Skip to main content

Advertisement

Log in

Targeted therapy for gastrointestinal stromal tumors: current status and future perspectives

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Gastrointestinal stromal tumors (GISTs) present 80% of gastrointestinal tract mesenchymal tumors, with systemic chemotherapy and radiotherapy being unable to improve survival of patients with advanced disease. The identification of activating mutations in either KIT cell surface growth factor receptor or platelet-derived growth factor receptor alpha, which lead to ligand-independent signal transduction, paved the way for the development of novel agents that selectively inhibit key molecular events in disease pathogenesis. The development of imatinib mesylate in the treatment of metastatic GIST represents a therapeutic breakthrough in molecularly targeted strategies, which crucially improved patients’ prognosis while its usefulness in adjuvant and neoadjuvant setting is under study. Sunitinib malate is available in the second-line setting, with ongoing studies evaluating its role in an earlier disease stage, while other targets are under intense investigation in order to enrich the therapeutical armamentarium for this disease. GIST phenotype seems to be an essential indicator of treatment response; thus, obtaining genotype information of each patient may be critical in order to tailor individualized treatment strategies and achieve maximal therapeutic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Miettinen, M., & Lasota, J. (2001). Gastrointestinal stromal tumors—Definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Virchows Archive, 438(1), 1–12.

    Article  CAS  Google Scholar 

  2. Mazur, M. T., & Clark, H. B. (1983). Gastric stromal tumors. Reappraisal of histogenesis. American Journal of Surgical Pathology, 7(6), 507–519.

    PubMed  CAS  Google Scholar 

  3. Miettinen, M., Monihan, J. M., Sarlomo-Rikala, M., Kovatich, A. J., Carr, N. J., Emory, T. S., et al. (1999). Gastrointestinal stromal tumors/smooth muscle tumors (GISTs) primary in the omentum and mesentery: Clinicopathologic and immunohistochemical study of 26 cases. American Journal of Surgical Pathology, 23(9), 1109–1118.

    Article  PubMed  CAS  Google Scholar 

  4. Syrigos, K. N., & Harrington, K. J. (2002). Targeted therapy for cancer. Oxford: Oxford University Press.

    Google Scholar 

  5. Papaetis, G. S., Roussos, C., & Syrigos, K. N. (2007). Targeted therapies for non-small cell lung cancer. Current Pharmaceutical Design, 13(27), 2810–2831.

    Article  PubMed  CAS  Google Scholar 

  6. Kindblom, L. G., Remotti, H. E., Aldenberg, F., & Meis-Kindblom, J. M. (1998). Gastrointestinal pacemaker cell tumor (GIPACT): Gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. American Journal of Pathology, 152(5), 1259–1269.

    PubMed  CAS  Google Scholar 

  7. Hirota, S., Isozaki, K., Moriyama, Y., Hashimoto, K., Nishida, T., Ishiguro, S., et al. (1998). Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science, 279(5350), 577–580.

    Article  PubMed  CAS  Google Scholar 

  8. Lux, M., Rubin, B. P., Biase, T. L., Chen, C. J., Maclure, T., Demetri, G., et al. (2000). KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors. American Journal of Pathology, 156(3), 791–795.

    PubMed  CAS  Google Scholar 

  9. D’Amato, G., Steinert, D. M., McAuliffe, J. C., & Trent, J. C. (2005). Update on the biology and therapy of gastrointestinal stromal tumors. Cancer Control, 12(1), 44–56.

    PubMed  Google Scholar 

  10. Blanke, C. D. (2006). Long-term follow-up of a phase II randomized trial in advanced gastrointestinal stromal tumor (GIST) patients (pts) treated with imatinib mesylate [abstract #9528]. Journal of Clinical Oncology, 24, 526s.

    Google Scholar 

  11. Sircar, K., Hewlett, B. R., Huizinga, J. D., Chorneyko, K., Berezin, I., & Riddell, R. H. (1999). Interstitial cells of Cajal as precursors of gastrointestinal stromal tumors. American Journal of Surgical Pathology, 23(4), 377–389.

    Article  PubMed  CAS  Google Scholar 

  12. West, R. B., Corless, C. L., Chen, X., Rubin, B. P., Subramanian, S., Montgomery, K., et al. (2004). The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. American Journal of Pathology, 165(1), 107–113.

    PubMed  CAS  Google Scholar 

  13. Chirieac, L., Trent, J., & Steinert, D. M. (2003). Correlation of immunophenotype with clinical outcome of GIST patients treated with imatinib mesylate. Presented at the 9th Annual Connective Tissue Oncology Society, November 6–8, Barcelona.

  14. Fletcher, C. D., Berman, J. J., Corless, C., Gorstein, F., Lasota, J., Longley, B. J., et al. (2002). Diagnosis of gastrointestinal stromal tumors: A consensus approach. Human Pathology, 33(5), 459–465.

    Article  PubMed  Google Scholar 

  15. Fleischman, R. A. (1993). From white spots to stem cells: The role of the Kit receptor in mammalian development. Trends in Genetics, 9(8), 285–290.

    Article  PubMed  CAS  Google Scholar 

  16. Medeiros, F., Corless, C. L., Duensing, A., Hornick, J. L., Oliveira, A. M., Heinrich, M. C., et al. (2004). KIT-negative gastrointestinal stromal tumors: Proof of concept and therapeutic implications. American Journal of Surgical Pathology, 28(7), 889–894.

    Article  PubMed  Google Scholar 

  17. Berman, J., & O’Leary, T. J. (2001). Gastrointestinal stromal tumor workshop. Human Pathology, 32(6), 578–582.

    Article  PubMed  CAS  Google Scholar 

  18. Demetri, G. D., Benjamin, R. S., Blanke, C. D., Blay, J. Y., Casali, P., Choi, H., et al. (2007). NCCN Task Force report: Management of patients with gastrointestinal stromal tumor (GIST)—Update of the NCCN clinical practice guidelines. Journal of the National Comprehensive Cancer Network, 5(Suppl 2), S1–S29.

    PubMed  Google Scholar 

  19. Nilsson, B., Bumming, P., Meis-Kindblom, J. M., Oden, A., Dortok, A., Gustavsson, B., et al. (2005). Gastrointestinal stromal tumors: The incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era—A population-based study in western Sweden. Cancer, 103(4), 821–829.

    Article  PubMed  Google Scholar 

  20. DeMatteo, R., Gold, J. S., Saran, J. L., Gönen, M., Liau, K. H., Maki, R. G., et al. (2008). Tumor mitotic rate, size, and location independently predict recurrence after resection of primary gastrointestinal stromal tumor (GIST). Cancer, 112(3), 608–615.

    Article  PubMed  Google Scholar 

  21. Miettenen, M., Makhlouf, H., Sobin, L. M., & Lasota, J. (2006). Gastrointestinal stromal tumors of the jejunum and ileum: A clinicopathologic, immunohistochemical, and molecular genetic study of 906 cases before imatinib with long-term follow-up. American Journal of Surgical Pathology, 30(4), 477–489.

    Article  Google Scholar 

  22. Emory, T. S., Sobin, L. H., Lukes, L., & Emory, T. S. (1999). Prognosis of gastrointestinal smooth-muscle (stromal) tumors: Dependence on anatomic site. American Journal of Surgical Pathology, 23(1), 82–87.

    Article  PubMed  CAS  Google Scholar 

  23. Din, O. S., & Woll, P. J. (2008). Treatment of gastrointestinal stromal tumors: Focus on imatinib mesylate. Therapeutics and Clinical Risk Management, 4(1), 149–162.

    PubMed  CAS  Google Scholar 

  24. Rutkowski, P., Nowecki, Z. I., Michej, W., Debiec-Rychter, M., Wozniak, A., Limon, J., et al. (2007). Risk criteria and prognostic factors for predicting recurrences after resection of primary gastrointestinal stromal tumor. Annals of Surgical Oncology, 14(7), 2018–2027.

    Article  PubMed  Google Scholar 

  25. Takahashi, R., Tanaka, S., Kitadai, Y., Sumii, M., Yoshihara, M., Haruma, K., et al. (2003). Expression of vascular endothelial growth factor and angiogenesis in gastrointestinal stromal tumor of the stomach. Oncology, 64(3), 266–274.

    Article  PubMed  CAS  Google Scholar 

  26. Al-Bozom, I. A. (2001). p53 expression in gastrointestinal stromal tumors. Pathology International, 51(7), 519–523.

    Article  PubMed  CAS  Google Scholar 

  27. Schneider-Stock, R., Boltze, C., Lasota, J., Miettinen, M., Peters, B., Pross, M., et al. (2003). High prognostic value of p16INK4 alterations in gastrointestinal stromal tumors. Journal of Clinical Oncology, 21(9), 1688–1697.

    Article  PubMed  CAS  Google Scholar 

  28. Debiec-Rychter, M., Lasota, J., Sarlomo-Rikala, M., Kordek, R., & Miettinen, M. (2001). Chromosomal aberrations in malignant gastrointestinal stromal tumors: Correlation with c-KIT gene mutation. Cancer Genetics and Cytogenetics, 128(1), 24–30.

    Article  PubMed  CAS  Google Scholar 

  29. Besmer, P., Murphy, J. E., George, P. C., Qiu, F., Bergold, P. J., Lederman, L., et al. (1986). A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature, 320(6061), 415–421.

    Article  PubMed  CAS  Google Scholar 

  30. Taylor, M. L., & Metcalfe, D. D. (2000). Kit signal transduction. Hematology/oncology Clinics of North America, 14(3), 517–535.

    Article  PubMed  CAS  Google Scholar 

  31. Blume-Jensen, P., Claesson-Welsh, L., Siegbahn, A., Zsebo, K. M., Westermark, B., & Heldin, C. H. (1991). Activation of the human c-kit product by ligand-induced dimerization mediates circular actin reorganization and chemotaxis. Embo Journal, 10(13), 4121–4128.

    PubMed  CAS  Google Scholar 

  32. Rottapel, R., Reedijk, M., Williams, D. E., Lyman, S. D., Anderson, D. M., Pawson, T., et al. (1991). The Steel/W transduction pathway: Kit autophosphorylation and its association with a unique subset of cytoplasmic signaling proteins is induced by the Steel factor. Molecular and Cellular Biology, 11(6), 3043–3051.

    PubMed  CAS  Google Scholar 

  33. Yi, T., & Ihle, J. N. (1993). Association of hematopoietic cell phosphatase with c-Kit after stimulation with c-Kit ligand. Molecular and Cellular Biology, 13(6), 3350–3358.

    PubMed  CAS  Google Scholar 

  34. Blume-Jensen, P., Ronnstrand, L., Gout, I., Waterfield, M. D., & Heldin, C. H. (1994). Modulation of Kit/stem cell factor receptor-induced signaling by protein kinase C. Journal of Biological Chemistry, 269(34), 21793–21802.

    PubMed  CAS  Google Scholar 

  35. Heinrich, M. C., Rubin, B. P., Longley, B. J., & Fletcher, J. A. (2002). Biology and genetic aspects of gastrointestinal stromal tumors: KIT activation and cytogenetic alterations. Human Pathology, 33(55), 484–495.

    Article  PubMed  CAS  Google Scholar 

  36. Miettinen, M., Sobin, L. H., & Sarlomo-Rikala, M. (2000). Immunohistochemical spectrum of GISTs at different sites and their differential diagnosis with a reference to CD117 (KIT). Modern Pathology, 13(10), 1134–1142.

    Article  PubMed  CAS  Google Scholar 

  37. Singer, S., Rubin, B. P., Lux, M. L., Chen, C. J., Demetri, G. D., Fletcher, C. D., et al. (2002). Prognostic value of KIT mutation type, mitotic activity, and histologic subtype in gastrointestinal stromal tumors. Journal of Clinical Oncology, 20(18), 3898–3905.

    Article  PubMed  CAS  Google Scholar 

  38. Lasota, J., Wozniak, A., Sarlomo-Rikala, M., Rys, J., Kordek, R., Nassar, A., et al. (2000). Mutations in exons 9 and 13 of KIT gene are rare events in gastrointestinal stromal tumors. American Journal of Pathology, 157(4), 1091–1095.

    PubMed  CAS  Google Scholar 

  39. Hirota, S., Nishida, T., Isozaki, K., Taniguchi, M., Nakamura, J., Okazaki, T., et al. (2001). Gain-of-function mutation at the extracellular domain of KIT in gastrointestinal stromal tumours. Journal of Pathology, 193(4), 505–510.

    Article  PubMed  CAS  Google Scholar 

  40. Kinoshita, K., Isozaki, K., Hirota, S., Nishida, T., Chen, H., Nakahara, M., et al. (2003). c-kit gene mutation at exon 17 or 13 is very rare in sporadic gastrointestinal stromal tumors. Journal of Gastroenterology and Hepatology, 18(2), 147–151.

    Article  PubMed  CAS  Google Scholar 

  41. Antonescu, C. R., Viale, A., Sarran, L., Tschernyavsky, S. J., Gonen, M., Segal, N. H., et al. (2004). Gene expression in gastrointestinal stromal tumors is distinguished by KIT genotype and anatomic site. Clinical Cancer Research, 10(10), 3282–3290.

    Article  PubMed  CAS  Google Scholar 

  42. Heinrich, M. C., Corless, C. L., Demetri, G. D., Blanke, C. D., von Mehren, M., Joensuu, H., et al. (2003). Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. Journal of Clinical Oncology, 21(23), 4342–4349.

    Article  PubMed  CAS  Google Scholar 

  43. Corless, L. C., Fletcher, J. A., & Heinrich, M. C. (2004). Biology of gastrointestinal stromal tumors. Journal of Clinical Oncology, 22(18), 3813–3825.

    Article  PubMed  CAS  Google Scholar 

  44. Kim, T. W., Lee, H., Kang, Y. K., Choe, M. S., Ryu, M. H., Chang, H. M., et al. (2004). Prognostic significance of c-kit mutation in localized gastrointestinal stromal tumors. Clinical Cancer Research, 10(9), 3076–3081.

    Article  PubMed  CAS  Google Scholar 

  45. Taniguchi, M., Nishida, T., Hirota, S., Isozaki, K., Ito, T., Nomura, T., et al. (1999). Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors. Cancer Research, 59(17), 4297–4300.

    PubMed  CAS  Google Scholar 

  46. Isozaki, K., & Hirota, S. (2006). Gain-of-function mutations of the receptor tyrosine kinases in gastrointestinal stromal tumors. Current Genomics, 7(8), 469–475.

    Article  PubMed  CAS  Google Scholar 

  47. Martin, J., Poveda, A., Llombart-Bosch, A., Ramos, R., López-Guerrero, J. A., García del Muro, J., et al. (2005). Deletions affecting codons 557–558 of the c-KIT gene indicate a poor prognosis in patients with completely resected gastrointestinal stromal tumors: A study by the Spanish Group for Sarcoma Research (GEIS). Journal of Clinical Oncology, 23(25), 6190–6198.

    Article  PubMed  CAS  Google Scholar 

  48. Hirota, S., Ohashi, A., & Nishida, T. (2003). Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology, 125(3), 660–667.

    Article  PubMed  CAS  Google Scholar 

  49. Heinrich, M. C., Corless, C. L., Duensing, A., McGreevey, L., Chen, C. J., Joseph, N., et al. (2003). PDGFRA activating mutations in gastrointestinal stromal tumors. Science, 299(5607), 708–710.

    Article  PubMed  CAS  Google Scholar 

  50. Tornillo, L., & Terracciano, L. M. (2006). An update on molecular genetics of gastrointestinal stromal tumours. Journal of Clinical Pathology, 59(6), 557–563.

    Article  PubMed  CAS  Google Scholar 

  51. Corless, C. L., Schroeder, A., Griffith, D., Town, A., McGreevey, L., Harrell, P., et al. (2005). PDGFRA mutations in gastrointestinal stromal tumors: Frequency, spectrum and in vitro sensitivity to imatinib. Journal of Clinical Oncology, 23(23), 5357–5364.

    Article  PubMed  CAS  Google Scholar 

  52. Lasota, J., Stachura, J., & Miettinen, M. (2006). GISTs with PDGFRA exon 14 mutations represent subset of clinically favorable gastric tumors with epithelioid morphology. Laboratory Investigation, 86(1), 94–100.

    Article  PubMed  CAS  Google Scholar 

  53. Tarn, C., Rink, L., Merkel, E., Flieder, D., Pathak, H., Koumbi, D., et al. (2008). Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors. Proceedings of the National Academy of Science, 105(24), 8387–8392.

    Article  CAS  Google Scholar 

  54. Bauer, S., Corless, C. L., Heinrich, M. C., Dirsch, O., Antoch, G., Kanja, J., et al. (2003). Response to imatinib mesylate of a gastrointestinal stromal tumor with very low expression of KIT. Cancer Chemotherapy and Pharmacology, 51(3), 261–265.

    PubMed  Google Scholar 

  55. Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., et al. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Medicine, 2(5), 561–566.

    Article  PubMed  CAS  Google Scholar 

  56. Tuveson, D. A., Willis, N. A., Jacks, T., Griffin, J. D., Singer, S., Fletcher, C. D., et al. (2001). STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: Biological and clinical implications. Oncogene, 20(36), 5054–5058.

    Article  PubMed  CAS  Google Scholar 

  57. Wang, W. L., Healy, M. E., Sattler, M., Verma, S., Lin, J., Maulik, G., et al. (2000). Growth inhibition and modulation of kinase pathways of small cell lung cancer cell lines by the novel tyrosine kinase inhibitor STI 571. Oncogene, 19(31), 3521–3528.

    Article  PubMed  CAS  Google Scholar 

  58. Krystal, G. W., Honsawek, S., Litz, J., & Buchdunger, E. (2000). The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth. Clinical Cancer Research, 6(8), 3319–3326.

    PubMed  CAS  Google Scholar 

  59. Joensuu, H., Roberts, P. J., Sarlomo-Rikala, M., Andersson, L. C., Tervahartiala, P., Tuveson, D., et al. (2001). Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. New England Journal of Medicine, 344(14), 1052–1056.

    Article  PubMed  CAS  Google Scholar 

  60. van Oosterom, A. T., Judson, I., Verweij, J., Stroobants, S., Donato di Paola, E., Dimitrijevic, S., et al. (2001). Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: A phase I study. Lancet, 358, 1421–1423.

    Article  PubMed  Google Scholar 

  61. Van Oosterom, A. T., Judson, I. R., Verweij, J., Stroobants, S., Dumez, H., Donato di Paola, E., et al. (2002). Update of phase I study of imatinib (STI571) in advanced soft tissue sarcomas and gastrointestinal stromal tumors: A report of the EORTC Soft Tissue and Bone Sarcoma Group. European Journal of Cancer, 38, S83–S87.

    Article  PubMed  Google Scholar 

  62. Van Glabbeke, M., Verweij, J., Casali, P. G., Simes, J., Le Cesne, A., Reichardt, P., et al. (2006). Predicting toxicities for patients with advanced gastrointestinal stromal tumours treated with imatinib: A study of the European Organisation for Research and Treatment of Cancer, the Italian Sarcoma Group, and the Australasian Gastro-Intestinal Trials Group (EORTC-ISG-AGITG). European Journal of Cancer, 42(16), 2277–2285.

    Article  PubMed  CAS  Google Scholar 

  63. Demetri, G. D., Von Mehren, M., Blanke, C. D., an den Abbeele, A. D., Eisenberg, B., Roberts, P. J., et al. (2002). Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. New England Journal of Medicine, 347(7), 472–480.

    Article  PubMed  CAS  Google Scholar 

  64. Dagher, R., Cohen, M., Williams, G., Rothmann, M., Gobburu, J., Robbie, G., et al. (2002). Approval summary: Imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clinical Cancer Research, 8(10), 3034–3038.

    PubMed  CAS  Google Scholar 

  65. Blanke, C., Demetri, G., von Mehren, M., Heinrich, M. C., Eisenberg, B., Fletcher, J. A., et al. (2008). Long term results from a randomized phase II trial of standard-versus higher dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. Journal of Clinical Oncology, 26(4), 620–625.

    Article  PubMed  CAS  Google Scholar 

  66. Verweij, J., van Oosterom, A. T., Blay, J. Y., Judson, I., Rodenhuis, S., van der Graaf, W., et al. (2003). Imatinib mesylate (STI-571 Glivec, Gleevec) is an active agent for gastrointestinal stromal tumours, but does not yield responses in other soft-tissue sarcomas that are unselected for a molecular target. Results from an EORTC Soft Tissue and Bone Sarcoma Group phase II study. European Journal of Cancer, 39(14), 2006–2011.

    Article  PubMed  CAS  Google Scholar 

  67. Nishida, T., Shirao, K., Sawaki, A., Koseki, M., Okamura, T., Ohtsu, A., et al. (2008). Efficacy and safety profile of imatinib mesylate (ST1571) in Japanese patients with advanced gastrointestinal stromal tumors: A phase II study (STI571B1202). International Journal of Clinical Oncology, 13(3), 244–251.

    Article  PubMed  CAS  Google Scholar 

  68. Verweij, J., Casali, P. G., Zalcberg, J., LeCesne, A., Reichardt, P., Blay, J. Y., et al. (2004). Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: Randomised trial. Lancet, 364(9440), 1127–1134.

    Article  PubMed  CAS  Google Scholar 

  69. Casali, P. G., Verweij, J., & Kotasek, D. (2005). Imatinib mesylate in advanced gastrointestinal stromal tumors (GIST): Survival analysis of the Intergroup EORTC/ISG/AGITG randomized trial in 946 patients. European Journal of Cancer, 3, 201. suppl; abstract 711.

    Google Scholar 

  70. Sciot, R., Debiec-Rychter, M., Daugaard, S., Fisher, C., Collin, F., van Glabbeke, M., et al. (2008). Distribution and prognostic value of histopathologic data and immunohistochemical markers in gastrointestinal stromal tumours (GISTs): An analysis of the EORTC phase III trial of treatment of metastatic GISTs with imatinib mesylate. European Journal of Cancer, 44(13), 1855–1860.

    Article  PubMed  Google Scholar 

  71. Benjamin, R. S., Rankin, C., & Fletcher, C. (2003). Phase III dose-randomized study of imatinib mesylate (STI-571) for GIST: Intergroup S0033 early results. Proceedings of the Annual Meeting of the American Society of Clinical Oncology, 22, A3271.

    Google Scholar 

  72. Rankin, C., Von Mehren, M., & Blanke, C. (2004). Dose effect of imatinib (IM) in patients (pts) with metastatic GIST—Phase III Sarcoma Group Study S0033. Proceedings of the American Society of Clinical Oncology, 22, A9005.

    Google Scholar 

  73. Blanke, C. D., Rankin, C., Demetri, G. D., Ryan, C. W., von Mehren, M., Benjamin, R. S., et al. (2008). Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. Journal of Clinical Oncology, 26(4), 626–632.

    Article  PubMed  CAS  Google Scholar 

  74. Zalcberg, J. R., Verjweij, J., Casali, P. G., Le Cesne, A., Reichardt, P., Blay, J. Y., et al. (2005). Outcome of patients with advanced gastro-intestinal stromal tumours crossing over to a daily imatinib dose of 800 mg after progression on 400 mg. European Journal of Cancer, 41(12), 1751–1757.

    Article  PubMed  CAS  Google Scholar 

  75. De Giordi, U., & Verweij, J. (2005). Imatinib and gastrointestinal tumors. Where do we go from here? Molecular Cancer Therapeutics, 4(3), 495–501.

    Google Scholar 

  76. Kerkela, R., Grazette, L., Yacobi, R., Iliescu, C., Patten, R., Beahm, C., et al. (2006). Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Medicine, 12(8), 908–916.

    Article  PubMed  CAS  Google Scholar 

  77. Verweij, J., Casali, P. G., Kotasek, D., Le Cesne, A., Reichard, P., Judson, I. R., et al. (2007). Imatinib does not induce cardiac left ventricular failure in gastrointestinal stromal tumours patients: Analysis of EORTC-ISG-AGITG study 62005. European Journal of Cancer, 43(6), 974–978.

    Article  PubMed  CAS  Google Scholar 

  78. Debiec-Rychter, M., Sciot, R., Le Cesne, A., Schlemmer, M., Hohenberger, P., van Oosterom, A. T., et al. (2006). KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. European Journal of Cancer, 42(8), 1093–1103.

    Article  PubMed  CAS  Google Scholar 

  79. Heinrich, M. C., Owzar, K., Corless, C., Hollis, D., Borden, E. C., Fletcher, C. D., et al. (2008). Correlation of kinase genotype and clinical outcome in the North American InterGroup phase III trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 study by cancer and leukaemia group B and Southwest Oncology group. Journal of Clinical Oncology, 26(33), 5360–5367.

    Article  PubMed  CAS  Google Scholar 

  80. Van Glabbeke, M. M., Owzar, K., Rankin, C., & METAGIST, GM-AG. (2007). Comparison of two doses of imatinib for the treatment of unresectable or metastatic gastrointestinal stromal tumors (GIST): A meta-analysis based on 1, 640 patients (pts). Journal of Clinical Oncology, ASCO Annual Meeting Proceedings, 25, 10004.

    Google Scholar 

  81. Blay, J. Y., Le Cesne, A., Ray-Coquard, I., Bui, B., Duffaud, F., Delbaldo, C., et al. (2007). Prospective multicentric randomized phase III study of imatinib in patients with advanced gastrointestinal stromal tumors comparing interruption versus continuation of treatment beyond 1 year: The French Sarcoma Group. Journal of Clinical Oncology, 25(9), 1107–1113.

    Article  PubMed  CAS  Google Scholar 

  82. Le Cesne, A., Ray-Coquard, I., & Bui, M. (2007). Continuous versus interruption of imatinib (IM) in responding patients with advanced GIST after three years of treatment: A prospective randomized phase III trial of the French Sarcoma Group. Journal of Clinical Oncology, ASCO Annual Meeting Proceedings, 25, 10005.

    Google Scholar 

  83. Roberts, P. J., & Eisenberg, B. (2002). Clinical presentation of gastrointestinal stromal tumors and treatment of operable disease. European Journal of Cancer, 38(Suppl 5), S37–S38.

    Article  PubMed  Google Scholar 

  84. Joensuu, H., Fletcher, C., Dimitrijevic, S., Silberman, S., Roberts, P., & Demetri, G. (2002). Management of malignant gastrointestinal stromal tumors. Lancet Oncology, 3(11), 655–664.

    Article  PubMed  CAS  Google Scholar 

  85. DeMatteo, R. P. (2007). Ballman and the American College of Surgeons Oncology Group (ACOSOG) Intergroup Adjuvant GIST Study Team. Adjuvant imatinib mesylate increases recurrence free survival (RFS) in patients with completely resected localized primary gastrointestinal stromal tumor (GIST): North American Intergroup Phase III trial ACOSOG Z9001. Journal of Clinical Oncology, 25(20 Suppl), 10079. Proceedings of the 43rd ASCO Annual Meeting: 1–5 June Part I.

    Google Scholar 

  86. Buemming, P., Meis-Kindblom, J. M., & Kindblom, L. G. (2003). Is there an indication for adjuvant treatment with imatinib mesylate in patients with aggressive gastrointestinal stromal tumors (GISTs)? Proceedings of the American Society of Clinical Oncology, 22, 818.

    Google Scholar 

  87. Rios, M. (2007). French Sarcoma Group: Interruption of imatinib (IM) in GIST patients with advanced disease after one year of treatment—Updated results of the prospective French Sarcoma Group randomized phase III trial on long term survival. Journal of Clinical Oncology, 25(20 Suppl), 10079. Proceedings of the 43rd ASCO Annual Meeting: 1–5 June, Part I.

    Google Scholar 

  88. Rutkowski, P., Nowecki, Z., Nyckowski, P., Dziewirski, W., Grzesiakowska, U., Nasierowska-Guttmejer, A., et al. (2006). Surgical treatment of patients with initially inoperable and/or metastatic gastrointestinal stromal tumors (GIST) during therapy with imatinib mesylate. Journal of Surgical Oncology, 93(4), 304–311.

    Article  PubMed  Google Scholar 

  89. DeMatteo, R. P., Owzar, K., Antonescu, C. R. (2008). Efficacy of adjuvant imatinib mesylate following complete resection of localized, primary gastrointestinal stromal tumor (GIST) at high risk of recurrence: The U.S. Intergroup phase II trial ACOSOG Z9000. Program and abstracts of the American Society of Clinical Oncology Gastrointestinal Cancer Symposium; January 25–27, Orlando, Florida. Abstract 8.

  90. De Giorgi, U., Pupi, A., Turrisi, G., Montenora, I., Morini, S., Fayyaz, M., et al. (2007). Critical update and emerging trends in imatinib treatment for gastrointestinal stromal tumors. Reviews on Recent Clinical Trials, 2(1), 43–48.

    Article  PubMed  Google Scholar 

  91. Pierie, J. P., Choudry, U., Muzikansky, A., Yeap, B. Y., Souba, W. W., & Ott, M. J. (2001). The effect of surgery and grade on outcome of gastrointestinal stromal tumors. Archives of Surgery, 136(4), 383–389.

    Article  PubMed  CAS  Google Scholar 

  92. Dematteo, R. P., Lewis, J. J., Leung, D., Mudan, S. S., Woodruff, J. M., & Brennan, M. F. (2000). Two hundred gastrointestinal stromal tumors: Recurrence patterns and prognostic factors for survival. Annals of Surgery, 231, 51–58.

    Article  PubMed  CAS  Google Scholar 

  93. Demetri, G. D. (2004). Optimal management of patients with gastrointestinal stromal tumors. Expansion and update of NCCN clinical practise guidelines. Journal of the National Comprehensive Cancer Network, 2(Suppl 1), 1–26.

    Google Scholar 

  94. Langer, C., Gunawan, B., Schuler, P., Huber, W., Fuzesi, L., & Becker, H. (2003). Prognostic factors influencing surgical management and outcome of gastrointestinal stromal tumours. British Journal of Surgery, 90(3), 332–339.

    Article  PubMed  CAS  Google Scholar 

  95. Crosby, J. A., Catton, C. N., Davis, A., Couture, J., O'Sullivan, B., Kandel, R., et al. (2001). Malignant gastrointestinal stromal tumors of the small intestine: A review of 50 cases from a prospective database. Annals of Surgical Oncology, 8(1), 50–59.

    Article  PubMed  CAS  Google Scholar 

  96. Eisenberg, B. L., & Judson, I. (2004). Surgery and imatinib in the management of GIST: Emerging approaches to adjuvant and neoadjuvant therapy. Annals of Surgical Oncology, 11(5), 465–475.

    Article  PubMed  Google Scholar 

  97. Ng, E. H., Pollock, R. E., Munsell, M. F., Atkinson, E. N., & Romsdahl, M. M. (1992). Prognostic factors influencing survival in gastrointestinal leiomyosarcomas. Implications for surgical management and staging. Annals of Surgery, 215(1), 68–77.

    Article  PubMed  CAS  Google Scholar 

  98. Yu, J., Yang, X. J., Yang, W. L., Gao, Y., & Zhang, Q. (2007). Successful resection of a giant recurrent gastrointestinal stromal tumour with imatinib mesylate as neoadjuvant therapy. Scandinavian Journal of Gastroenterology, 42(9), 1138–1140.

    Article  PubMed  Google Scholar 

  99. Loughrey, M. B., Mitchell, C., Mann, G. B., Michael, M., & Waring, P. M. (2005). Gastrointestinal stromal tumour treated with neoadjuvant imatinib. Journal of Clinical Pathology, 58(7), 779–781.

    Article  PubMed  CAS  Google Scholar 

  100. Bauer, S., Hartmann, J. T., De Wit, M., Lang, H., Grabellus, F., Antoch, G., et al. (2005). Resection of residual disease in patients with metastatic gastrointestinal stromal tumors responding to treatment with imatinib. International Journal of Cancer, 117(2), 316–325.

    Article  CAS  Google Scholar 

  101. Raut, C. P., Posner, M., Desai, J., Morgan, J. A., George, S., Zahrieh, D., et al. (2006). Surgical management of advanced gastrointestinal stromal tumors after treatment with targeted systemic therapy using kinase inhibitors. Journal of Clinical Oncology, 24(15), 2325–2331.

    Article  PubMed  CAS  Google Scholar 

  102. Sakakura, C., Hagiwara, A., Soga, K., Miyagawa, K., Nakashima, S., Yoshikawa, T., et al. (2006). Long-term survival of a case with multiple liver metastases from duodenal gastrointestinal stromal tumor drastically reduced by the treatment with imatinib and hepatectomy. World Journal of Gastroenterology, 12(17), 2793–2797.

    PubMed  Google Scholar 

  103. Eisenberg, B. L., Harris, J., Blanke, C., Demetri, G. D., Heinrich, M. C., Watson, J. C., et al. (2008). Phase II trial of neoadjuvant/adjuvant imatinib mesylate (IM) for advanced primary and metastatic/recurrent operable gastrointestinal stromal tumor (GIST): Early results of RTOG 0132/ACRIN 6665. Journal of Surgical Oncology, 99, 42–47.

    Article  CAS  Google Scholar 

  104. Haller, F., Detken, S., Schulten, H. J., Happel, N., Gunawan, B., Kuhlgatz, J., et al. (2007). Surgical management after neoadjuvant imatinib therapy in gastrointestinal stromal tumours (GISTs) with respect to imatinib resistance caused by secondary KIT mutations. Annals of Surgical Oncology, 14(2), 526–532.

    Article  PubMed  Google Scholar 

  105. Van Glabbeke, M., Verweij, J., Casali, P. G., Le Cesne, A., Hohenberger, P., Ray-Coquard, I., et al. (2005). Initial and late resistance to imatinib in advanced gastrointestinal stromal tumors are predicted by different prognostic factors: A European Organisation of Treatment and Research of Cancer—Italian Sarcoma Group—Australasian Gastrointestinal Trials Group Study. Journal of Clinical Oncology, 23(24), 5795–5804.

    Article  PubMed  CAS  Google Scholar 

  106. Heinrich, M. C., Corless, C. L., Blanke, C. D., Demetri, G. D., Joensuu, H., Roberts, P. J., et al. (2006). Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. Journal of Clinical Oncology, 24(29), 4764–4774.

    Article  PubMed  CAS  Google Scholar 

  107. Fletcher, J. A., Corless, C. L., & Dimitrijevic, S. (2003). Mechanisms of resistance to imatinib mesylate in advanced gastrointestinal tumor. Proceedings of the American Society of Clinical Oncol, 22, 815. abstract 3275.

    Google Scholar 

  108. Wardelmann, E., Merkelbach-Bruse, S., Pauls, K., Thomas, N., Schildhaus, H. U., Heinicke, T., et al. (2006). Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clinical Cancer Research, 12(6), 1743–1749.

    Article  PubMed  CAS  Google Scholar 

  109. Tamborini, E., Pricl, S., Negri, T., Lagonigro, M. S., Miselli, F., Greco, A., et al. (2006). Functional analyses and molecular modelling of two c-Kit mutations responsible for imatinib secondary resistance in GIST patients. Oncogene, 25(45), 6140–6146.

    Article  PubMed  CAS  Google Scholar 

  110. Chen, L. L., Trent, J. C., Wu, E. F., Fuller, G. N., Ramdas, L., Zhang, W., et al. (2004). A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Research, 64(17), 5913–5919.

    Article  PubMed  CAS  Google Scholar 

  111. Antonescu, C. R., Besmer, P., Guo, T., Arkun, K., Hom, G., Koryotowski, B., et al. (2005). Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clinical Cancer Research, 11(11), 4182–4190.

    Article  PubMed  CAS  Google Scholar 

  112. Debiec-Rychter, M., Cools, J., Dumez, H., Sciot, R., Stul, M., Mentens, N., et al. (2005). Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of PKC412 against imatinib-resistant mutants. Gastroenterology, 128(2), 270–279.

    Article  PubMed  CAS  Google Scholar 

  113. Sleijfer, S., Wiemer, E., Seynaeve, C., & Verweij, J. (2007). Improved insight into resistance mechanisms to imatinib in gastrointestinal stromal tumors: A basis for novel approaches and individualization of treatment. Oncologist, 12(6), 719–726.

    Article  PubMed  CAS  Google Scholar 

  114. Thomas, J., Wang, L., Clark, R. E., & Pirmohamed, M. (2004). Active transport of imatinib into and out of cells: Implications for drug resistance. Blood, 104(12), 3739–3745.

    Article  PubMed  CAS  Google Scholar 

  115. Burger, H., Van Tol, H., Boersma, A. W., Brok, M., Wiemer, E. A., Stoter, G., et al. (2004). Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood, 104(9), 2940–2942.

    Article  PubMed  CAS  Google Scholar 

  116. Delbaldo, C., Chatelut, E., Re, M., Deroussent, A., Séronie-Vivien, S., Jambu, A., et al. (2006). Pharmacokinetic–pharmadynamic relationships of imatinib and its main metabolite in patients with advanced gastrointestinal stromal tumors. Clinical Cancer Research, 12(20), 6073–6078.

    Article  PubMed  CAS  Google Scholar 

  117. Judson, I., Ma, P., Peng, B., Verweij, J., Racine, A., di Paola, E. D., et al. (2005). Imatinib pharmacokinetics in patients with gastrointestinal stromal tumour: A retrospective population pharmacokinetic study over time. EORT Soft Tissue and Bone Sarcoma Group. Cancer Chemotherapy and Pharmacology, 55(4), 379–386.

    Article  PubMed  CAS  Google Scholar 

  118. Gambacorti-Passerini, C., Zucchetti, M., Russo, D., Frapolli, R., Verga, M., Bungaro, S., et al. (2003). Alpha1 acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients. Clinical Cancer Research, 9(2), 625–632.

    PubMed  CAS  Google Scholar 

  119. Mendel, D. B., Laird, A. D., Xin, X., Louie, S. G., Christensen, J. G., Li, G., et al. (2003). In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting VEGF and PDGF receptors: Determination of a pharmacokinetic/pharmacodynamic relationship. Clinical Cancer Research, 9(1), 327–337.

    PubMed  CAS  Google Scholar 

  120. Papaetis, G. S., Karapanagiotou, L. M., Pandha, H., & Syrigos, K. N. (2008). Targeted therapy for advanced renal cell cancer: Cytokines and beyond. Current Pharmaceutical Design, 14(22), 2229–2251.

    Article  PubMed  CAS  Google Scholar 

  121. O'Farrell, A. M., Abrams, T. J., Yuen, H. A., Ngai, T. J., Louie, S. G., Yee, K. W., et al. (2003). SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood, 101(9), 3597–3605.

    Article  PubMed  CAS  Google Scholar 

  122. Abrams, T., Lee, L. B., Murray, L. J., Pryer, N. K., & Cherrington, J. M. (2003). SU11248 inhibits KIT and platelet derived growth factor receptor-β in preclinical models of human small cell lung cancer. Molecular Cancer Therapeutics, 2(5), 471–478.

    PubMed  CAS  Google Scholar 

  123. Schueneman, A. J., Himmelfarb, E., Geng, L., Tan, J., Donnelly, E., Mendel, D., et al. (2003). SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Research, 63(14), 4009–4016.

    PubMed  CAS  Google Scholar 

  124. Rosen, L., Mulay, M., & Long, J. (2003). Phase I trial of SU11248, a novel tyrosine kinase inhibitor in advanced solid tumors. Proceedings of the American Society of Clinical Oncology, 22, 765a.

    Google Scholar 

  125. Faivre, S., Delbaldo, C., Vera, K., Robert, C., Lozahic, S., Lassau, N., et al. (2006). Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. Journal of Clinical Oncology, 24(1), 25–35.

    Article  PubMed  CAS  Google Scholar 

  126. Desai, J., Yassa, L., Margusse, E., George, S., Frates, M. C., Chen, M. H., et al. (2006). Hypothyroidism after sunitinib treatment for patients with gastrointestinal stromal tumors. Annals of Internal Medicine, 145(9), 660–664.

    PubMed  Google Scholar 

  127. Mannavola, D., Coco, P., Vannucchi, G., Bertuelli, R., Carletto, M., Casali, P. G., et al. (2007). A novel tyrosine-kinase selective inhibitor, sunitinib, induces transient hypothyroidism by blocking iodine uptake. Journal of Clinical Endocrinology and Metabolism, 92(9), 3531–3534.

    Article  PubMed  CAS  Google Scholar 

  128. Heinrichm, M. C., Maki, R., & Corless, C. L. (2006). Sunitinib (SU) response in imatinib-resistant (IM-R) GIST correlates with KIT and PDGFR mutation status. Presented at the 42nd annual meeting of the American Society for Clinical Oncology, Atlanta, GA: 2–6 June.

  129. Morgan, J. A., Demetri, G. D., & Fletcher, J. A. (2006). Durable responses to SU11248 (sunitinib malate) are observed across all genotypes of imatinib mesylate-resistant GIST. Presented at the 17th International Congress on Anti Cancer Treatment. Paris: France, Jan 30–Feb.

  130. Maki, R. G., Fletcher, J. A., & Heinrich, M. C. (2005). SU11248 in patients with imatinib-resistant GIST: Results from a continuation trial. American Society of Clinical Oncology. Presented at the 41st Annual Meeting; 13–17 May; Orlando, Florida, USA.

  131. Liegl, B., Fletcher, J. A., & Corless, C. L. (2008). Correlation between KIT mutations and sunitinib (SU) resistance in GIST. Program and abstracts of the 2008 American Society of Clinical Oncology Gastrointestinal Cancer Symposium; January 25–27,Orlando, Florida. Abstract 92.

  132. Demetri, G. D., van Oosterom, A. T., Garrett, C. R., Blackstein, M. E., Shah, M. H., Verweij, J., et al. (2006). Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumor after failure of imatinib: A randomised controlled trial. Lancet, 368(9544), 1329–1338.

    Article  PubMed  CAS  Google Scholar 

  133. Judson, I., Casali, P., & Garret, C. (2006). Updated results from a phase III trial of sunitinib in advanced gastrointestinal stromal tumors (GIST). Annals of Oncology, 17(Suppl 9), ix162.

    Google Scholar 

  134. Casali, P. G., Garret, C. R., & Blackstein, M. E. (2006). Updated results from a phase III trial of sunitinib in GIST patients (pts) for whom imatinib (IM) therapy has failed due to resistance or intolerance. Presented at the 42nd annual meeting of the American Society for Clinical Oncology, Atlanta: GA, June 2–6.

  135. Goodman, V. L., Rock, E. P., Dagher, R., Ramchandani, R. P., Abraham, S., Jogarao, V. S., et al. (2007). Approval summary: Sunitinib for the treatment of Imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clinical Cancer Research, 13(5), 1367–1373.

    Article  PubMed  CAS  Google Scholar 

  136. George, S., Blay, J. Y., & Casali, P. G. (2008). Continuous daily dosing (CDD) of sunitinib (SU) in pts with advanced GIST: Updated efficacy, safety, PK and pharmacodynamic analysis. Journal of Clinical Oncology, 26, A10554.

    Google Scholar 

  137. Lyons, J. F., Wilhelm, S., Hibner, B., & Bollag, G. (2001). Discovery of a novel Raf kinase inhibitor. Endocrine-Related Cancer, 8(3), 219–225.

    Article  PubMed  CAS  Google Scholar 

  138. Wilhelm, S., & Chien, D. S. (2002). BAY 43-9006: Preclinical data. Current Pharmaceutical Design, 8(25), 2255–2257.

    Article  PubMed  CAS  Google Scholar 

  139. Guida, T., Anaganti, S., Provitera, L., Gedrich, R., Sullivan, E., Wilhelm, S. M., et al. (2007). Sorafenib inhibits imatinib-resistant KIT and platelet-derived growth factor receptor beta gatekeeper mutants. Clinical Cancer Research, 13(11), 3363–3369.

    Article  PubMed  CAS  Google Scholar 

  140. Guo, T., Agaram, N. P., Wong, G. C., Hom, G., D'Adamo, D., Maki, R. G., et al. (2007). Sorafenib inhibits the imatinib-resistant KITT670I gatekeeper mutation in gastrointestinal stromal tumor. Clinical Cancer Research, 13(16), 4874–4881.

    Article  PubMed  CAS  Google Scholar 

  141. Strumberg, D., Voliotis, D., Moeller, J. G., Hilger, R. A., Richly, H., Kredtke, S., et al. (2002). Results of phase I pharmacokinetic and pharmacodynamic studies of the Raf kinase inhibitor BAY 43-9006 in patients with solid tumours. International Journal of Clinical Pharmacology and Therapeutics, 40(12), 580–581.

    PubMed  CAS  Google Scholar 

  142. Strumberg, D., Richly, H., Hilger, R. A., Schleucher, N., Korfee, S., Tewes, M., et al. (2005). Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. Journal of Clinical Oncology, 23(5), 965–972.

    Article  PubMed  CAS  Google Scholar 

  143. Wiebe, L., Kasza, K., & Maki, R. G. (2008). Sorafenib is active in patients with imatinib and sunitinib-resistant gastrointestinal stromal tumors (GIST): A phase II trial of the University of Chicago Phase II Consortium. Journal of Clinical Oncology, 26, 553s. Abstract 10502.

    Google Scholar 

  144. Strimpakos, A., Saif, M. W., & Syrigos, K. N. (2008). Pancreatic cancer: From molecular pathogenesis to targeted therapy. Cancer and Metastasis Reviews, 27(3), 495–522.

    Article  PubMed  CAS  Google Scholar 

  145. Drevs, J., Hofmann, I., Hugenschmidt, H., Wittig, C., Madjar, H., Muller, M., et al. (2000). Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Research, 60(17), 4819–4824.

    PubMed  CAS  Google Scholar 

  146. Baker, C. H., Solorzano, C. C., & Fidler, I. J. (2002). Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer. Cancer Research, 62(7), 1996–2003.

    PubMed  CAS  Google Scholar 

  147. Thomas, A. L., Morgan, B., Horsfield, M. A., Higginson, A., Kay, A., Lee, L., et al. (2005). Phase I study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with advanced cancer. Journal of Clinical Oncology, 23(18), 4162–4171.

    Article  PubMed  CAS  Google Scholar 

  148. Mross, K., Drevs, J., Muller, M., Medinger, M., Marme, D., Hennig, J., et al. (2005). Phase I clinical and pharmacokinetic study of PTK/ZK, a multiple VEGF receptor inhibitor, in patients with liver metastases from solid tumors. European Journal of Cancer, 41(9), 1291–1299.

    Article  PubMed  CAS  Google Scholar 

  149. Joensuu, H., De Braud, F., Coco, P., De Pas, T., Putzu, C., Spreafico, C., et al. (2008). Phase II, open-label study of PTK787/ZK222584 for the treatment of metastatic gastrointestinal stromal tumors resistant to imatinib mesylate. Annals of Oncology, 19(1), 173–177.

    Article  PubMed  CAS  Google Scholar 

  150. Weisberg, E., Manley, P. W., Breitenstein, W., Brüggen, J., Cowan-Jacob, S. W., Ray, A., et al. (2005). Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 7(2), 129–141.

    Article  PubMed  CAS  Google Scholar 

  151. Blay, J. Y., Casali, P. G., & Reichardt, P. (2008). A phase I study of nilotinib alone and in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors (GIST): Study update. Journal of Clinical Oncology, 26, 566s. Abstract 10553.

    Google Scholar 

  152. Bui, B. N., Blay, J., Duffaud, N., Hermine, O., & Le Cesne, A. (2007). Preliminary efficacy and safety results of masitinib, front line in patients with advanced GIST. A phase II study. Journal of Clinical Oncology, 26, A10025.

    Google Scholar 

  153. Lombardo, L. J., Lee, F. Y., Chen, P., Norris, D., Barrish, J. C., Behnia, K., et al. (2004). Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. Journal of Medicinal Chemistry, 47(27), 6658–6661.

    Article  PubMed  CAS  Google Scholar 

  154. Heinrich, M. C., Griffith, D. J., Druker, B. J., Wait, C. L., Ott, K. A., & Zigler, A. J. (2000). Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood, 96(3), 925–932.

    PubMed  CAS  Google Scholar 

  155. Schittenhelm, M. M., Shiraga, S., Schroeder, A., Corbin, A. S., Griffith, D., Lee, F. Y., et al. (2006). Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Research, 66(1), 473–481.

    Article  PubMed  CAS  Google Scholar 

  156. Strimpakos, A. S., Karapanagiotou, E. M., Saif, W. M., & Syrigos, K. N. (2008). The role of m TOR in the management of solid tumors: An overview. Cancer Treatment Reviews, 35, 148–159.

    Article  PubMed  CAS  Google Scholar 

  157. Dumez, H., Reichard, P., & Blay, J. Y. (2008). CRAD001C2206 Study Group. A phase I-II study of everolimus (RAD001) in combination with imatinib in patients (pts) with imatinib-resistant gastrointestinal stromal tumors (GIST). Journal of Clinical Oncology, 26, 557s. Abstract 10519.

    Google Scholar 

  158. Weisberg, E., Wright, R. D., Jiang, J., Ray, A., Moreno, D., Manley, P. W., et al. (2006). Effects of PKC412, nilotinib, and imatinib against GIST-associated PDGFRA mutants with differential imatinib sensitivity. Gastroenterology, 131(6), 1734–1742.

    Article  PubMed  CAS  Google Scholar 

  159. Roberts, K. G., Odell, A. F., Byrnes, E. M., Baleato, R. M., Griffith, R., Lyons, A. B., et al. (2007). Resistance to c-KIT inhibitors conferred by V654A mutation. Molecular Cancer Therapeutics, 6(3), 1159–1166.

    Article  PubMed  CAS  Google Scholar 

  160. Xu, W., & Neckers, L. (2007). Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clinical Cancer Research, 13(6), 1625–1629.

    Article  PubMed  CAS  Google Scholar 

  161. Mosser, D. D., & Morimoto, R. I. (2004). Molecular chaperones and the stress of oncogenesis. Oncogene, 23(16), 2907–2918.

    Article  PubMed  CAS  Google Scholar 

  162. Nanbu, K., Konishi, I., Mandai, M., Kuroda, H., Hamid, A. A., Komatsu, T., et al. (1998). Prognostic significance of heat shock proteins HSP70 and HSP90 in endometrial carcinomas. Cancer Detection and Prevention, 22(6), 549–555.

    Article  PubMed  CAS  Google Scholar 

  163. Nakatani, H., Kobayashi, M., Yin, T., Taguchi, T., Sugimoto, T., Nakano, T., et al. (2005). STI571 (Glivec) inhibits the interaction between c-KIT and heat shock protein 90 of the gastrointestinal stromal tumor cell line, GIST-T1. Cancer Science, 96(2), 116–119.

    Article  PubMed  CAS  Google Scholar 

  164. Bauer, S., Yuk, L. K., Demetri, G. D., & Fletcher, J. A. (2006). Heat shock protein 90 inhibition in imatinib-resistant gastrointestinal stromal tumor. Cancer Research, 66(18), 9153–9161.

    Article  PubMed  CAS  Google Scholar 

  165. Wagner, A. J., Morgan, J. A., & Chugh, R. (2008). Results from phase 1 trial of IPI-504, a novel HSP90 inhibitor, in tyrosine kinase inhibitor-resistant GIST and other sarcomas. Journal of Clinical Oncology, 26, 553s. Abstract 10503.

    Article  Google Scholar 

  166. Dewaele, B., Wasag, B., Cools, J., Sciot, R., Prenen, H., Vandenberghe, P., et al. (2008). Activity of dasatinib, a dual SRC/ABL kinase inhibitor, and IPI-504, a heat shock protein 90 inhibitor, against gastrointestinal stromal tumor-associated PDGFRAD842V mutation. Clinical Cancer Research, 14(18), 5749–5758.

    Article  PubMed  CAS  Google Scholar 

  167. Sambol, E. B., Ambrosini, G., Geha, R. C., Kennealey, P. T., De-Carolis, P., O’connor, R., et al. (2006). Flavopiridol targets c-KIT transcription and induces apoptosis in gastrointestinal stromal tumor cells. Cancer Research, 66(11), 5858–5866.

    Article  PubMed  CAS  Google Scholar 

  168. Ikezoe, T., Yang, Y., Nishioka, C., Bandobashi, K., Nakatani, H., Taguchi, T., et al. (2006). Effect of SU11248 on gastrointestinal stromal tumor-T1 cells: Enhancement of growth inhibition via inhibition of 3-kinase/Akt/mammalian target of rapamycin signalling. Cancer Science, 97(9), 945–951.

    Article  PubMed  CAS  Google Scholar 

  169. Michael, A., Syrigos, K., & Pandha, H. (2008). Prostate cancer chemotherapy in the era of targeted therapy. Prostate Cancer and Prostatic Disease, 12, 13–16.

    Article  CAS  Google Scholar 

  170. Syrigos, K. N., Zalonis, A., Kotteas, E., & Saif, M. W. (2008). Targeted therapy for oesophageal cancer: An overview. Cancer and Metastasis Reviews, 27(2), 273–288.

    Article  PubMed  CAS  Google Scholar 

  171. Papaetis, G., Giozos, I., & Syrigos, K. N. (2007). Targeted therapies for lung cancer: Differences amongst sexes. In V. N. Torres (Ed.), Lung cancer in women (pp. 171–193). Hauppauge: Nova Science.

    Google Scholar 

  172. Charpidou, A., Blatza, D., Anagnostou, E., & Syrigos, K. N. (2008). Review: EGFR mutations in non-small cell lung cancer—Clinical implications. In Vivo, 22(4), 529–536.

    PubMed  CAS  Google Scholar 

  173. Van den Abbeele, A. D. (2008). The lessons of GIST—PET and PET/CT: A new paradigm for imaging. Oncologist, 13(suppl 2), 8–13.

    Article  PubMed  Google Scholar 

  174. Van den Abbeele, A. D. (2001). For the GIST Collaborative PET Study Group Dana-Farber Cancer Institute, Boston, Massachusetts; OHSU, Portland, Oregon, Helsinki University Central Hospital, Turku University Central Hospital, Finland, Novartis Oncology. F18-FDG-PET provides early evidence of biological response to STI571 in patients with malignant gastrointestinal stromal tumors (GIST). Proceedings of the American Society of Clinical Oncology, 20, 362a.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios S. Papaetis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papaetis, G.S., Syrigos, K.N. Targeted therapy for gastrointestinal stromal tumors: current status and future perspectives. Cancer Metastasis Rev 29, 151–170 (2010). https://doi.org/10.1007/s10555-010-9206-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9206-7

Keywords

Navigation