Skip to main content

Advertisement

Log in

Metastasis-related miRNAs, active players in breast cancer invasion, and metastasis

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Breast cancer is the most common malignancy with the highest incidence among women in the world. Metastasis is the major reason for breast cancer-related deaths. The precise molecular circuitry that governs the metastasis process has not been completely understood. Discoveries of microRNAs (miRNAs) open a new avenue for cancer metastasis research. It has become clear that alterations of miRNA expression contribute to cancer pathogenesis. miRNAs control a wide array of physiological and pathological processes, including development, differentiation, cellular proliferation, programmed cell death, oncogenesis, and metastasis by modulating the expression of their cognate target genes through cleaving mRNA molecules or inhibiting their translation. Some miRNAs are associated with the invasive and metastatic phenotype of breast cancer cell lines or identified in metastatic tumor tissues and lymph nodes. Some miRNAs serve as metastasis suppressors and their expression is frequently downregulated or lost in both breast cancer cell lines and metastatic foci. Some miRNAs are considered to play key roles in the phenotype formation of breast cancer stem cells. This review will focus on recent discoveries related to the miRNAs involved in the metastasis of breast cancer and discuss the implications for the diagnosis, prognosis, and therapeutic strategies of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer statistics, 2010. CA: A Cancer Journal for Clinicians, 60(5), 277–300.

    Google Scholar 

  2. Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews. Genetics, 9(2), 102–114.

    CAS  PubMed  Google Scholar 

  3. Tavazoie, S. F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.

    CAS  PubMed  Google Scholar 

  4. Israel, A., Sharan, R., Ruppin, E., & Galun, E. (2009). Increased microRNA activity in human cancers. PLoS ONE, 4(6), e6045.

    PubMed  Google Scholar 

  5. Dumont, N., & Tlsty, T. D. (2009). Reflections on miR-ing effects in metastasis. Cancer Cell, 16(1), 3–4.

    CAS  PubMed  Google Scholar 

  6. Hurst, D. R., Edmonds, M. D., & Welch, D. R. (2009). Metastamir: The field of metastasis-regulatory microRNA is spreading. Cancer Research, 69(19), 7495–7498.

    CAS  PubMed  Google Scholar 

  7. Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2999–3004.

    CAS  PubMed  Google Scholar 

  8. Zhang, L., Huang, J., Yang, N., Greshock, J., Megraw, M. S., Giannakakis, A., et al. (2006). microRNAs exhibit high frequency genomic alterations in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9136–9141.

    CAS  PubMed  Google Scholar 

  9. Sempere, L. F., Christensen, M., Silahtaroglu, A., Bak, M., Heath, C. V., Schwartz, G., et al. (2007). Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Research, 67(24), 11612–11620.

    CAS  PubMed  Google Scholar 

  10. Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Research, 65(16), 7065–7070.

    CAS  PubMed  Google Scholar 

  11. Yan, L. X., Huang, X. F., Shao, Q., Huang, M. Y., Deng, L., Wu, Q. L., et al. (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA, 14(11), 2348–2360.

    CAS  PubMed  Google Scholar 

  12. Fassan, M., Baffa, R., Palazzo, J. P., Lloyd, J., Crosariol, M., Liu, C. G., et al. (2009). MicroRNA expression profiling of male breast cancer. Breast Cancer Research, 11(4), R58.

    PubMed  Google Scholar 

  13. Lehmann, U., Streichert, T., Otto, B., Albat, C., Hasemeier, B., Christgen, H., et al. (2010). Identification of differentially expressed microRNAs in human male breast cancer. BMC Cancer, 10, 109.

    PubMed  Google Scholar 

  14. Blenkiron, C., Goldstein, L. D., Thorne, N. P., Spiteri, I., Chin, S. F., Dunning, M. J., et al. (2007). MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biology, 8(10), R214.

    PubMed  Google Scholar 

  15. Van ’T Veer, L. J., Dai, H., Van De Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871), 530–536.

    PubMed  Google Scholar 

  16. Sotiriou, C., Wirapati, P., Loi, S., Harris, A., Fox, S., Smeds, J., et al. (2006). Gene expression profiling in breast cancer: Understanding the molecular basis of histologic grade to improve prognosis. Journal of the National Cancer Institute, 98(4), 262–272.

    CAS  PubMed  Google Scholar 

  17. Yu, K., Lee, C. H., Tan, P. H., Hong, G. S., Wee, S. B., Wong, C. Y., et al. (2004). A molecular signature of the Nottingham prognostic index in breast cancer. Cancer Research, 64(9), 2962–2968.

    CAS  PubMed  Google Scholar 

  18. Yu, J. X., Sieuwerts, A. M., Zhang, Y., Martens, J. W., Smid, M., Klijn, J. G., et al. (2007). Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer. BMC Cancer, 7, 182.

    PubMed  Google Scholar 

  19. Baffa, R., Fassan, M., Volinia, S., O’hara, B., Liu, C. G., Palazzo, J. P., et al. (2009). MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. The Journal of Pathology, 219(2), 214–221.

    CAS  PubMed  Google Scholar 

  20. Anand, S., Majeti, B. K., Acevedo, L. M., Murphy, E. A., Mukthavaram, R., Scheppke, L., et al. (2010). MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nature Medicine, 16(8), 909–914.

    CAS  PubMed  Google Scholar 

  21. Qian, B., Katsaros, D., Lu, L., Preti, M., Durando, A., Arisio, R., et al. (2009). High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-beta1. Breast Cancer Research and Treatment, 117(1), 131–140.

    CAS  PubMed  Google Scholar 

  22. Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., & Mo, Y. Y. (2008). MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Research, 18(3), 350–359.

    CAS  PubMed  Google Scholar 

  23. Song, B., Wang, C., Liu, J., Wang, X., Lv, L., Wei, L., et al. (2010). MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. Journal of Experimental & Clinical Cancer Research, 29, 29.

    Google Scholar 

  24. Huang, T. H., Wu, F., Loeb, G. B., Hsu, R., Heidersbach, A., Brincat, A., et al. (2009). Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. The Journal of Biological Chemistry, 284(27), 18515–18524.

    CAS  PubMed  Google Scholar 

  25. Huang, G. L., Zhang, X. H., Guo, G. L., Huang, K. T., Yang, K. Y., Shen, X., et al. (2009). Clinical significance of miR-21 expression in breast cancer: SYBR-Green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncology Reports, 21(3), 673–679.

    CAS  PubMed  Google Scholar 

  26. Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.

    CAS  PubMed  Google Scholar 

  27. Carrio, M., Arderiu, G., Myers, C., & Boudreau, N. J. (2005). Homeobox D10 induces phenotypic reversion of breast tumor cells in a three-dimensional culture model. Cancer Research, 65(16), 7177–7185.

    CAS  PubMed  Google Scholar 

  28. Ma, L., Reinhardt, F., Pan, E., Soutschek, J., Bhat, B., Marcusson, E. G., et al. (2010). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology, 28(4), 341–347.

    CAS  PubMed  Google Scholar 

  29. Moriarty, C. H., Pursell, B., & Mercurio, A. M. (2010). miR-10b targets Tiam1: Implications for Rac activation and carcinoma migration. The Journal of Biological Chemistry, 285(27), 20541–20546.

    CAS  PubMed  Google Scholar 

  30. Gee, H. E., Camps, C., Buffa, F. M., Colella, S., Sheldon, H., & Gleadle, J. M. (2008). MicroRNA-10b and breast cancer metastasis. Nature, 455(7216), E8–E9. author reply E9.

    CAS  PubMed  Google Scholar 

  31. Voorhoeve, P. M., Le Sage, C., Schrier, M., Gillis, A. J., Stoop, H., Nagel, R., et al. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 124(6), 1169–1181.

    CAS  PubMed  Google Scholar 

  32. Huang, Q., Gumireddy, K., Schrier, M., Le Sage, C., Nagel, R., Nair, S., et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology, 10(2), 202–210.

    CAS  PubMed  Google Scholar 

  33. Crosby, M. E., Devlin, C. M., Glazer, P. M., Calin, G. A., & Ivan, M. (2009). Emerging roles of microRNAs in the molecular responses to hypoxia. Current Pharmaceutical Design, 15(33), 3861–3866.

    CAS  PubMed  Google Scholar 

  34. Crosby, M. E., Kulshreshtha, R., Ivan, M., & Glazer, P. M. (2009). MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Research, 69(3), 1221–1229.

    CAS  PubMed  Google Scholar 

  35. Batty, D., Rapic’-Otrin, V., Levine, A. S., & Wood, R. D. (2000). Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. Journal of Molecular Biology, 300(2), 275–290.

    CAS  PubMed  Google Scholar 

  36. Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890.

    CAS  PubMed  Google Scholar 

  37. Voulgari, A., & Pintzas, A. (2009). Epithelial-mesenchymal transition in cancer metastasis: Mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochimica et Biophysica Acta, 1796(2), 75–90.

    CAS  PubMed  Google Scholar 

  38. Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., et al. (2010). miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256.

    CAS  PubMed  Google Scholar 

  39. Sun, Y., Wu, J., Wu, S. H., Thakur, A., Bollig, A., Huang, Y., et al. (2009). Expression profile of microRNAs in c-Myc induced mouse mammary tumors. Breast Cancer Research and Treatment, 118(1), 185–196.

    CAS  PubMed  Google Scholar 

  40. Martello, G., Rosato, A., Ferrari, F., Manfrin, A., Cordenonsi, M., Dupont, S., et al. (2010). A MicroRNA targeting dicer for metastasis control. Cell, 141(7), 1195–1207.

    CAS  PubMed  Google Scholar 

  41. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.

    CAS  PubMed  Google Scholar 

  42. Grelier, G., Voirin, N., Ay, A. S., Cox, D. G., Chabaud, S., Treilleux, I., et al. (2009). Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. British Journal of Cancer, 101(4), 673–683.

    CAS  PubMed  Google Scholar 

  43. Merritt, W. M., Lin, Y. G., Han, L. Y., Kamat, A. A., Spannuth, W. A., Schmandt, R., et al. (2008). Dicer, Drosha, and outcomes in patients with ovarian cancer. The New England Journal of Medicine, 359(25), 2641–2650.

    CAS  PubMed  Google Scholar 

  44. Kumar, M. S., Pester, R. E., Chen, C. Y., Lane, K., Chin, C., Lu, J., et al. (2009). Dicer1 functions as a haploinsufficient tumor suppressor. Genes & Development, 23(23), 2700–2704.

    CAS  Google Scholar 

  45. Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.

    CAS  PubMed  Google Scholar 

  46. Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R., & Jacks, T. (2007). Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genetics, 39(5), 673–677.

    CAS  PubMed  Google Scholar 

  47. Inui, M., Martello, G., & Piccolo, S. (2010). MicroRNA control of signal transduction. Nature Reviews. Molecular Cell Biology, 11(4), 252–263.

    CAS  PubMed  Google Scholar 

  48. Hoser, M., Baader, S. L., Bosl, M. R., Ihmer, A., Wegner, M., & Sock, E. (2007). Prolonged glial expression of Sox4 in the CNS leads to architectural cerebellar defects and ataxia. The Journal of Neuroscience, 27(20), 5495–5505.

    CAS  PubMed  Google Scholar 

  49. Scharer, C. D., Mccabe, C. D., Ali-Seyed, M., Berger, M. F., Bulyk, M. L., & Moreno, C. S. (2009). Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. Cancer Research, 69(2), 709–717.

    CAS  PubMed  Google Scholar 

  50. Orend, G., & Chiquet-Ehrismann, R. (2006). Tenascin-C induced signaling in cancer. Cancer Letters, 244(2), 143–163.

    CAS  PubMed  Google Scholar 

  51. Liu, B., Peng, X. C., Zheng, X. L., Wang, J., & Qin, Y. W. (2009). MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer, 66(2), 169–175.

    PubMed  Google Scholar 

  52. Crawford, M., Brawner, E., Batte, K., Yu, L., Hunter, M. G., Otterson, G. A., et al. (2008). MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochemical and Biophysical Research Communications, 373(4), 607–612.

    CAS  PubMed  Google Scholar 

  53. Feng, R., Chen, X., Yu, Y., Su, L., Yu, B., Li, J., et al. (2010). miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Letters, 298(1), 50–63.

    CAS  PubMed  Google Scholar 

  54. Li, X., Shen, Y., Ichikawa, H., Antes, T., & Goldberg, G. S. (2009). Regulation of miRNA expression by Src and contact normalization: Effects on nonanchored cell growth and migration. Oncogene, 28(48), 4272–4283.

    CAS  PubMed  Google Scholar 

  55. Feller, S. M. (2001). Crk family adaptors-signalling complex formation and biological roles. Oncogene, 20(44), 6348–6371.

    CAS  PubMed  Google Scholar 

  56. Calvo, A., Catena, R., Noble, M. S., Carbott, D., Gil-Bazo, I., Gonzalez-Moreno, O., et al. (2008). Identification of VEGF-regulated genes associated with increased lung metastatic potential: Functional involvement of tenascin-C in tumor growth and lung metastasis. Oncogene, 27(40), 5373–5384.

    CAS  PubMed  Google Scholar 

  57. Cueni, L. N., Hegyi, I., Shin, J. W., Albinger-Hegyi, A., Gruber, S., Kunstfeld, R., et al. (2010). Tumor lymphangiogenesis and metastasis to lymph nodes induced by cancer cell expression of podoplanin. The American Journal of Pathology, 177(2), 1004–1016.

    CAS  PubMed  Google Scholar 

  58. Naugler, W. E., & Karin, M. (2008). NF-kappaB and cancer-identifying targets and mechanisms. Current Opinion in Genetics & Development, 18(1), 19–26.

    CAS  Google Scholar 

  59. Coppe, J. P., Kauser, K., Campisi, J., & Beausejour, C. M. (2006). Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. The Journal of Biological Chemistry, 281(40), 29568–29574.

    CAS  PubMed  Google Scholar 

  60. Bhaumik, D., Scott, G. K., Schokrpur, S., Patil, C. K., Campisi, J., & Benz, C. C. (2008). Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene, 27(42), 5643–5647.

    CAS  PubMed  Google Scholar 

  61. Hurst, D. R., Edmonds, M. D., Scott, G. K., Benz, C. C., Vaidya, K. S., & Welch, D. R. (2009). Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Research, 69(4), 1279–1283.

    CAS  PubMed  Google Scholar 

  62. Valastyan, S., Reinhardt, F., Benaich, N., Calogrias, D., Szasz, A. M., Wang, Z. C., et al. (2009). A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell, 137(6), 1032–1046.

    CAS  PubMed  Google Scholar 

  63. Lee, E. J., Baek, M., Gusev, Y., Brackett, D. J., Nuovo, G. J., & Schmittgen, T. D. (2008). Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA, 14(1), 35–42.

    CAS  PubMed  Google Scholar 

  64. Bhowmick, N. A., Ghiassi, M., Bakin, A., Aakre, M., Lundquist, C. A., Engel, M. E., et al. (2001). Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Molecular Biology of the Cell, 12(1), 27–36.

    CAS  PubMed  Google Scholar 

  65. Shi, B., Sepp-Lorenzino, L., Prisco, M., Linsley, P., Deangelis, T., & Baserga, R. (2007). Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. The Journal of Biological Chemistry, 282(45), 32582–32590.

    CAS  PubMed  Google Scholar 

  66. Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., et al. (2009). p53 represses c-Myc through induction of the tumor suppressor miR-145. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3207–3212.

    CAS  PubMed  Google Scholar 

  67. Schepeler, T., Reinert, J. T., Ostenfeld, M. S., Christensen, L. L., Silahtaroglu, A. N., Dyrskjot, L., et al. (2008). Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Research, 68(15), 6416–6424.

    CAS  PubMed  Google Scholar 

  68. Kufe, D. W. (2009). Mucins in cancer: Function, prognosis and therapy. Nature Reviews. Cancer, 9(12), 874–885.

    CAS  PubMed  Google Scholar 

  69. Sachdeva, M., & Mo, Y. Y. (2010). MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Research, 70(1), 378–387.

    CAS  PubMed  Google Scholar 

  70. Shan, S. W., Lee, D. Y., Deng, Z., Shatseva, T., Jeyapalan, Z., Du, W. W., et al. (2009). MicroRNA MiR-17 retards tissue growth and represses fibronectin expression. Nature Cell Biology, 11(8), 1031–1038.

    CAS  PubMed  Google Scholar 

  71. Yu, Z., Willmarth, N. E., Zhou, J., Katiyar, S., Wang, M., Liu, Y., et al. (2010). microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8231–8236.

    CAS  PubMed  Google Scholar 

  72. Yu, Z., Wang, C., Wang, M., Li, Z., Casimiro, M. C., Liu, M., et al. (2008). A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. The Journal of Cell Biology, 182(3), 509–517.

    CAS  PubMed  Google Scholar 

  73. O’donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., & Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435(7043), 839–843.

    PubMed  Google Scholar 

  74. Li, X., & Carthew, R. W. (2005). A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell, 123(7), 1267–1277.

    CAS  PubMed  Google Scholar 

  75. Kefas, B., Godlewski, J., Comeau, L., Li, Y., Abounader, R., Hawkinson, M., et al. (2008). microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Research, 68(10), 3566–3572.

    CAS  PubMed  Google Scholar 

  76. Webster, R. J., Giles, K. M., Price, K. J., Zhang, P. M., Mattick, J. S., & Leedman, P. J. (2009). Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. The Journal of Biological Chemistry, 284(9), 5731–5741.

    CAS  PubMed  Google Scholar 

  77. Reddy, S. D., Ohshiro, K., Rayala, S. K., & Kumar, R. (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Research, 68(20), 8195–8200.

    CAS  PubMed  Google Scholar 

  78. Reddy, S. D., Pakala, S. B., Ohshiro, K., Rayala, S. K., & Kumar, R. (2009). MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. Cancer Research, 69(14), 5639–5642.

    CAS  PubMed  Google Scholar 

  79. Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. The Journal of Biological Chemistry, 282(3), 1529–1533.

    CAS  PubMed  Google Scholar 

  80. Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B., & Bartel, D. P. (2003). Vertebrate microRNA genes. Science, 299(5612), 1540.

    CAS  PubMed  Google Scholar 

  81. Wienholds, E., Kloosterman, W. P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., De Bruijn, E., et al. (2005). MicroRNA expression in zebrafish embryonic development. Science, 309(5732), 310–311.

    CAS  PubMed  Google Scholar 

  82. Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 129(7), 1401–1414.

    CAS  PubMed  Google Scholar 

  83. Wu, H., & Mo, Y. Y. (2009). Targeting miR-205 in breast cancer. Expert Opinion on Therapeutic Targets, 13(12), 1439–1448.

    CAS  PubMed  Google Scholar 

  84. Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.

    CAS  PubMed  Google Scholar 

  85. Wu, H., Zhu, S., & Mo, Y. Y. (2009). Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Research, 19(4), 439–448.

    CAS  PubMed  Google Scholar 

  86. Baselga, J., & Swain, S. M. (2009). Novel anticancer targets: Revisiting ERBB2 and discovering ERBB3. Nature Reviews. Cancer, 9(7), 463–475.

    CAS  PubMed  Google Scholar 

  87. Xue, C., Liang, F., Mahmood, R., Vuolo, M., Wyckoff, J., Qian, H., et al. (2006). ErbB3-dependent motility and intravasation in breast cancer metastasis. Cancer Research, 66(3), 1418–1426.

    CAS  PubMed  Google Scholar 

  88. Iorio, M. V., Casalini, P., Piovan, C., Di Leva, G., Merlo, A., Triulzi, T., et al. (2009). microRNA-205 regulates HER3 in human breast cancer. Cancer Research, 69(6), 2195–2200.

    CAS  PubMed  Google Scholar 

  89. Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.

    CAS  PubMed  Google Scholar 

  90. Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. The Journal of Biological Chemistry, 283(22), 14910–14914.

    CAS  PubMed  Google Scholar 

  91. Olson, P., Lu, J., Zhang, H., Shai, A., Chun, M. G., Wang, Y., et al. (2009). MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes & Development, 23(18), 2152–2165.

    CAS  Google Scholar 

  92. Park, S. M., Gaur, A. B., Lengyel, E., & Peter, M. E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes & Development, 22(7), 894–907.

    CAS  Google Scholar 

  93. Gibbons, D. L., Lin, W., Creighton, C. J., Rizvi, Z. H., Gregory, P. A., Goodall, G. J., et al. (2009). Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes & Development, 23(18), 2140–2151.

    CAS  Google Scholar 

  94. Hurteau, G. J., Carlson, J. A., Spivack, S. D., & Brock, G. J. (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Research, 67(17), 7972–7976.

    CAS  PubMed  Google Scholar 

  95. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.

    CAS  PubMed  Google Scholar 

  96. Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768.

    CAS  PubMed  Google Scholar 

  97. Pece, S., Tosoni, D., Confalonieri, S., Mazzarol, G., Vecchi, M., Ronzoni, S., et al. (2010). Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell, 140(1), 62–73.

    CAS  PubMed  Google Scholar 

  98. Cicalese, A., Bonizzi, G., Pasi, C. E., Faretta, M., Ronzoni, S., Giulini, B., et al. (2009). The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell, 138(6), 1083–1095.

    CAS  PubMed  Google Scholar 

  99. Diallo, R., Schaefer, K. L., Poremba, C., Shivazi, N., Willmann, V., Buerger, H., et al. (2001). Monoclonality in normal epithelium and in hyperplastic and neoplastic lesions of the breast. The Journal of Pathology, 193(1), 27–32.

    CAS  PubMed  Google Scholar 

  100. Dontu, G., Abdallah, W. M., Foley, J. M., Jackson, K. W., Clarke, M. F., Kawamura, M. J., et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & Development, 17(10), 1253–1270.

    CAS  Google Scholar 

  101. Al-Hajj, M. (2007). Cancer stem cells and oncology therapeutics. Current Opinion in Oncology, 19(1), 61–64.

    PubMed  Google Scholar 

  102. Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.

    CAS  PubMed  Google Scholar 

  103. Wellner, U., Schubert, J., Burk, U. C., Schmalhofer, O., Zhu, F., Sonntag, A., et al. (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 11(12), 1487–1495.

    CAS  PubMed  Google Scholar 

  104. Shimono, Y., Zabala, M., Cho, R. W., Lobo, N., Dalerba, P., Qian, D., et al. (2009). Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 138(3), 592–603.

    CAS  PubMed  Google Scholar 

  105. Yu, F., Deng, H., Yao, H., Liu, Q., Su, F., & Song, E. (2010). Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene, 29(29), 4194–4204.

    CAS  PubMed  Google Scholar 

  106. Park, I. K., Qian, D., Kiel, M., Becker, M. W., Pihalja, M., Weissman, I. L., et al. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 423(6937), 302–305.

    CAS  PubMed  Google Scholar 

  107. Lessard, J., & Sauvageau, G. (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 423(6937), 255–260.

    CAS  PubMed  Google Scholar 

  108. Akala, O. O., Park, I. K., Qian, D., Pihalja, M., Becker, M. W., & Clarke, M. F. (2008). Long-term haematopoietic reconstitution by Trp53-/-p16Ink4a-/-p19Arf-/- multipotent progenitors. Nature, 453(7192), 228–232.

    CAS  PubMed  Google Scholar 

  109. Bracken, A. P., & Helin, K. (2009). Polycomb group proteins: Navigators of lineage pathways led astray in cancer. Nature Reviews. Cancer, 9(11), 773–784.

    CAS  PubMed  Google Scholar 

  110. Roush, S., & Slack, F. J. (2008). The let-7 family of microRNAs. Trends in Cell Biology, 18(10), 505–516.

    CAS  PubMed  Google Scholar 

  111. Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.

    CAS  PubMed  Google Scholar 

  112. Viswanathan, S. R., Powers, J. T., Einhorn, W., Hoshida, Y., Ng, T. L., Toffanin, S., et al. (2009). Lin28 promotes transformation and is associated with advanced human malignancies. Nature Genetics, 41(7), 843–848.

    CAS  PubMed  Google Scholar 

  113. Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs—microRNAs with a role in cancer. Nature Reviews. Cancer, 6(4), 259–269.

    CAS  PubMed  Google Scholar 

  114. Dangi-Garimella, S., Yun, J., Eves, E. M., Newman, M., Erkeland, S. J., Hammond, S. M., et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. The EMBO Journal, 28(4), 347–358.

    CAS  PubMed  Google Scholar 

  115. Mayr, C., Hemann, M. T., & Bartel, D. P. (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315(5818), 1576–1579.

    CAS  PubMed  Google Scholar 

  116. Chang, T. C., Zeitels, L. R., Hwang, H. W., Chivukula, R. R., Wentzel, E. A., Dews, M., et al. (2009). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3384–3389.

    CAS  PubMed  Google Scholar 

  117. Iliopoulos, D., Hirsch, H. A., & Struhl, K. (2009). An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell, 139(4), 693–706.

    CAS  PubMed  Google Scholar 

  118. Cabodi, S., & Taverna, D. (2010). Interfering with inflammation: A new strategy to block breast cancer self-renewal and progression? Breast Cancer Research, 12(2), 305.

    PubMed  Google Scholar 

  119. Heo, I., Joo, C., Cho, J., Ha, M., Han, J., & Kim, V. N. (2008). Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Molecular Cell, 32(2), 276–284.

    CAS  PubMed  Google Scholar 

  120. Rybak, A., Fuchs, H., Smirnova, L., Brandt, C., Pohl, E. E., Nitsch, R., et al. (2008). A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biology, 10(8), 987–993.

    CAS  PubMed  Google Scholar 

  121. Viswanathan, S. R., Daley, G. Q., & Gregory, R. I. (2008). Selective blockade of microRNA processing by Lin28. Science, 320(5872), 97–100.

    CAS  PubMed  Google Scholar 

  122. Heo, I., Joo, C., Kim, Y. K., Ha, M., Yoon, M. J., Cho, J., et al. (2009). TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell, 138(4), 696–708.

    CAS  PubMed  Google Scholar 

  123. Hagan, J. P., Piskounova, E., & Gregory, R. I. (2009). Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nature Structural & Molecular Biology, 16(10), 1021–1025.

    CAS  Google Scholar 

  124. Dalerba, P., & Clarke, M. F. (2007). Cancer stem cells and tumor metastasis: First steps into uncharted territory. Cell Stem Cell, 1(3), 241–242.

    CAS  PubMed  Google Scholar 

  125. Wu, F., Zhu, S., Ding, Y., Beck, W. T., & Mo, Y. Y. (2009). MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clinical Cancer Research, 15(5), 1550–1557.

    CAS  PubMed  Google Scholar 

  126. Muller, D. W., & Bosserhoff, A. K. (2008). Integrin beta 3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene, 27(52), 6698–6706.

    CAS  PubMed  Google Scholar 

  127. Yu, Z., Baserga, R., Chen, L., Wang, C., Lisanti, M. P., & Pestell, R. G. (2010). microRNA, cell cycle, and human breast cancer. The American Journal of Pathology, 176(3), 1058–1064.

    CAS  PubMed  Google Scholar 

  128. Brennecke, J., Stark, A., Russell, R. B., & Cohen, S. M. (2005). Principles of microRNA-target recognition. PLoS Biology, 3(3), e85.

    PubMed  Google Scholar 

  129. Mattie, M. D., Benz, C. C., Bowers, J., Sensinger, K., Wong, L., Scott, G. K., et al. (2006). Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Molecular Cancer, 5, 24.

    PubMed  Google Scholar 

  130. Lowery, A. J., Miller, N., Devaney, A., Mcneill, R. E., Davoren, P. A., Lemetre, C., et al. (2009). MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Research, 11(3), R27.

    PubMed  Google Scholar 

  131. Zhou, M., Liu, Z., Zhao, Y., Ding, Y., Liu, H., Xi, Y., et al. (2010). MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. The Journal of Biological Chemistry, 285(28), 21496–21507.

    CAS  PubMed  Google Scholar 

  132. Heneghan, H. M., Miller, N., Lowery, A. J., Sweeney, K. J., Newell, J., & Kerin, M. J. (2010). Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Annals of Surgery, 251(3), 499–505.

    PubMed  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Basic Research Program of China (973 Program, no. 2006CB504305 and 2010CB911904), National High-Tech Research and Development Plan (863 Program, no. 2006AA02A245), National Key Technologies R&D Program for New Drugs (2008ZX10004-015, 2009ZX09301-002, and 2009ZX09103-619), Grand Science and Technology Special programs concerning prevention and treatment of infectious diseases (2008ZX10004-015), and the National Natural Science Foundation of China (no. 30771981, 30901766, and 30972690).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, M., Liu, D., Duan, H. et al. Metastasis-related miRNAs, active players in breast cancer invasion, and metastasis. Cancer Metastasis Rev 29, 785–799 (2010). https://doi.org/10.1007/s10555-010-9265-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9265-9

Keywords

Navigation