Skip to main content

Advertisement

Log in

Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer, and metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Stem cells are pluripotent and expected to be of benefit in the management of coronary heart disease, stroke, diabetes mellitus, cancer, and Alzheimer’s disease in which pro-inflammatory cytokines are increased. Identifying endogenous bioactive molecules that have a regulatory role in stem cell survival, proliferation, and differentiation may aid in the use of stem cells in various diseases including cancer. Essential fatty acids form precursors to both pro- and anti-inflammatory molecules have been shown to regulate gene expression, enzyme activity, modulate inflammation and immune response, gluconeogenesis via direct and indirect pathways, function directly as agonists of a number of G protein-coupled receptors, activate phosphatidylinositol 3-kinase/Akt and p44/42 mitogen-activated protein kinases, and stimulate cell proliferation via Ca2+, phospholipase C/protein kinase, events that are also necessary for stem cell survival, proliferation, and differentiation. Hence, it is likely that bioactive lipids play a significant role in various diseases by modulating the proliferation and differentiation of embryonic stem cells in addition to their capacity to suppress inflammation. Ephrin Bs and reelin, adhesion molecules, and microRNAs regulate neuronal migration and cancer cell metastasis. Polyunsaturated fatty acids and their products seem to modulate the expression of ephrin Bs and reelin and several adhesion molecules and microRNAs suggesting that bioactive lipids participate in neuronal regeneration and stem cell proliferation, migration, and cancer cell metastasis. Thus, there appears to be a close interaction among essential fatty acids, their bioactive products, and inflammation and cancer growth and its metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wu, D. C., Boyd, A. S., & Wood, K. J. (2007). Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine. Frontiers in Bioscience, 12, 4525–4535.

    PubMed  CAS  Google Scholar 

  2. Christoforou, N., & Gearhart, J. D. (2007). Stem cells and their potential in cell-based cardiac therapies. Progress in Cardiovascular Diseases, 49, 396–413.

    PubMed  CAS  Google Scholar 

  3. James, D., Levine, A. J., Besser, D., & Hemmati-Brivanlou, A. (2005). TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132, 1273–1282.

    PubMed  CAS  Google Scholar 

  4. Beattie, G. M., Lopez, A. D., Bucay, N., Hinton, A., Firpo, M. T., et al. (2005). Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells, 23, 489–495.

    PubMed  CAS  Google Scholar 

  5. Xiao, L., Yuan, X., & Sharkis, S. J. (2006). Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells, 24, 1476–1486.

    PubMed  CAS  Google Scholar 

  6. Vallier, L., Reynolds, D., & Pedersen, R. A. (2004). Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Developmental Biology, 275, 403–421.

    PubMed  CAS  Google Scholar 

  7. Vallier, L., Alexander, M., & Pedersen, R. A. (2005). Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. Journal of Cell Science, 118, 4495–4509.

    PubMed  CAS  Google Scholar 

  8. Tesar, P. J., Chenoweth, J. G., Brook, F. A., Davies, T. J., Evans, E. P., et al. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 448, 196–199.

    PubMed  CAS  Google Scholar 

  9. Brons, I. G., Smithers, L. E., Trotter, M. W., Rugg-Gunn, P., Sun, B., et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448, 191–195.

    PubMed  CAS  Google Scholar 

  10. Davidson, K. C., Jamshidi, P., Daly, R., Hearn, M. T., Pera, M. F., & Dottori, M. (2007). Wnt3a regulates survival, expansion, and maintenance of neural progenitors derived from human embryonic stem cells. Molecular and Cellular Neuroscience, 36, 408–415.

    PubMed  CAS  Google Scholar 

  11. Liu, N., Lu, M., Tian, X., & Han, Z. (2007). Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells. Journal of Cellular Physiology, 211, 279–286.

    PubMed  CAS  Google Scholar 

  12. Vicente López, M. A., Vázquez García, M. N., Entrena, A., Olmedillas Lopez, S., García-Arranz, M., García-Olmo, D., et al. (2011). Low doses of bone morphogenetic protein 4 increase the survival of human adipose-derived stem cells maintaining their stemness and multipotency. Stem Cells and Development, 20(6), 1011.

    PubMed  Google Scholar 

  13. Gidåli, J., & Feher, I. (1977). The effect of E type prostaglandins on the proliferation of haemopoietic stem cells in vivo. Cell and Tissue Kinetics, 10, 365–373.

    PubMed  Google Scholar 

  14. Chung, J. W., Kim, G. Y., Mun, Y. C., Ahn, J. Y., Seong, C. M., & Kim, J. H. (2005). Leukotriene B4 pathway regulates the fate of the hematopoietic stem cells. Experimental & Molecular Medicine, 37, 45–50.

    CAS  Google Scholar 

  15. Goessling, W., North, T. E., Loewer, S., Lord, A. M., Lee, S., Stoick-Cooper, C. L., et al. (2009). Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell, 136, 1136–1147.

    PubMed  CAS  Google Scholar 

  16. Evans, T. (2009). Fishing for a WNT-PGE2 link: beta-catenin is caught in the stem cell net-work. Cell Stem Cell, 4, 280–282.

    PubMed  CAS  Google Scholar 

  17. Xu, R. H., Chen, X., Li, D. S., Li, R., Addicks, G. C., et al. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nature Biotechnology, 20, 1261–1264.

    PubMed  CAS  Google Scholar 

  18. Pera, M. F., Andrade, J., Houssami, S., Reubinoff, B., Trounson, A., et al. (2004). Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. Journal of Cell Science, 117, 1269–1280.

    PubMed  CAS  Google Scholar 

  19. Kee, K., Gonsalves, J. M., Clark, A. T., & Pera, R. A. (2006). Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells and Development, 15, 831–837.

    PubMed  CAS  Google Scholar 

  20. Bendall, S. C., Stewart, M. H., Menendez, P., George, D., Vijayaragavan, K., et al. (2007). IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature, 448, 1015–1021.

    PubMed  CAS  Google Scholar 

  21. Xu, R. H., Peck, R. M., Li, D. S., Feng, X., Ludwig, T., et al. (2005). Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nature Methods, 2, 185–190.

    PubMed  CAS  Google Scholar 

  22. Xu, C., Rosler, E., Jiang, J., Lebkowski, J. S., Gold, J. D., et al. (2005). Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells, 23, 315–323.

    PubMed  CAS  Google Scholar 

  23. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., & Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Medicine, 10, 55–63.

    PubMed  CAS  Google Scholar 

  24. Hao, J., Li, T. G., Qi, X., Zhao, D. F., & Zhao, G. Q. (2006). WNT/beta-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Developmental Biology, 290, 81–91.

    PubMed  CAS  Google Scholar 

  25. Cartwright, P., McLean, C., Sheppard, A., Rivett, D., Jones, K., & Dalton, S. (2005). LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development, 132, 885–896.

    PubMed  CAS  Google Scholar 

  26. Kristensen, D. M., Kalisz, M., & Nielsen, J. H. (2005). Cytokine signalling in embryonic stem cells. APMIS, 113, 756–772.

    PubMed  CAS  Google Scholar 

  27. Wang, L., Schulz, T. C., Sherrer, E. S., Dauphin, D. S., Shin, S., et al. (2007). Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ErbB2 receptor signaling. Blood, 110, 4111–4119.

    PubMed  CAS  Google Scholar 

  28. Pebay, A., Wong, R. C., Pitson, S. M., Wolvetang, E. J., Peh, G. S., et al. (2005). Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells, 23, 1541–1548.

    PubMed  CAS  Google Scholar 

  29. Finstad, H. S., Kolset, S. O., Holme, J. A., Wiger, R., Farrants, A. K., Blomhoff, R., et al. (1994). Effect of n-3 and n-6 fatty acids on proliferation and differentiation of promyelocytic leukemic HL-60 cells. Blood, 84, 3799–3809.

    PubMed  CAS  Google Scholar 

  30. Das, U. N. (1988). Effect of phorbolmyristate acetate on fatty acid uptake and distribution in human promyelocytic leukemia (HL-60) cells in vitro. Biochemical and Biophysical Research Communications, 157, 639–647.

    PubMed  CAS  Google Scholar 

  31. Das, U. N., Ells, G., & Begin, M. E. (1992). Fatty acid changes during the induction of differentiation of human promyelocytic leukemia (HL-60) cells by phorbolmyristate acetate. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 46, 235–239.

    PubMed  CAS  Google Scholar 

  32. Kawakita, E., Hashimoto, M., & Shido, O. (2006). Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neuroscience, 139, 991–997.

    PubMed  CAS  Google Scholar 

  33. da Costa, K. A., Rai, K. S., Craciunescu, C. N., Parikh, K., Mehedint, M. G., Sanders, L. M., et al. (2010). Dietary docosahexaenoic acid supplementation modulates hippocampal development in the Pemt−/− mouse. Journal of Biological Chemistry, 285, 1008–1015.

    PubMed  Google Scholar 

  34. Varney, M. E., Hardman, W. E., & Sollars, V. E. (2009). Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation. Lipids in Health and Disease, 8, 9.

    PubMed  Google Scholar 

  35. Das, U. N. (2011). Influence of polyunsaturated fatty acids and their metabolites on stem cell biology. Nutrition, 27, 21–25.

    PubMed  CAS  Google Scholar 

  36. Das, U. N. (2006). Essential fatty acids—a review. Current Pharmaceutical Biotechnology, 7, 467–482.

    PubMed  CAS  Google Scholar 

  37. Das, U. N. (2006). Essential fatty acids: biochemistry, physiology, and pathology. Biotechnology Journal, 1, 420–439.

    PubMed  CAS  Google Scholar 

  38. Das, U. N. (2008). Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids in Health and Disease, 7, 37.

    PubMed  Google Scholar 

  39. Das, U. N. (2008). Beneficial actions of polyunsaturated fatty acids in cardiovascular diseases: but, how and why? Current Nutrition Food Science, 4, 2–31.

    CAS  Google Scholar 

  40. Das, U. N. (2010). Lipoxins, resolvins, protectins, maresins and nitrolipids: connecting lipids, inflammation, and cardiovascular disease risk. Current Cardiovascular Risk Reports, 4, 24–31.

    Google Scholar 

  41. Das, U. N. (2002). A perinatal strategy for preventing adult diseases: the role of long-chain polyunsaturated fatty acids. Boston: Kluwer.

    Google Scholar 

  42. Das, U. N. (2010). Metabolic syndrome pathophysiology: the role of essential fatty acids and their metabolites. Ames: Wiley.

    Google Scholar 

  43. Das, U. N. (2011). Molecular basis of health and disease. New York: Springer.

    Google Scholar 

  44. Lafourcade, M., Larrieu, T., Mato, S., Duffaud, A., Sepers, M., Matias, I., et al. (2011). Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nature Neuroscience, 14, 345–350.

    PubMed  CAS  Google Scholar 

  45. Notarnicola, M., Messa, C., Refolo, M. G., Tutino, V., Miccolis, A., & Caruso, M. G. (2011). Polyunsaturated fatty acids reduce fatty acid synthase and hydroxy-methyl-glutaryl CoA-reductase gene expression and promote apoptosis in HepG2 cell line. Lipids in Health and Disease, 10, 10.

    PubMed  CAS  Google Scholar 

  46. Rajasagi, N. K., Reddy, P. B., Suryawanshi, A., Mulik, S., Gjorstrup, P., & Rouse, B. T. (2011). Controlling herpes simplex virus-induced ocular inflammatory lesions with the lipid-derived mediator resolvin E1. The Journal of Immunology, 186, 1735–1746.

    PubMed  CAS  Google Scholar 

  47. Yang, X., Sheng, W., Sun, G. Y., & Lee, J. C. (2011). Effects of fatty acid unsaturation numbers on membrane fluidity and α-secretase-dependent amyloid precursor protein processing. Neurochemistry International, 58, 321–329.

    PubMed  CAS  Google Scholar 

  48. Recchiuti, A., Krishnamoorthy, S., Fredman, G., Chiang, N., & Serhan, C. N. (2011). MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits. The FASEB Journal, 25, 544–560.

    PubMed  CAS  Google Scholar 

  49. Krishnamoorthy, S., Recchiuti, A., Chiang, N., Yacoubian, S., Lee, C. H., Yang, R., et al. (2010). Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proceedings of the National Academy of Sciences of the United States of America, 107, 1660–1665.

    PubMed  CAS  Google Scholar 

  50. Lima, E. S., Bonini, M. G., Augusto, O., Barbeiro, H. V., Souza, H. P., & Abdalla, D. S. (2005). Nitrated lipids decompose to nitric oxide and lipid radicals and cause vasorelaxation. Free Radical Biology & Medicine, 39, 532–539.

    CAS  Google Scholar 

  51. Lim, D. G., Sweeney, S., Bloodsworth, A., White, C. R., Chumley, P. H., Krishna, N. R., et al. (2002). Nitrolinoleate, a nitric oxide-derived mediator of cell function: synthesis, characterization, and vasomotor activity. Proceedings of the National Academy of Sciences of the United States of America, 99, 15941–15946.

    PubMed  CAS  Google Scholar 

  52. Wang, H., Liu, H., Jia, Z., Olsen, C., Litwin, S., Guan, G., et al. (2010). Nitro-oleic acid protects against endotoxin-induced endotoxemia and multiorgan injury in mice. American Journal of Physiology. Renal Physiology, 298, F754–F762.

    PubMed  CAS  Google Scholar 

  53. Wang, H., Liu, H., Jia, Z., Guan, G., & Yang, T. (2010). Effects of endogenous PPAR agonist nitro-oleic acid on metabolic syndrome in obese Zucker rats. PPAR Research, 2010, 601562.

    PubMed  Google Scholar 

  54. Brock, T. G. (2008). Capturing proteins that bind polyunsaturated fatty acids: demonstration using arachidonic acid and eicosanoids. Lipids, 43, 161–169.

    PubMed  CAS  Google Scholar 

  55. Lengqvist, J., Mata De Urquiza, A., Bergman, A. C., Willson, T. M., Sjövall, J., Perlmann, T., et al. (2004). Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Molecular & Cellular Proteomics, 3, 692–703.

    CAS  Google Scholar 

  56. Norris, A. W., & Spector, A. A. (2002). Very long chain n-3 and n-6 polyunsaturated fatty acids bind strongly to liver fatty acid-binding protein. Journal of Lipid Research, 43, 646–653.

    PubMed  CAS  Google Scholar 

  57. Kang, L. T., & Vanderhoek, J. Y. (1998). Mono (S) hydroxy fatty acids: novel ligands for cytosolic actin. Journal of Lipid Research, 39, 1476–1482.

    PubMed  CAS  Google Scholar 

  58. Ek-Von Mentzer, B. A., Zhang, F., & Hamilton, J. A. (2001). Binding of 13-HODE and 15-HETE to phospholipid bilayers, albumin, and intracellular fatty acid binding proteins. Implications for transmembrane and intracellular transport and for protection from lipid peroxidation. Journal of Biological Chemistry, 276, 15575–15580.

    PubMed  CAS  Google Scholar 

  59. Oh, D. Y., Talukdar, S., Bae, E. J., Imamura, T., Morinaga, H., Fan, W. Q., et al. (2010). GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell, 142, 672–674.

    Google Scholar 

  60. Das, U. N. (1999). Essential fatty acids, lipid peroxidation and apoptosis. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 61, 157–164.

    PubMed  CAS  Google Scholar 

  61. Leroy, J. L., Vanholder, T., Mateusen, B., Christophe, A., Opsomer, G., de Kruif, A., et al. (2005). Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction, 130, 485–495.

    PubMed  CAS  Google Scholar 

  62. Thangavelu, G., Colazo, M. G., Ambrose, D. J., Oba, M., Okine, E. K., & Dyek, M. K. (2007). Diets enriched in unsaturated fatty acids enhance early embryonic development in lactating Holstein cows. Theriogenology, 68, 949–957.

    PubMed  CAS  Google Scholar 

  63. Wonnacott, K. E., Kwong, W. Y., Hughes, J., Salter, A. M., Lea, R. G., Garnsworthy, P. C., et al. (2010). Dietary omega-3 and -6 polyunsaturated fatty acids affect the composition and development of sheep granulosa cells, oocytes and embryos. Reproduction, 139, 57–69.

    PubMed  CAS  Google Scholar 

  64. Hughes, J., Kwong, W. Y., Li, D., Salter, A. M., Lea, R. G., & Sinclair, K. D. (2011). Effects of omega-3 and -6 polyunsaturated fatty acids on ovine follicular cell steroidogenesis, embryo development and molecular markers of fatty acid metabolism. Reproduction, 141, 105–118.

    PubMed  CAS  Google Scholar 

  65. Wakefield, S. L., Lane, M., Schulz, S. J., Hebart, M. L., Thompson, J. G., & Mitchell, M. (2008). Maternal supply of omega-3 polyunsaturated fatty acids alter mechanisms involved in oocyte and early embryo development in the mouse. American Journal of Physiology, Endocrinology and Metabolism, 294, E425–E434.

    CAS  Google Scholar 

  66. Kim, J. S., Chae, J. I., Song, B. S., Lee, K. S., Choo, Y. K., Chang, K. T., et al. (2010). Iloprost, a prostacyclin analogue, stimulates meiotic maturation and early embryonic development in pigs. Reproduction, Fertility, and Development, 22, 437–447.

    PubMed  CAS  Google Scholar 

  67. Xiong, J., Zeng, P., & Ye, D. (2011). Lipoxins: a novel regulator in embryo implantation. The Scientific World Journal, 11, 235–241.

    CAS  Google Scholar 

  68. Kim, M. H., Kim, M. O., Kim, Y. H., Kim, J. S., & Han, H. J. (2009). Linoleic acid induces mouse embryonic stem cell proliferation via Ca2+/PKC, PI3K/Akt, and MAPKs. Cellular Physiology and Biochemistry, 23, 53–64.

    PubMed  CAS  Google Scholar 

  69. Hurley, M. S., Flux, C., Salter, A. M., & Brameld, J. M. (2006). Effects of fatty acids on skeletal muscle cell differentiation in vitro. The British Journal of Nutrition, 95, 623–630.

    PubMed  CAS  Google Scholar 

  70. Kurland, J. I., Broxmeyer, H. E., Pelus, L. M., & Moore, M. A. S. (1978). Role of monocytemacrophage-derived colony-stimulating factor and prostaglandin E in the positive and negative feedback control of myeloid stem cell proliferation. Blood, 52, 388–407.

    PubMed  CAS  Google Scholar 

  71. Jiang, D., & Schwarz, H. (2010). Regulation of granulocyte and macrophage populations of murine bone marrow cells by G-CSF and CD137 protein. PLoS One, 5, e15565.

    PubMed  CAS  Google Scholar 

  72. Kimura, A., Rieger, M. A., Simone, J. M., Chen, W., Wickre, M. C., Zhu, B. M., et al. (2009). The transcription factors STAT5A/B regulate GM-CSF-mediated granulopoiesis. Blood, 114, 4721–4728.

    PubMed  CAS  Google Scholar 

  73. Kurland, J. I., Bockman, R. S., Broxmeyer, H. E., & Moore, M. A. (1978). Limitation of excessive myelopoiesis by the intrinsic modulation of macrophage-derived prostaglandin E. Science, 199, 552–555.

    PubMed  CAS  Google Scholar 

  74. Taetle, R., Guittard, J. P., & Mendelsohn, J. M. (1980). Abnormal modulation of granulocyte/macrophage progenitor proliferation by prostaglandin E in chronic myeloproliferative disorders. Experimental Hematology, 8, 1190–1201.

    PubMed  CAS  Google Scholar 

  75. Motomura, S., & Dexter, T. M. (1980). The effect of prostaglandin E1 on hemopoiesis in long-term bone marrow cultures. Experimental Hematology, 8, 298–303.

    PubMed  CAS  Google Scholar 

  76. Tsao, C. J., Ozawa, K., Hosoi, T., Urabe, A., & Takaku, F. (1986). In-vitro effects of antineoplastic prostaglandins on human leukemic cell growth and normal myelopoiesis. Leukemia Research, 10, 527–532.

    PubMed  CAS  Google Scholar 

  77. Tang, L. Y., Kimmel, D. B., Jee, W. S., & Yee, J. A. (1996). Functional characterization of prostaglandin E2 inducible osteogenic colony forming units in cultures of cells isolated from the neonatal rat calvarium. Journal of Cellular Physiology, 166, 76–83.

    PubMed  CAS  Google Scholar 

  78. Roux, S., Pichaud, F., Quinn, J., Lalande, A., Morieux, C., Jullienne, A., et al. (1997). Effects of prostaglandins on human hematopoietic osteoclast precursors. Endocrinology, 138, 1476–1482.

    PubMed  CAS  Google Scholar 

  79. Cohn, S. M., Schloemann, S., Tessner, T., Seibert, K., & Stenson, W. F. (1997). Crypt stem cell survival in the mouse intestinal epithelium is regulated by prostaglandins synthesized through cyclooxygenase-1. The Journal of Clinical Investigation, 99, 1367–1379.

    PubMed  CAS  Google Scholar 

  80. Pelus, L. M., Gold, E., Saletan, S., & Coleman, M. (1983). Restoration of responsiveness of chronic myeloid leukemia granulocyte-macrophage colony-forming cells to growth regulation in vitro following preincubation with prostaglandin E. Blood, 62, 158–165.

    PubMed  CAS  Google Scholar 

  81. Ziboh, V. A., Wong, T., Wu, M. C., & Yunis, A. A. (1986). Modulation of colony stimulating factor-induced murine myeloid colony formation by S-peptido-lipoxygenase products. Cancer Research, 46, 600–603.

    PubMed  CAS  Google Scholar 

  82. Stenke, L., Mansour, M., Reizenstein, P., & Lindgren, J. A. (1993). Stimulation of human myelopoiesis by leukotrienes B4 and C4: interactions with granulocyte-macrophage colony-stimulating factor. Blood, 81, 352–356.

    PubMed  CAS  Google Scholar 

  83. Pasquale, D., & Chikkappa, G. (1993). Lipoxygenase products regulate proliferation of granulocyte-macrophage progenitors. Experimental Hematology, 21, 1361–1365.

    PubMed  CAS  Google Scholar 

  84. Stenke, L., Reizenstein, P., & Lindgren, J. A. (1994). Leukotrienes and lipoxins—new potential performers in the regulation of human myelopoiesis. Leukemia Research, 18, 727–732.

    PubMed  CAS  Google Scholar 

  85. Wada, K., Arita, M., Nakajima, A., Katayama, K., Kudo, C., Kamisaki, Y., et al. (2006). Leukotriene B4 and lipoxin A4 are regulatory signals for neural stem cell proliferation and differentiation. The FASEB Journal, 20, 1785–1792.

    PubMed  CAS  Google Scholar 

  86. Kim, M. H., Lee, Y. J., Kim, M. O., Kim, J. S., & Han, H. J. (2010). Effect of leukotriene D4 on mouse embryonic stem cell migration and proliferation: involvement of PI3K/Akt as well as GSK-3β/β-catenin signaling pathways. Journal of Cellular Biochemistry, 111, 686–698.

    PubMed  CAS  Google Scholar 

  87. Finkensieper, A., Kieser, S., Bekhite, M. M., Richter, M., Mueller, J. P., Graebner, R., et al. (2010). The 5-lipoxygenase pathway regulates vasculogenesis in differentiating mouse embryonic stem cells. Cardiovascular Research, 86, 37–44.

    PubMed  CAS  Google Scholar 

  88. Sun, R., Ba, X., Cui, L., Xue, Y., & Zeng, X. (2009). Leukotriene B4 regulates proliferation and differentiation of cultured rat myoblasts via the BLT1 pathway. Molecules and Cells, 27, 403–408.

    PubMed  CAS  Google Scholar 

  89. Yun, D. H., Song, H. Y., Lee, M. J., Kim, M. R., Kim, M. Y., Lee, J. S., et al. (2009). Thromboxane A2 modulates proliferation and differentiation of adipose tissue-derived mesenchymal stem cells. Experimental & Molecular Medicine, 41, 17–24.

    CAS  Google Scholar 

  90. Glasgow, W. C., Afshari, C. A., Barrett, J. C., & Eling, T. E. (1992). Modulation of the epidermal growth factor mitogenic response by metabolites of linoleic and arachidonic acid in Syrian hamster embryo fibroblasts. Differential effects in tumor suppressor gene (+) and (−) phenotypes. Journal of Biological Chemistry, 267, 10771–10779.

    PubMed  CAS  Google Scholar 

  91. Kim, Y. H., & Han, H. J. (2008). High-glucose–induced prostaglandin E(2) and peroxisome proliferator-activated receptor delta promote mouse embryonic stem cell proliferation. Stem Cells, 26, 745–755.

    PubMed  CAS  Google Scholar 

  92. Lee, S. H., Na, S. I., Heo, J. S., Kim, M. H., Kim, Y. H., Lee, M. Y., et al. (2009). Arachidonic acid release by H2O2-mediated proliferation of mouse embryonic stem cells: involvement of Ca2þ/PKC and MAPKs-induced EGFR transactivation. Journal of Cellular Biochemistry, 106, 787–797.

    PubMed  CAS  Google Scholar 

  93. Lee, S. H., Kim, M. H., & Han, H. J. (2009). Arachidonic acid potentiates hypoxia-induced VEGF expression in mouse embryonic stem cells: involvement of Notch, Wnt, and HIF-1alpha. American Journal of Physiology. Cell Physiology, 297, C207–C216.

    PubMed  CAS  Google Scholar 

  94. Hoggatt, J., Singh, P., Sampath, J., & Pelus, L. M. (2009). Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood, 113, 5444–5455.

    PubMed  CAS  Google Scholar 

  95. Yun, S. P., Lee, M. Y., Ryu, J. M., & Han, H. J. (2009). Interaction between PGE2 and EGF receptor through MAPKs in mouse embryonic stem cell proliferation. Cellular and Molecular Life Sciences, 66, 1603–1616.

    PubMed  CAS  Google Scholar 

  96. Goessling, W., North, T. E., Loewer, S., Lord, A. M., Lee, S., Stoick-Cooper, C. L., et al. (2009). Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell, 136, 1136–1147.

    PubMed  CAS  Google Scholar 

  97. Lee, J. H., Tachibana, H., Morinaga, Y., Fujimura, Y., & Yamada, K. (2009). Modulation of proliferation and differentiation of C2C12 skeletal muscle cells by fatty acids. Life Sciences, 84, 415–420.

    PubMed  CAS  Google Scholar 

  98. Hagberg, C. E., Falkevall, A., Wang, X., Larsson, E., Huusko, J., Nilsson, I., et al. (2010). Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature, 464, 917–921.

    PubMed  CAS  Google Scholar 

  99. Yang, S. P., Morita, I., & Murota, S. (1998). Eicosapentaenoic acid attenuates vascular endothelial growth factor-induced proliferation via inhibiting Flk-1 receptor expression in bovine carotid artery endothelial cells. Journal of Cellular Physiology, 176, 342–349.

    PubMed  CAS  Google Scholar 

  100. Stockmann, C., Doedens, A., Weidemann, A., Zhangi, N., Takeda, N., Greenberg, J. I., et al. (2008). Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature, 456, 814–819.

    PubMed  CAS  Google Scholar 

  101. Zhang, X., Morham, S. G., Langenbach, R., Baggs, R. B., & Young, D. A. (2000). Lack of cyclooxygenase-2 inhibits growth of teratocarcinomas in mice. Experimental Cell Research, 254, 232–240.

    PubMed  CAS  Google Scholar 

  102. Das, U. N., & Puskas, L. G. (2009). Transgenic fat-1 mouse as a model to study the pathophysiology of various clinical conditions with particular reference to cardiovascular and neurological and psychiatric disorders. Lipids in Health and Disease, 8, 61.

    PubMed  Google Scholar 

  103. Naidu, M. R. C., Das, U. N., & Kishan, A. (1992). Intratumoral gamma-linolenic acid therapy of human gliomas. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 45, 181–184.

    PubMed  CAS  Google Scholar 

  104. Das, U. N., Prasad, V. S. S. V., & Reddy, D. R. (1995). Local application of gamma-linolenic acid in the treatment of human gliomas. Cancer Letters, 94, 147–155.

    PubMed  CAS  Google Scholar 

  105. Bakshi, A., Mukherjee, D., Bakshi, A., Banerji, A. K., & Das, U. N. (2003). Gamma-linolenic acid therapy of human gliomas. Nutrition, 19, 305–309.

    PubMed  CAS  Google Scholar 

  106. Fujitani, Y., Aritake, K., Kanaoka, Y., Goto, T., Takahashi, N., Fujimori, K., et al. (2010). Pronounced adipogenesis and increased insulin sensitivity caused by overproduction of prostaglandin D2 in vivo. FEBS Journal, 277, 1410–1419.

    PubMed  CAS  Google Scholar 

  107. Anderson, S. G., Sanders, T. A., & Cruickshank, J. K. (2009). Plasma fatty acid composition as a predictor of arterial stiffness and mortality. Hypertension, 53, 839–845.

    PubMed  CAS  Google Scholar 

  108. Marlière, S., Cracowski, J. L., Hakim, A., Stanke-Labesque, F., Hoffmann, P., & Bessard, G. (2005). Vascular effects of 15-F2t-isoprostane in spontaneously hypertensive rats. Canadian Journal of Physiology and Pharmacology, 83, 453–458.

    PubMed  Google Scholar 

  109. Pauwels, E. K., Volterrani, D., Mariani, G., & Kairemo, K. (2009). Fatty acid facts, part IV: docosahexaenoic acid and Alzheimer’s disease. A story of mice, men and fish. Drug News & Perspectives, 22, 205–213.

    CAS  Google Scholar 

  110. Iliopoulos, D., Hirsch, H. A., Wang, G., & Struhl, K. (2011). Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proceedings of the National Academy of Sciences of the United States of America, 108, 1397–1402.

    PubMed  CAS  Google Scholar 

  111. De Bacco, F., Luraghi, P., Medico, E., Reato, G., Girolami, F., Perera, T., et al. (2011). Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. Journal of the National Cancer Institute, 103, 645–661.

    PubMed  Google Scholar 

  112. Skouteris, G. G., & Schröder, C. H. (1997). Cytosolic phospholipase A2 is activated by the hepatocyte growth factor receptor-kinase in Madin Darby canine kidney cells. Journal of Cell Science, 110(Pt 14), 1655–1663.

    PubMed  CAS  Google Scholar 

  113. Zhu, H., Naujokas, M. A., & Park, M. (1994). Receptor chimeras indicate that the met tyrosine kinase mediates the motility and morphogenic responses of hepatocyte growth/scatter factor. Cell Growth & Differentiation, 5, 359–366.

    CAS  Google Scholar 

  114. Pai, R., Nakamura, T., Moon, W. S., & Tarnawski, A. S. (2003). Prostaglandins promote colon cancer cell invasion; signaling by cross-talk between two distinct growth factor receptors. The FASEB Journal, 17, 1640–1647.

    PubMed  CAS  Google Scholar 

  115. Han, C., Michalopoulos, G. K., & Wu, T. (2006). Prostaglandin E2 receptor EP1 transactivates EGFR/MET receptor tyrosine kinases and enhances invasiveness in human hepatocellular carcinoma cells. Journal of Cellular Physiology, 207, 261–270.

    PubMed  CAS  Google Scholar 

  116. Han, C., & Wu, T. (2005). Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through EP1 receptor-mediated activation of the epidermal growth factor receptor and Akt. Journal of Biological Chemistry, 280, 24053–24063.

    PubMed  CAS  Google Scholar 

  117. Buchanan, F. G., Wang, D., Bargiacchi, F., & DuBois, R. N. (2003). Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. Journal of Biological Chemistry, 278, 35451–35457.

    PubMed  CAS  Google Scholar 

  118. Bai, X. M., Jiang, H., Ding, J. X., Peng, T., Ma, J., Wang, Y. H., et al. (2010). Prostaglandin E2 upregulates survivin expression via the EP1 receptor in hepatocellular carcinoma cells. Life Sciences, 86, 214–223.

    PubMed  CAS  Google Scholar 

  119. Moore, A. E., Greenhough, A., Roberts, H. R., Hicks, D. J., Patsos, H. A., Williams, A. C., et al. (2009). HGF/Met signalling promotes PGE(2) biogenesis via regulation of COX-2 and 15-PGDH expression in colorectal cancer cells. Carcinogenesis, 30, 1796–1804.

    PubMed  CAS  Google Scholar 

  120. Skouteris, G. G., & Schröder, C. H. (1996). The hepatocyte growth factor receptor kinase-mediated phosphorylation of lipocortin-1 transduces the proliferating signal of the hepatocyte growth factor. Journal of Biological Chemistry, 271, 27266–27273.

    PubMed  CAS  Google Scholar 

  121. Comba, A., Maestri, D. M., Berra, M. A., Garcia, C. P., Das, U. N., Eynard, A. R., et al. (2010). Effect of ω-3 and ω-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model. Lipids in Health and Disease, 9, 112.

    PubMed  Google Scholar 

  122. Sangeetha, P. S., & Das, U. N. (1993). Gamma-linolenic acid and eicosapentaenoic acid potentiate the cytotoxicity of anti-cancer drugs on human cervical carcinoma (HeLa) cells in vitro. Medical Science Research, 21, 457–459.

    Google Scholar 

  123. Madhavi, N., & Das, U. N. (1994). Reversal of KB-3-1 and KB-Ch-8-5 tumor cell drug-resistance by cis-unsaturated fatty acids in vitro. Medical Science Research, 22, 689–692.

    Google Scholar 

  124. Das, U. N., Madhavi, N., Padma, M., & Sagar, P. S. (1998). Can tumor cell drug-resistance be reversed by essential fatty acids and their metabolites? Prostaglandins, Leukotrienes, and Essential Fatty Acids, 58, 39–54.

    PubMed  CAS  Google Scholar 

  125. Vartak, S., Robbins, M. E., & Spector, A. A. (1997). Polyunsaturated fatty acids increase the sensitivity of 36B10 rat astrocytoma cells to radiation-induced cell kill. Lipids, 32, 283–292.

    PubMed  CAS  Google Scholar 

  126. Germain, E., Chajès, V., Cognault, S., Lhuillery, C., & Bougnoux, P. (1998). Enhancement of doxorubicin cytotoxicity by polyunsaturated fatty acids in the human breast tumor cell line MDA-MB-231: relationship to lipid peroxidation. International Journal of Cancer, 75, 578–583.

    CAS  Google Scholar 

  127. Mahéo, K., Vibet, S., Steghens, J. P., Dartigeas, C., Lehman, M., Bougnoux, P., et al. (2005). Differential sensitization of cancer cells to doxorubicin by DHA: a role for lipoperoxidation. Free Radical Biology & Medicine, 39, 742–751.

    Google Scholar 

  128. Menendez, J. A., Ropero, S., Lupu, R., & Colomer, R. (2004). Omega-6 polyunsaturated fatty acid gamma-linolenic acid (18:3n-6) enhances docetaxel (Taxotere) cytotoxicity in human breast carcinoma cells: relationship to lipid peroxidation and HER-2/neu expression. Oncology Reports, 11, 1241–1252.

    PubMed  CAS  Google Scholar 

  129. Menéndez, J. A., Ropero, S., del Barbacid, M. M., Montero, S., Solanas, M., Escrich, E., et al. (2002). Synergistic interaction between vinorelbine and gamma-linolenic acid in breast cancer cells. Breast Cancer Research and Treatment, 72, 203–219.

    PubMed  Google Scholar 

  130. Kong, X., Ge, H., Chen, L., Liu, Z., Yin, Z., Li, P., et al. (2009). Gamma-linolenic acid modulates the response of multidrug-resistant K562 leukemic cells to anticancer drugs. Toxicology In Vitro, 23, 634–639.

    PubMed  CAS  Google Scholar 

  131. Das, U. N., & Rao, K. P. (2006). Effect of gamma-linolenic acid and prostaglandins E1 on gamma-radiation and chemical-induced genetic damage to the bone marrow cells of mice. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 74, 165–173.

    PubMed  CAS  Google Scholar 

  132. Shivani, P., Rao, K. P., Chaudhury, J. R., Ahmed, J., Rao, B. R., Kanjilal, S., et al. (2009). Effect of polyunsaturated fatty acids on diphenyl hydantoin-induced genetic damage in vitro and in vivo. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 80, 43–50.

    Google Scholar 

  133. Koratkar, R., Das, U. N., Sagar, P. S., Ramesh, G., Padma, M., Kumar, G. S., et al. (1993). Prostacyclin is a potent anti-mutagen. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 48, 175–184.

    PubMed  CAS  Google Scholar 

  134. Das, U. N., Devi, G. R., Rao, K. P., & Rao, M. S. (1985). Prostaglandins and their precursors can modify genetic damage induced by benzo (a,) pyrene and gamma-radiation. Prostaglandins, 29, 911–920.

    PubMed  CAS  Google Scholar 

  135. Das, U. N., Ramadevi, G., Rao, K. P., & Rao, M. S. (1989). Prostaglandins can modify gamma-radiation and chemical-induced cytotoxicity and genetic damage in vitro and in vivo. Prostaglandins, 38, 689–716.

    PubMed  CAS  Google Scholar 

  136. Walden, T. L., Jr. (1988). Radioprotection of mouse hematopoietic stem cells by leukotriene A4 and lipoxin B4. Journal of Radiation Research, 29, 255–260.

    PubMed  CAS  Google Scholar 

  137. Hanson, W. R., & Ainsworth, E. J. (1985). 16,16-Dimethyl prostaglandin E2 induces radioprotection in murine intestinal and hematopoietic stem cells. Radiation Research, 103, 196–203.

    PubMed  CAS  Google Scholar 

  138. Hanson, W. R., & Thomas, C. (1983). 16, 16-Dimethyl prostaglandin E2 increases survival of murine intestinal stem cells when given before photon radiation. Radiation Research, 96, 393–398.

    PubMed  CAS  Google Scholar 

  139. Sailaja Devi, M. M., & Das, U. N. (2004). Effect of prostaglandins against alloxan-induced cytotoxicity to insulin secreting insulinoma RIN cells in vitro. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 71, 309–318.

    Google Scholar 

  140. Sailaja, M. M. S., & Das, U. N. (2006). Effect of prostaglandins against alloxan-induced diabetes mellitus. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 74, 39–60.

    Google Scholar 

  141. Suresh, Y., & Das, U. N. (2003). Long-chain polyunsaturated fatty acids and chemically-induced diabetes mellitus: effect of ω-6 fatty acids. Nutrition, 19, 93–114.

    PubMed  CAS  Google Scholar 

  142. Suresh, Y., & Das, U. N. (2003). Long-chain polyunsaturated fatty acids and chemically-induced diabetes mellitus: effect of ω-3 fatty acids. Nutrition, 19, 213–228.

    PubMed  CAS  Google Scholar 

  143. Manjari, V., & Das, U. N. (1998). Oxidant stress, anti-oxidants, nitric oxide and essential fatty acids in peptic ulcer disease. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 59, 401–406.

    PubMed  CAS  Google Scholar 

  144. Manjari, V., & Das, U. N. (2000). Effect of polyunsaturated fatty acids on dexamethasone-induced gastric mucosal damage. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 62, 85–96.

    PubMed  CAS  Google Scholar 

  145. Das, U. N. (1998). Cis-unsaturated fatty acids as potential anti-peptic ulcer drugs. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 58, 377–380.

    PubMed  CAS  Google Scholar 

  146. Karim, M. J., Bhattacherjee, P., Biswas, S., & Paterson, C. A. (2009). Anti-inflammatory effects of lipoxins on lipopolysaccharide-induced uveitis in rats. Journal of Ocular Pharmacology and Therapeutics, 25, 483–486.

    PubMed  CAS  Google Scholar 

  147. Kure, I., Nishiumi, S., Nishitani, Y., Tanoue, T., Ishida, T., Mizuno, M., et al. (2010). Lipoxin A(4) reduces lipopolysaccharide-induced inflammation in macrophages and intestinal epithelial cells through inhibition of nuclear factor-kappaB activation. Journal of Pharmacology and Experimental Therapeutics, 332, 541–548.

    PubMed  CAS  Google Scholar 

  148. Wu, S. H., Liu, B., Dong, L., & Wu, H. J. (2010). NF-kappaB is involved in inhibition of lipoxin A4 on dermal inflammation and hyperplasia induced by mezerein. Experimental Dermatology, 19, e286–e288.

    PubMed  Google Scholar 

  149. Kim, S. J. (1990). Lipoxins formation by rat basophilic leukemia (RBL-1) cells. Research Communications in Chemical Pathology and Pharmacology, 68, 159–174.

    PubMed  CAS  Google Scholar 

  150. Stenke, L., Näsman-Glaser, B., Edenius, C., Samuelsson, J., Palmblad, J., & Lindgren, J. A. (1991). Lipoxygenase products in myeloproliferative disorders: increased leukotriene C4 and decreased lipoxin formation in chronic myeloid leukemia. Advances in Prostaglandin, Thromboxane, and Leukotriene Research, 21B, 883–886.

    PubMed  CAS  Google Scholar 

  151. Stenke, L., Edenius, C., Samuelsson, J., & Lindgren, J. A. (1991). Deficient lipoxin synthesis: a novel platelet dysfunction in myeloproliferative disorders with special reference to blastic crisis of chronic myelogenous leukemia. Blood, 78, 2989–2995.

    PubMed  CAS  Google Scholar 

  152. Chen, Y., Hao, H., He, S., Cai, L., Li, Y., Hu, S., et al. (2010). Lipoxin A4 and its analogue suppress the tumor growth of transplanted H22 in mice: the role of antiangiogenesis. Molecular Cancer Therapeutics, 9, 2164–2174.

    PubMed  CAS  Google Scholar 

  153. Zhang, B., Jia, H., Liu, J., Yang, Z., Jiang, T., Tang, K., et al. (2010). Depletion of regulatory T cells facilitates growth of established tumors: a mechanism involving the regulation of myeloid-derived suppressor cells by lipoxin A4. The Journal of Immunology, 185, 7199–7206.

    PubMed  CAS  Google Scholar 

  154. Gleissman, H., Yang, R., Martinod, K., Lindskog, M., Serhan, C. N., Johnsen, J. I., et al. (2010). Docosahexaenoic acid metabolome in neural tumors: identification of cytotoxic intermediates. The FASEB Journal, 24, 906–915.

    PubMed  CAS  Google Scholar 

  155. Gleissman, H., Segerström, L., Hamberg, M., Ponthan, F., Lindskog, M., Johnsen, J. I., et al. (2011). Omega-3 fatty acid supplementation delays the progression of neuroblastoma in vivo. International Journal of Cancer, 128, 1703–1711.

    CAS  Google Scholar 

  156. Rose, D. P., Connolly, J. M., & Coleman, M. (1996). Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice. Clinical Cancer Research, 2, 1751–1756.

    PubMed  CAS  Google Scholar 

  157. Jin, Y., Arita, M., Zhang, Q., Saban, D. R., Chauhan, S. K., Chiang, N., et al. (2009). Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators. Investigative Ophthalmology & Visual Science, 50, 4743–4752.

    Google Scholar 

  158. Rhodes, L. E., Gledhill, K., Masoodi, M., Haylett, A. K., Brownrigg, M., Thody, A. J., et al. (2009). The sunburn response in human skin is characterized by sequential eicosanoid profiles that may mediate its early and late phases. The FASEB Journal, 23, 3947–3956.

    PubMed  CAS  Google Scholar 

  159. Takahashi, M., Przetakiewicz, M., Ong, A., Borek, C., & Lowenstein, J. M. (1992). Effect of ω3 and ω6 fatty acids on transformation of cultured cells by irradiation and transfection. Cancer Research, 52, 154–162.

    PubMed  CAS  Google Scholar 

  160. Li, F., Huang, Q., Chen, J., Peng, Y., Roop, D., Bedford, J. S., et al. (2010). Apoptotic cells activate the “Phoenix Rising” pathway to promote wound healing and tissue regeneration. Science Signaling, 3(110), ra13. doi:10.1126/scisignal.2000634.

    PubMed  Google Scholar 

  161. Biteman, B., Hassan, I. R., Walker, E., Leedom, A. J., Dunn, M., Seta, F., et al. (2007). Interdependence of lipoxin A4 and heme-oxygenase in counter-regulating inflammation during corneal wound healing. The FASEB Journal, 21, 2257–2266.

    PubMed  CAS  Google Scholar 

  162. Tang, D. G., Chen, Y. Q., & Honn, K. V. (1996). Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 93, 5241–5246.

    PubMed  CAS  Google Scholar 

  163. Wu, S. H., Lu, C., Dong, L., Zhou, G. P., He, Z. G., & Chen, Z. Q. (2005). High dose of lipoxin A4 induces apoptosis in rat renal interstitial fibroblasts. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 73, 127–137.

    PubMed  CAS  Google Scholar 

  164. Prieto, P., Cuenca, J., Través, P. G., Fernández-Velasco, M., Martín-Sanz, P., & Boscá, L. (2010). Lipoxin A4 impairment of apoptotic signaling in macrophages: implication of the PI3K/Akt and the ERK/Nrf-2 defense pathways. Cell Death and Differentiation, 17, 1179–1188.

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

Dr. U. N. Das is a recipient of Ramalingaswami fellowship of the Department of Biotechnology, India during the tenure of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Undurti N. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, U.N. Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer, and metastasis. Cancer Metastasis Rev 30, 311–324 (2011). https://doi.org/10.1007/s10555-011-9316-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9316-x

Keywords

Navigation