Skip to main content

Advertisement

Log in

Myeloid cell diversification and complexity: an old concept with new turns in oncology

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

An Erratum to this article was published on 23 February 2011

Abstract

Tumour development is accompanied by an enhanced haematopoiesis. This is not a widespread activation since only cells belonging to the myelo-monocytic compartment are expanded and mobilized from primary sites of haematopoiesis to other organs, reaching also the tumour stroma. This process occurs early during tumour formation but becomes more evident in advanced disease. Far from being a simple, unwanted consequence of cancer development, accumulation of myelo-monocytitc cells plays a role in tumour vascularization, local spreading, establishment of metastasis at distant sites, and contribute to create an environment unfavourable for the adoptive immunity against tumour-associated antigens. Myeloid populations involved in these process are likely different but many cells, expanded in primary and secondary lymphoid organs of tumour-bearing mice, share various levels of the CD11b and Gr-1 (Ly6C/G) markers. CD11b+Gr-1+ cells are currently named myeloid-derived suppressor cells for their ability to inhibit T lymphocyte responses in tumour-bearing hosts. In this manuscript, we review the recent literature on tumour-conditioned myeloid subsets that assist tumour growth, both in mice and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waskow, C., Liu, K., Darrasse-Jeze, G., Guermonprez, P., Ginhoux, F., Merad, M., et al. (2008). The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nature Immunology, 9(6), 676–683.

    Article  PubMed  CAS  Google Scholar 

  2. Auffray, C., Sieweke, M. H., & Geissmann, F. (2009). Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annual Review of Immunology, 27, 669–692.

    Article  PubMed  CAS  Google Scholar 

  3. Geissmann, F., Manz, M. G., Jung, S., Sieweke, M. H., Merad, M., & Ley, K. (2010). Development of monocytes, macrophages, and dendritic cells. Science, 327(5966), 656–661.

    Article  PubMed  CAS  Google Scholar 

  4. Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883–899.

    Article  PubMed  CAS  Google Scholar 

  5. Murdoch, C., Muthana, M., Coffelt, S. B., & Lewis, C. E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews. Cancer, 8(8), 618–631.

    Article  PubMed  CAS  Google Scholar 

  6. Shojaei, F., Zhong, C., Wu, X., Yu, L., & Ferrara, N. (2008). Role of myeloid cells in tumor angiogenesis and growth. Trends in Cell Biology, 18(8), 372–378.

    Article  PubMed  CAS  Google Scholar 

  7. Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews. Cancer, 9(4), 239–252.

    Article  PubMed  CAS  Google Scholar 

  8. Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. The Journal of Pathology, 196(3), 254–265.

    Article  PubMed  CAS  Google Scholar 

  9. Melillo, R. M., Guarino, V., Avilla, E., Galdiero, M. R., Liotti, F., Prevete, N., et al. (2010). Mast cells have a protumorigenic role in human thyroid cancer. Oncogene, 29, 6203–6215.

    Article  PubMed  CAS  Google Scholar 

  10. Strouch, M. J., Cheon, E. C., Salabat, M. R., Krantz, S. B., Gounaris, E., Melstrom, L. G., et al. (2010). Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin Cancer Res, 16(8), 2257–2265.

    Article  PubMed  CAS  Google Scholar 

  11. Campbell, M. J., Tonlaar, N. Y., Garwood, E. R., Huo, D., Moore, D. H., Khramtsov, A. I., et al. (2010). Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res Treat, 1–19. doi:10.1007/s10549-010-1154-y.

  12. Peranzoni, E., Zilio, S., Marigo, I., Dolcetti, L., Zanovello, P., Mandruzzato, S., et al. (2010). Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol, 22(2), 238–244.

    Article  PubMed  CAS  Google Scholar 

  13. Gabrilovich, D. I., Bronte, V., Chen, S. H., Colombo, M. P., Ochoa, A., Ostrand-Rosenberg, S., et al. (2007). The terminology issue for myeloid-derived suppressor cells. Cancer Research, 67(1), 425. author reply 426.

    Article  PubMed  CAS  Google Scholar 

  14. Geissmann, F., Jung, S., & Littman, D. R. (2003). Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 19(1), 71–82.

    Article  PubMed  CAS  Google Scholar 

  15. Sunderkotter, C., Nikolic, T., Dillon, M. J., Van Rooijen, N., Stehling, M., Drevets, D. A., et al. (2004). Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. Journal of Immunology, 172(7), 4410–4417.

    Google Scholar 

  16. Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology, 8(12), 958–969.

    Article  PubMed  CAS  Google Scholar 

  17. Pollard, J. W. (2009). Trophic macrophages in development and disease. Nature Reviews. Immunology, 9(4), 259–270.

    Article  PubMed  CAS  Google Scholar 

  18. Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J., & Hill, A. M. (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. Journal of Immunology, 164(12), 6166–6173.

    CAS  Google Scholar 

  19. Gordon, S. (2003). Alternative activation of macrophages. Nature Reviews. Immunology, 3(1), 23–35.

    Article  PubMed  CAS  Google Scholar 

  20. Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25(12), 677–686.

    Article  PubMed  CAS  Google Scholar 

  21. Sica, A., & Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. Journal of Clinical Investigation, 117(5), 1155–1166.

    Article  PubMed  CAS  Google Scholar 

  22. Qian, B. Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141(1), 39–51.

    Article  PubMed  CAS  Google Scholar 

  23. Meira, L. B., Bugni, J. M., Green, S. L., Lee, C. W., Pang, B., Borenshtein, D., et al. (2008). DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. Journal of Clinical Investigation, 118(7), 2516–2525.

    PubMed  CAS  Google Scholar 

  24. Colotta, F., Allavena, P., Sica, A., Garlanda, C., & Mantovani, A. (2009). Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 30(7), 1073–1081.

    Article  PubMed  CAS  Google Scholar 

  25. Bollrath, J., Phesse, T. J., von Burstin, V. A., Putoczki, T., Bennecke, M., Bateman, T., et al. (2009). gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell, 15(2), 91–102.

    Article  PubMed  CAS  Google Scholar 

  26. Park, E. J., Lee, J. H., Yu, G. Y., He, G., Ali, S. R., Holzer, R. G., et al. (2010). Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell, 140(2), 197–208.

    Article  PubMed  CAS  Google Scholar 

  27. Ojalvo, L. S., King, W., Cox, D., & Pollard, J. W. (2009). High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. The American Journal of Pathology, 174(3), 1048–1064.

    Article  PubMed  CAS  Google Scholar 

  28. Lin, E. Y., Li, J. F., Gnatovskiy, L., Deng, Y., Zhu, L., Grzesik, D. A., et al. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Research, 66(23), 11238–11246.

    Article  PubMed  CAS  Google Scholar 

  29. Coffelt, S. B., Hughes, R., & Lewis, C. E. (2009). Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochimica et Biophysica Acta, 1796(1), 11–18.

    PubMed  CAS  Google Scholar 

  30. De Palma, M., Venneri, M. A., Galli, R., Sergi Sergi, L., Politi, L. S., Sampaolesi, M., et al. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 8(3), 211–226.

    Article  PubMed  CAS  Google Scholar 

  31. Pucci, F., Venneri, M. A., Biziato, D., Nonis, A., Moi, D., Sica, A., et al. (2009). A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood "resident" monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood, 114(4), 901–914.

    Article  PubMed  CAS  Google Scholar 

  32. Fantin, A., Vieira, J. M., Gestri, G., Denti, L., Schwarz, Q., Prykhozhij, S., et al. (2010). Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood, 116(5), 829–840.

    Article  PubMed  CAS  Google Scholar 

  33. Kerber, M., Reiss, Y., Wickersheim, A., Jugold, M., Kiessling, F., Heil, M., et al. (2008). Flt-1 signaling in macrophages promotes glioma growth in vivo. Cancer Research, 68(18), 7342–7351.

    Article  PubMed  CAS  Google Scholar 

  34. Muramatsu, M., Yamamoto, S., Osawa, T., & Shibuya, M. (2010). Vascular endothelial growth factor receptor-1 signaling promotes mobilization of macrophage lineage cells from bone marrow and stimulates solid tumor growth. Cancer Res, 70(20), 8211–8221.

    Article  PubMed  CAS  Google Scholar 

  35. Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., et al. (2001). Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Natural Medicines, 7(11), 1194–1201.

    Article  CAS  Google Scholar 

  36. Jeon, B. H., Jang, C., Han, J., Kataru, R. P., Piao, L., Jung, K., et al. (2008). Profound but dysfunctional lymphangiogenesis via vascular endothelial growth factor ligands from CD11b + macrophages in advanced ovarian cancer. Cancer Research, 68(4), 1100–1109.

    Article  PubMed  CAS  Google Scholar 

  37. Schoppmann, S. F., Birner, P., Stockl, J., Kalt, R., Ullrich, R., Caucig, C., et al. (2002). Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. The American Journal of Pathology, 161(3), 947–956.

    Article  PubMed  CAS  Google Scholar 

  38. Priceman, S. J., Sung, J. L., Shaposhnik, Z., Burton, J. B., Torres-Collado, A. X., Moughon, D. L., et al. (2010). Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood, 115(7), 1461–1471.

    Article  PubMed  CAS  Google Scholar 

  39. Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews. Cancer, 2(3), 161–174.

    Article  PubMed  CAS  Google Scholar 

  40. Gocheva, V., Wang, H. W., Gadea, B. B., Shree, T., Hunter, K. E., Garfall, A. L., et al. (2010). IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev, 24(3), 241–255.

    Article  PubMed  CAS  Google Scholar 

  41. Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., et al. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64(19), 7022–7029.

    Article  PubMed  CAS  Google Scholar 

  42. Goswami, S., Sahai, E., Wyckoff, J. B., Cammer, M., Cox, D., Pixley, F. J., et al. (2005). Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Research, 65(12), 5278–5283.

    Article  PubMed  CAS  Google Scholar 

  43. DeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., et al. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16(2), 91–102.

    Article  PubMed  CAS  Google Scholar 

  44. Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., Symons, M., et al. (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. The Journal of Cell Biology, 168(3), 441–452.

    Article  PubMed  CAS  Google Scholar 

  45. Yamaguchi, H., Pixley, F., & Condeelis, J. (2006). Invadopodia and podosomes in tumor invasion. European Journal of Cell Biology, 85(3–4), 213–218.

    Article  PubMed  CAS  Google Scholar 

  46. Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Research, 67(6), 2649–2656.

    Article  PubMed  CAS  Google Scholar 

  47. Kusmartsev, S., & Gabrilovich, D. I. (2005). STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. Journal of Immunology, 174(8), 4880–4891.

    CAS  Google Scholar 

  48. Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Natural Medicines, 10(9), 942–949.

    Article  CAS  Google Scholar 

  49. Torroella-Kouri, M., Silvera, R., Rodriguez, D., Caso, R., Shatry, A., Opiela, S., et al. (2009). Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Research, 69(11), 4800–4809.

    Article  PubMed  CAS  Google Scholar 

  50. Kuang, D. M., Zhao, Q., Peng, C., Xu, J., Zhang, J. P., Wu, C., et al. (2009). Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. The Journal of Experimental Medicine, 206(6), 1327–1337.

    Article  PubMed  CAS  Google Scholar 

  51. Sinha, P., Clements, V. K., Bunt, S. K., Albelda, S. M., & Ostrand-Rosenberg, S. (2007). Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. Journal of Immunology, 179(2), 977–983.

    CAS  Google Scholar 

  52. Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stange, G., Van den Bossche, J., et al. (2010). Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res, 70(14), 5728–5739.

    Article  PubMed  CAS  Google Scholar 

  53. Sawanobori, Y., Ueha, S., Kurachi, M., Shimaoka, T., Talmadge, J. E., Abe, J., et al. (2008). Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood, 111(12), 5457–5466.

    Article  PubMed  CAS  Google Scholar 

  54. Umemura, N., Saio, M., Suwa, T., Kitoh, Y., Bai, J., Nonaka, K., et al. (2008). Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. Journal of Leukocyte Biology, 83(5), 1136–1144.

    Article  PubMed  CAS  Google Scholar 

  55. Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., et al. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell, 16(3), 183–194.

    Article  PubMed  CAS  Google Scholar 

  56. Tsuda, Y., Takahashi, H., Kobayashi, M., Hanafusa, T., Herndon, D. N., & Suzuki, F. (2004). Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity, 21(2), 215–226.

    Article  PubMed  CAS  Google Scholar 

  57. Youn, J. I., Nagaraj, S., Collazo, M., & Gabrilovich, D. I. (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology, 181(8), 5791–5802.

    CAS  Google Scholar 

  58. Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., et al. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 111(8), 4233–4244.

    Article  PubMed  CAS  Google Scholar 

  59. Bronte, V. (2009). Myeloid-derived suppressor cells in inflammation: uncovering cell subsets with enhanced immunosuppressive functions. European Journal of Immunology, 39(10), 2670–2672.

    Article  PubMed  CAS  Google Scholar 

  60. Dolcetti, L., Peranzoni, E., Ugel, S., Marigo, I., Fernandez Gomez, A., Mesa, C., et al. (2010). Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol, 40(1), 22–35.

    Article  PubMed  CAS  Google Scholar 

  61. Haile, L. A., Gamrekelashvili, J., Manns, M. P., Korangy, F., & Greten, T. F. (2010). CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J Immunol, 185(1), 203–210.

    Article  PubMed  CAS  Google Scholar 

  62. Shojaei, F., & Ferrara, N. (2008). Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Research, 68(14), 5501–5504.

    Article  PubMed  CAS  Google Scholar 

  63. Shojaei, F., Wu, X., Zhong, C., Yu, L., Liang, X. H., Yao, J., et al. (2007). Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature, 450(7171), 825–831.

    Article  PubMed  CAS  Google Scholar 

  64. Kaser, A., Winklmayr, M., Lepperdinger, G., & Kreil, G. (2003). The AVIT protein family. Secreted cysteine-rich vertebrate proteins with diverse functions. EMBO Rep, 4(5), 469–473.

    CAS  Google Scholar 

  65. Masuda, Y., Takatsu, Y., Terao, Y., Kumano, S., Ishibashi, Y., Suenaga, M., et al. (2002). Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G-protein-coupled receptors. Biochemical and Biophysical Research Communications, 293(1), 396–402.

    Article  PubMed  CAS  Google Scholar 

  66. LeCouter, J., Kowalski, J., Foster, J., Hass, P., Zhang, Z., Dillard-Telm, L., et al. (2001). Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature, 412(6850), 877–884.

    Article  PubMed  CAS  Google Scholar 

  67. LeCouter, J., Lin, R., Tejada, M., Frantz, G., Peale, F., Hillan, K. J., et al. (2003). The endocrine-gland-derived VEGF homologue Bv8 promotes angiogenesis in the testis: localization of Bv8 receptors to endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2685–2690.

    Article  PubMed  CAS  Google Scholar 

  68. LeCouter, J., Lin, R., & Ferrara, N. (2002). Endocrine gland-derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis. Natural Medicines, 8(9), 913–917.

    Article  CAS  Google Scholar 

  69. LeCouter, J., Zlot, C., Tejada, M., Peale, F., & Ferrara, N. (2004). Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proceedings of the National Academy of Sciences of the United States of America, 101(48), 16813–16818.

    Article  PubMed  CAS  Google Scholar 

  70. Dorsch, M., Qiu, Y., Soler, D., Frank, N., Duong, T., Goodearl, A., et al. (2005). PK1/EG-VEGF induces monocyte differentiation and activation. Journal of Leukocyte Biology, 78(2), 426–434.

    Article  PubMed  CAS  Google Scholar 

  71. Swirski, F. K., Nahrendorf, M., Etzrodt, M., Wildgruber, M., Cortez-Retamozo, V., Panizzi, P., et al. (2009). Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science, 325(5940), 612–616.

    Article  PubMed  CAS  Google Scholar 

  72. Ilkovitch, D., & Lopez, D. M. (2009). The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Research, 69(13), 5514–5521.

    Article  PubMed  CAS  Google Scholar 

  73. Neill, D. R., Wong, S. H., Bellosi, A., Flynn, R. J., Daly, M., Langford, T. K., et al. (2010). Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature, 464(7293), 1367–1370.

    Article  PubMed  CAS  Google Scholar 

  74. Saenz, S. A., Siracusa, M. C., Perrigoue, J. G., Spencer, S. P., Urban, J. F., Jr., Tocker, J. E., et al. (2010). IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature, 464(7293), 1362–1366.

    Article  PubMed  CAS  Google Scholar 

  75. Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.

    Article  PubMed  CAS  Google Scholar 

  76. Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8(12), 1369–1375.

    Article  PubMed  CAS  Google Scholar 

  77. Hiratsuka, S., Watanabe, A., Sakurai, Y., Akashi-Takamura, S., Ishibashi, S., Miyake, K., et al. (2008). The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nature Cell Biology, 10(11), 1349–1355.

    Article  PubMed  CAS  Google Scholar 

  78. Kim, S., Takahashi, H., Lin, W. W., Descargues, P., Grivennikov, S., Kim, Y., et al. (2009). Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature, 457(7225), 102–106.

    Article  PubMed  CAS  Google Scholar 

  79. Erler, J. T., Bennewith, K. L., Cox, T. R., Lang, G., Bird, D., Koong, A., et al. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15(1), 35–44.

    Article  PubMed  CAS  Google Scholar 

  80. Ruzinova, M. B., Schoer, R. A., Gerald, W., Egan, J. E., Pandolfi, P. P., Rafii, S., et al. (2003). Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell, 4(4), 277–289.

    Article  PubMed  CAS  Google Scholar 

  81. Pawelek, J. M., & Chakraborty, A. K. (2008). Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nature Reviews. Cancer, 8(5), 377–386.

    Article  PubMed  CAS  Google Scholar 

  82. Qian, B., Deng, Y., Im, J. H., Muschel, R. J., Zou, Y., Li, J., et al. (2009). A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE, 4(8), e6562.

    Article  PubMed  CAS  Google Scholar 

  83. Yan, H. H., Pickup, M., Pang, Y., Gorska, A. E., Li, Z., Chytil, A., et al. (2010). Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res, 70(15), 6139–6149.

    Article  PubMed  CAS  Google Scholar 

  84. Tjiu, J. W., Chen, J. S., Shun, C. T., Lin, S. J., Liao, Y. H., Chu, C. Y., et al. (2009). Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. Journal of Investigative Dermatology, 129(4), 1016–1025.

    Article  PubMed  CAS  Google Scholar 

  85. Connolly, M. K., Mallen-St Clair, J., Bedrosian, A. S., Malhotra, A., Vera, V., Ibrahim, J., et al. (2010). Distinct populations of metastases-enabling myeloid cells expand in the liver of mice harboring invasive and preinvasive intra-abdominal tumor. J Leukoc Biol, 87(4), 713–725.

    Article  PubMed  CAS  Google Scholar 

  86. Gabrilovich, D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature Reviews. Immunology, 4(12), 941–952.

    Article  PubMed  CAS  Google Scholar 

  87. Marigo, I., Dolcetti, L., Serafini, P., Zanovello, P., & Bronte, V. (2008). Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunological Reviews, 222, 162–179.

    Article  PubMed  CAS  Google Scholar 

  88. Almand, B., Resser, J. R., Lindman, B., Nadaf, S., Clark, J. I., Kwon, E. D., et al. (2000). Clinical significance of defective dendritic cell differentiation in cancer. Clinical Cancer Research, 6(5), 1755–1766.

    PubMed  CAS  Google Scholar 

  89. Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., et al. (2000). Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood, 96(12), 3838–3846.

    PubMed  CAS  Google Scholar 

  90. Nefedova, Y., Huang, M., Kusmartsev, S., Bhattacharya, R., Cheng, P., Salup, R., et al. (2004). Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. Journal of Immunology, 172(1), 464–474.

    CAS  Google Scholar 

  91. Marigo, I., Bosio, E., Solito, S., Mesa, C., Fernandez, A., Dolcetti, L., et al. (2010). Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity, 32(6), 790–802.

    Article  PubMed  CAS  Google Scholar 

  92. Rosenbauer, F., & Tenen, D. G. (2007). Transcription factors in myeloid development: balancing differentiation with transformation. Nature Reviews. Immunology, 7(2), 105–117.

    Article  PubMed  CAS  Google Scholar 

  93. Hirai, H., Zhang, P., Dayaram, T., Hetherington, C. J., Mizuno, S., Imanishi, J., et al. (2006). C/EBPbeta is required for 'emergency' granulopoiesis. Nature Immunology, 7(7), 732–739.

    Article  PubMed  CAS  Google Scholar 

  94. Lechner, M. G., Liebertz, D. J., & Epstein, A. L. (2010). Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol, 185(4), 2273–2284.

    Article  PubMed  CAS  Google Scholar 

  95. Wang, T., Niu, G., Kortylewski, M., Burdelya, L., Shain, K., Zhang, S., et al. (2004). Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Natural Medicines, 10(1), 48–54.

    Article  CAS  Google Scholar 

  96. Zhang, H., Nguyen-Jackson, H., Panopoulos, A. D., Li, H. S., Murray, P. J., & Watowich, S. S. (2010). STAT3 controls myeloid progenitor growth during emergency granulopoiesis. Blood, 116(14), 2462–2471.

    Article  PubMed  CAS  Google Scholar 

  97. Gallina, G., Dolcetti, L., Serafini, P., De Santo, C., Marigo, I., Colombo, M. P., et al. (2006). Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. Journal of Clinical Investigation, 116(10), 2777–2790.

    Article  PubMed  CAS  Google Scholar 

  98. Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. The Journal of Biological Chemistry, 284(49), 34342–34354.

    Article  PubMed  CAS  Google Scholar 

  99. Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23(11), 549–555.

    Article  PubMed  CAS  Google Scholar 

  100. Jakowlew, S. B. (2006). Transforming growth factor-beta in cancer and metastasis. Cancer and Metastasis Reviews, 25(3), 435–457.

    Article  PubMed  CAS  Google Scholar 

  101. Takaku, K., Oshima, M., Miyoshi, H., Matsui, M., Seldin, M. F., & Taketo, M. M. (1998). Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell, 92(5), 645–656.

    Article  PubMed  CAS  Google Scholar 

  102. Kitamura, T., Kometani, K., Hashida, H., Matsunaga, A., Miyoshi, H., Hosogi, H., et al. (2007). SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nature Genetics, 39(4), 467–475.

    Article  PubMed  CAS  Google Scholar 

  103. Yang, L., Huang, J., Ren, X., Gorska, A. E., Chytil, A., Aakre, M., et al. (2008). Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell, 13(1), 23–35.

    Article  PubMed  CAS  Google Scholar 

  104. Sitkovsky, M., & Lukashev, D. (2005). Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nature Reviews. Immunology, 5(9), 712–721.

    Article  PubMed  CAS  Google Scholar 

  105. Appelhoff, R. J., Tian, Y. M., Raval, R. R., Turley, H., Harris, A. L., Pugh, C. W., et al. (2004). Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. The Journal of Biological Chemistry, 279(37), 38458–38465.

    Article  PubMed  CAS  Google Scholar 

  106. Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., et al. (2001). Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292(5516), 468–472.

    Article  PubMed  CAS  Google Scholar 

  107. Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., et al. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399(6733), 271–275.

    Article  PubMed  CAS  Google Scholar 

  108. Takeda, N., O'Dea, E. L., Doedens, A., Kim, J. W., Weidemann, A., Stockmann, C., et al. (2010). Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes Dev, 24(5), 491–501.

    Article  PubMed  CAS  Google Scholar 

  109. Doedens, A. L., Stockmann, C., Rubinstein, M. P., Liao, D., Zhang, N., DeNardo, D. G., et al. (2010). Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res, 70(19), 7465–7475.

    Article  PubMed  CAS  Google Scholar 

  110. Corzo, C. A., Condamine, T., Lu, L., Cotter, M. J., Youn, J. I., Cheng, P., et al. (2010). HIF-1{alpha} regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med, 207(11), 2439–2453.

    Article  PubMed  CAS  Google Scholar 

  111. Corzo, C. A., Cotter, M. J., Cheng, P., Cheng, F., Kusmartsev, S., Sotomayor, E., et al. (2009). Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. Journal of Immunology, 182(9), 5693–5701.

    Article  CAS  Google Scholar 

  112. Nagaraj, S., Gupta, K., Pisarev, V., Kinarsky, L., Sherman, S., Kang, L., et al. (2007). Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Natural Medicines, 13(7), 828–835.

    Article  CAS  Google Scholar 

  113. Li, F., Sonveaux, P., Rabbani, Z. N., Liu, S., Yan, B., Huang, Q., et al. (2007). Regulation of HIF-1alpha stability through S-nitrosylation. Molecular Cell, 26(1), 63–74.

    Article  PubMed  CAS  Google Scholar 

  114. Chin, B. Y., Jiang, G., Wegiel, B., Wang, H. J., Macdonald, T., Zhang, X. C., et al. (2007). Hypoxia-inducible factor 1alpha stabilization by carbon monoxide results in cytoprotective preconditioning. Proceedings of the National Academy of Sciences of the United States of America, 104(12), 5109–5114.

    Article  PubMed  CAS  Google Scholar 

  115. Niu, G., Briggs, J., Deng, J., Ma, Y., Lee, H., Kortylewski, M., et al. (2008). Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1alpha RNA expression in both tumor cells and tumor-associated myeloid cells. Molecular Cancer Research, 6(7), 1099–1105.

    Article  PubMed  CAS  Google Scholar 

  116. Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16(9), 4604–4613.

    PubMed  CAS  Google Scholar 

  117. Du, R., Lu, K. V., Petritsch, C., Liu, P., Ganss, R., Passegue, E., et al. (2008). HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell, 13(3), 206–220.

    Article  PubMed  CAS  Google Scholar 

  118. Beck, H., Raab, S., Copanaki, E., Heil, M., Scholz, A., Shibuya, M., et al. (2010). VEGFR-1 signaling regulates the homing of bone marrow-derived cells in a mouse stroke model. J Neuropathol Exp Neurol, 69(2), 168–175.

    Article  PubMed  CAS  Google Scholar 

  119. Gille, J., Heidenreich, R., Pinter, A., Schmitz, J., Boehme, B., Hicklin, D. J., et al. (2007). Simultaneous blockade of VEGFR-1 and VEGFR-2 activation is necessary to efficiently inhibit experimental melanoma growth and metastasis formation. International Journal of Cancer, 120(9), 1899–1908.

    Article  CAS  Google Scholar 

  120. Kusmartsev, S., Eruslanov, E., Kubler, H., Tseng, T., Sakai, Y., Su, Z., et al. (2008). Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. Journal of Immunology, 181(1), 346–353.

    CAS  Google Scholar 

  121. Dikov, M. M., Ohm, J. E., Ray, N., Tchekneva, E. E., Burlison, J., Moghanaki, D., et al. (2005). Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. Journal of Immunology, 174(1), 215–222.

    CAS  Google Scholar 

  122. Diaz-Montero, C. M., Salem, M. L., Nishimura, M. I., Garrett-Mayer, E., Cole, D. J., & Montero, A. J. (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunology, Immunotherapy, 58(1), 49–59.

    Article  PubMed  CAS  Google Scholar 

  123. Poschke, I., Mougiakakos, D., Hansson, J., Masucci, G. V., & Kiessling, R. (2010). Immature immunosuppressive CD14 + HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Research, 70(11), 4335–4345.

    Article  PubMed  CAS  Google Scholar 

  124. Zimmermann, H. W., Seidler, S., Nattermann, J., Gassler, N., Hellerbrand, C., Zernecke, A., et al. (2010). Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS ONE, 5(6), e11049.

    Article  PubMed  CAS  Google Scholar 

  125. Kitamura, T., Fujishita, T., Loetscher, P., Revesz, L., Hashida, H., Kizaka-Kondoh, S., et al. (2010). Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model. Proceedings of the National Academy of Sciences of the United States of America, 107(29), 13063–13068.

    Article  PubMed  CAS  Google Scholar 

  126. Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66(2), 605–612.

    Article  PubMed  CAS  Google Scholar 

  127. Mantovani, A., & Sica, A. (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol, 22(2), 231–237.

    Article  PubMed  CAS  Google Scholar 

  128. Roca, H., Varsos, Z., & Pienta, K. J. (2008). CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation. The Journal of Biological Chemistry, 283(36), 25057–25073.

    Article  PubMed  CAS  Google Scholar 

  129. Siegall, C. B., Schwab, G., Nordan, R. P., FitzGerald, D. J., & Pastan, I. (1990). Expression of the interleukin 6 receptor and interleukin 6 in prostate carcinoma cells. Cancer Research, 50(24), 7786–7788.

    PubMed  CAS  Google Scholar 

  130. Solinas, G., Schiarea, S., Liguori, M., Fabbri, M., Pesce, S., Zammataro, L., et al. (2010). Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol, 185(1), 642–652.

    Article  PubMed  CAS  Google Scholar 

  131. Schor, S. L., Ellis, I. R., Jones, S. J., Baillie, R., Seneviratne, K., Clausen, J., et al. (2003). Migration-stimulating factor: a genetically truncated onco-fetal fibronectin isoform expressed by carcinoma and tumor-associated stromal cells. Cancer Research, 63(24), 8827–8836.

    PubMed  CAS  Google Scholar 

  132. Murphy, G., & Nagase, H. (2008). Progress in matrix metalloproteinase research. Molecular Aspects of Medicine, 29(5), 290–308.

    Article  PubMed  CAS  Google Scholar 

  133. Herszenyi, L., Sipos, F., Galamb, O., Solymosi, N., Hritz, I., Miheller, P., et al. (2008). Matrix metalloproteinase-9 expression in the normal mucosa–adenoma–dysplasia–adenocarcinoma sequence of the colon. Pathology Oncology Research, 14(1), 31–37.

    Article  PubMed  CAS  Google Scholar 

  134. Papadopoulou, S., Scorilas, A., Arnogianaki, N., Papapanayiotou, B., Tzimogiani, A., Agnantis, N., et al. (2001). Expression of gelatinase-A (MMP-2) in human colon cancer and normal colon mucosa. Tumour Biology, 22(6), 383–389.

    Article  PubMed  CAS  Google Scholar 

  135. Kang, J. C., Chen, J. S., Lee, C. H., Chang, J. J., & Shieh, Y. S. (2010). Intratumoral macrophage counts correlate with tumor progression in colorectal cancer. J Surg Oncol, 102(3), 242–248.

    Article  PubMed  CAS  Google Scholar 

  136. Sconocchia, G., Zlobec, I., Lugli, A., Calabrese, D., Iezzi, G., Karamitopoulou, E., et al. (2010). Tumor infiltration by FcγRIII (CD16) + myeloid cells is associated with improved survival in patients with colorectal carcinoma. Int J Cancer. doi:10.1002/ijc.25609.

  137. Hasita, H., Komohara, Y., Okabe, H., Masuda, T., Ohnishi, K., Lei, X. F., et al. (2010). Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci, 101(8), 1913–1919.

    Article  PubMed  CAS  Google Scholar 

  138. Takaishi, K., Komohara, Y., Tashiro, H., Ohtake, H., Nakagawa, T., Katabuchi, H., et al. (2010). Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via Stat3 activation. Cancer Sci, 101(10), 2128–2136.

    Article  PubMed  CAS  Google Scholar 

  139. Wang, X., Deavers, M., Patenia, R., Bassett, R. L., Jr., Mueller, P., Ma, Q., et al. (2006). Monocyte/macrophage and T-cell infiltrates in peritoneum of patients with ovarian cancer or benign pelvic disease. Journal of Translational Medicine, 4, 30.

    Article  PubMed  CAS  Google Scholar 

  140. Wang, E., Ngalame, Y., Panelli, M. C., Nguyen-Jackson, H., Deavers, M., Mueller, P., et al. (2005). Peritoneal and subperitoneal stroma may facilitate regional spread of ovarian cancer. Clinical Cancer Research, 11(1), 113–122.

    Google Scholar 

  141. Zhang, T., Ma, Z., Wang, R., Wang, Y., Wang, S., Cheng, Z., et al. (2010). Thrombin facilitates invasion of ovarian cancer along peritoneum by inducing monocyte differentiation toward tumor-associated macrophage-like cells. Cancer Immunol Immunother, 59(7), 1097–1108.

    Article  PubMed  CAS  Google Scholar 

  142. Huh, S. J., Liang, S., Sharma, A., Dong, C., & Robertson, G. P. (2010). Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res, 70(14), 6071–6082.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Italian Ministry of Health, Fondazione Cassa di Risparmio di Padova e Rovigo, Italian Association for Cancer Research (AIRC), Association for International Cancer Research (AICR, Grant 08-0518), and Istituto Superiore Sanità-Alleanza Contro il Cancro (project no. ACC8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Bronte.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10555-011-9295-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chioda, M., Peranzoni, E., Desantis, G. et al. Myeloid cell diversification and complexity: an old concept with new turns in oncology. Cancer Metastasis Rev 30, 27–43 (2011). https://doi.org/10.1007/s10555-011-9268-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9268-1

Keywords

Navigation