine, 24, 9–12.

    PubMed  Google Scholar 

  217. Erturk, E., & Tuncel, E. (2003). Polycystic ovarian disease and serum leptin levels? Fertility and Sterility, 80, 1068–1069. author reply 9-70.

    PubMed  Google Scholar 

  218. Qian, B., Katsaros, D., Lu, L., et al. (2011). IGF-II promoter specific methylation and expression in epithelial ovarian cancer and their associations with disease characteristics. Oncology Reports, 25, 203–213.

    PubMed  CAS  Google Scholar 

  219. Park, E. K., Johnson, A. R., Yates, D. H., & Thomas, P. S. (2011). Evaluation of ovarian cancer biomarkers in subjects with benign asbestos-related pleural diseases. Clinical Chemistry and Laboratory Medicine, 49, 147–150.

    PubMed  CAS  Google Scholar 

  220. Bengtsson, S., Krogh, M., Szigyarto, C. A., et al. (2007). Large-scale proteomics analysis of human ovarian cancer for biomarkers. Journal of Proteome Research, 6, 1440–1450.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by grants from Agence Nationale de la Recherche (ANR PCV to IF), Institut du Cancer (INCA to IF), Institut de Recherche en Santé du Canada (ISRC to MS & RD), the Ministère du Développement Économique de l'Innovation et de l'Exportation (MDEIE to R.D), the Fond de la recherche du Québec Santé (FRQS to R.D), the Université de Sherbrooke and the Région Nord-Pas de Calais (to RL). R.D. is a member of the Centre de Recherche Clinique Etienne-Le Bel (Sherbrooke, Qc, Canada).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isabelle Fournier or Michel Salzet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longuespée, R., Boyon, C., Desmons, A. et al. Ovarian cancer molecular pathology. Cancer Metastasis Rev 31, 713–732 (2012). https://doi.org/10.1007/s10555-012-9383-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-012-9383-7

Keywords

Navigation