Skip to main content

Advertisement

Log in

Pathways of metastasis suppression in bladder cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Despite the recent advances in the diagnosis of bladder cancer, recurrence after surgical intervention for muscle invasive disease is still problematic as nearly half of the patients harbor occult distant metastases and this, in turn, is associated with poor 5-year survival rate. We have recently identified Rho family GDP dissociation inhibitor 2 (RhoGDI2) protein as functional metastasis suppressor and a prognostic marker in patients after cystectomy. In identifying the mechanisms underlying metastasis suppression by RhoGDI2, we found this protein to be associated with the c-Src kinase in human tumors, where the expression of both is diminished as a function of stage. Interestingly, c-Src bound to and phosphorylated RhoGDI2 resulting in enhanced metastasis suppressive potency. In this review, we will discuss the established roles of c-Src and RhoGDI2 in bladder cancer and speculate on their therapeutic relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal, A., et al. (2009). Cancer statistics, 2009. CA: A Cancer Journal for Clinicians, 59(4), 225–249.

    Article  Google Scholar 

  2. Dinney, C. P., et al. (2004). Focus on bladder cancer. Cancer Cell, 6(2), 111–116.

    Article  CAS  PubMed  Google Scholar 

  3. Stein, J. P., et al. (2001). Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1, 054 patients. Journal of Clinical Oncology, 19(3), 666–675.

    CAS  PubMed  Google Scholar 

  4. Theodorescu, D. (2006). Molecular biology of invasive and metastatic urothelial cancer. In S. Lerner, M. Schoenberg, & C. Sternberg (Eds.) Textbook of Bladder Cancer. Taylor and Francis. pp. 147–156.

  5. Gildea, J. J., et al. (2002). RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Research, 62(22), 6418–6423.

    CAS  PubMed  Google Scholar 

  6. Seraj, M. J., et al. (2000). The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines. Clinical & Experimental Metastasis, 18(6), 519–525.

    Article  CAS  Google Scholar 

  7. Theodorescu, D., et al. (2004). Reduced expression of metastasis suppressor RhoGDI2 is associated with decreased survival for patients with bladder cancer. Clinical Cancer Research, 10(11), 3800–3806.

    Article  CAS  PubMed  Google Scholar 

  8. Titus, B., et al. (2005). Endothelin axis is a target of the lung metastasis suppressor gene RhoGDI2. Cancer Research, 65(16), 7320–7327.

    Article  CAS  PubMed  Google Scholar 

  9. Wu, Y., et al. (2009). Src phosphorylation of RhoGDI2 regulates its metastasis suppressor function. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5807–5812.

    Article  CAS  PubMed  Google Scholar 

  10. Stehelin, D. (1976). The transforming gene of avian tumor viruses. Pathology and Biology (Paris), 24(8), 513–515.

    CAS  Google Scholar 

  11. Stehelin, D., et al. (1976). Purification of DNA complementary to nucleotide sequences required for neoplastic transformation of fibroblasts by avian sarcoma viruses. Journal of Molecular Biology, 101(3), 349–365.

    Article  CAS  PubMed  Google Scholar 

  12. Stehelin, D., et al. (1976). DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature, 260(5547), 170–173.

    Article  CAS  PubMed  Google Scholar 

  13. Rous, P. (1983). Landmark article (JAMA 1911;56:198). Transmission of a malignant new growth by means of a cell-free filtrate. By Peyton Rous. The Journal of the American Medical Association, 250(11), 1445–1449.

    CAS  Google Scholar 

  14. Roskoski, R., Jr. (2004). Src protein-tyrosine kinase structure and regulation. Biochemical and Biophysical Research Communications, 324(4), 1155–1164.

    Article  CAS  PubMed  Google Scholar 

  15. Takeya, T., & Hanafusa, H. (1983). Structure and sequence of the cellular gene homologous to the RSV src gene and the mechanism for generating the transforming virus. Cell, 32(3), 881–890.

    Article  CAS  PubMed  Google Scholar 

  16. Takeya, T., et al. (1981). Comparison between the viral transforming gene (src) of recovered avian sarcoma virus and its cellular homolog. Molecular and Cellular Biology, 1(11), 1024–1037.

    CAS  PubMed  Google Scholar 

  17. Iba, H., et al. (1984). Rous sarcoma virus variants that carry the cellular src gene instead of the viral src gene cannot transform chicken embryo fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 81(14), 4424–4428.

    Article  CAS  PubMed  Google Scholar 

  18. Takeya, T., & Hanafusa, H. (1982). DNA sequence of the viral and cellular src gene of chickens. II. Comparison of the src genes of two strains of avian sarcoma virus and of the cellular homolog. Journal of Virology, 44(1), 12–18.

    CAS  PubMed  Google Scholar 

  19. Moarefi, I., et al. (1997). Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature, 385(6617), 650–653.

    Article  CAS  PubMed  Google Scholar 

  20. Sicheri, F., & Kuriyan, J. (1997). Structures of Src-family tyrosine kinases. Current Opinion in Structural Biology, 7(6), 777–785.

    Article  CAS  PubMed  Google Scholar 

  21. Sicheri, F., Moarefi, I., & Kuriyan, J. (1997). Crystal structure of the Src family tyrosine kinase Hck. Nature, 385(6617), 602–609.

    Article  CAS  PubMed  Google Scholar 

  22. Xu, W., et al. (1999). Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Molecular Cell, 3(5), 629–638.

    Article  CAS  PubMed  Google Scholar 

  23. Manning, G., et al. (2002). The protein kinase complement of the human genome. Science, 298(5600), 1912–1934.

    Article  CAS  PubMed  Google Scholar 

  24. Brown, M. T., & Cooper, J. A. (1996). Regulation, substrates and functions of src. Biochimica et Biophysica Acta, 1287(2–3), 121–149.

    PubMed  Google Scholar 

  25. Irby, R. B., & Yeatman, T. J. (2000). Role of Src expression and activation in human cancer. Oncogene, 19(49), 5636–5642.

    Article  CAS  PubMed  Google Scholar 

  26. Levinson, A. D., et al. (1980). The purified product of the transforming gene of avian sarcoma virus phosphorylates tyrosine. Journal of Biological Chemistry, 255(24), 11973–11980.

    CAS  PubMed  Google Scholar 

  27. Thomas, S. M., & Brugge, J. S. (1997). Cellular functions regulated by Src family kinases. Annual Review of Cell and Developmental Biology, 13, 513–609.

    Article  CAS  PubMed  Google Scholar 

  28. Yeatman, T. J. (2004). A renaissance for SRC. Nature Reviews. Cancer, 4(6), 470–480.

    Article  CAS  PubMed  Google Scholar 

  29. Alland, L., et al. (1994). Dual myristylation and palmitylation of Src family member p59fyn affects subcellular localization. Journal of Biological Chemistry, 269(24), 16701–16705.

    CAS  PubMed  Google Scholar 

  30. Summy, J. M., & Gallick, G. E. (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Reviews, 22(4), 337–358.

    Article  CAS  PubMed  Google Scholar 

  31. Summy, J. M., et al. (2005). c-Src regulates constitutive and EGF-mediated VEGF expression in pancreatic tumor cells through activation of phosphatidyl inositol-3 kinase and p38 MAPK. Pancreas, 31(3), 263–274.

    Article  CAS  PubMed  Google Scholar 

  32. Irby, R., et al. (1997). Overexpression of normal c-Src in poorly metastatic human colon cancer cells enhances primary tumor growth but not metastatic potential. Cell Growth & Differentiation, 8(12), 1287–1295.

    CAS  Google Scholar 

  33. Irby, R. B., et al. (1999). Activating SRC mutation in a subset of advanced human colon cancers. Nature Genetics, 21(2), 187–190.

    Article  CAS  PubMed  Google Scholar 

  34. Johnson, F. M., & Gallick, G. E. (2007). SRC family nonreceptor tyrosine kinases as molecular targets for cancer therapy. Anticancer Agents in Medical Chemistry, 7(6), 651–659.

    Article  CAS  Google Scholar 

  35. Mao, W., et al. (1997). Activation of c-Src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene, 15(25), 3083–3090.

    Article  CAS  PubMed  Google Scholar 

  36. Chiang, G. J., et al. (2005). The src-family kinase inhibitor PP2 suppresses the in vitro invasive phenotype of bladder carcinoma cells via modulation of Akt. Journal of the British Association of Urological Surgeons, 96(3), 416–422.

    CAS  Google Scholar 

  37. Kopetz, S., et al. (2009). Synergistic activity of the SRC family kinase inhibitor dasatinib and oxaliplatin in colon carcinoma cells is mediated by oxidative stress. Cancer Research, 69(9), 3842–3849.

    Article  CAS  PubMed  Google Scholar 

  38. Park, S. I., et al. (2008). Targeting SRC family kinases inhibits growth and lymph node metastases of prostate cancer in an orthotopic nude mouse model. Cancer Research, 68(9), 3323–3333.

    Article  CAS  PubMed  Google Scholar 

  39. Sen, B., et al. (2009). Sustained Src inhibition results in signal transducer and activator of transcription 3 (STAT3) activation and cancer cell survival via altered Janus-activated kinase-STAT3 binding. Cancer Research, 69(5), 1958–1965.

    Article  CAS  PubMed  Google Scholar 

  40. Rosen, N., et al. (1986). Analysis of pp 60c-src protein kinase activity in human tumor cell lines and tissues. Journal of Biological Chemistry, 261(29), 13754–13759.

    CAS  PubMed  Google Scholar 

  41. Fanning, P., et al. (1992). Elevated expression of pp 60c-src in low grade human bladder carcinoma. Cancer Research, 52(6), 1457–1462.

    CAS  PubMed  Google Scholar 

  42. Boyer, B., Bourgeois, Y., & Poupon, M. F. (2002). Src kinase contributes to the metastatic spread of carcinoma cells. Oncogene, 21(15), 2347–2356.

    Article  CAS  PubMed  Google Scholar 

  43. Rodier, J. M., et al. (1995). pp 60c-src is a positive regulator of growth factor-induced cell scattering in a rat bladder carcinoma cell line. Journal of Cell Biology, 131(3), 761–773.

    Article  CAS  PubMed  Google Scholar 

  44. Thiery, J. P., & Chopin, D. (1999). Epithelial cell plasticity in development and tumor progression. Cancer Metastasis Reviews, 18(1), 31–42.

    Article  CAS  PubMed  Google Scholar 

  45. Simeonova, P. P., et al. (2002). c-Src-dependent activation of the epidermal growth factor receptor and mitogen-activated protein kinase pathway by arsenic. Role in carcinogenesis. Journal of Biological Chemistry, 277(4), 2945–2950.

    Article  CAS  PubMed  Google Scholar 

  46. Eblin, K. E., et al. (2007). Mitogenic signal transduction caused by monomethylarsonous acid in human bladder cells: role in arsenic-induced carcinogenesis. Toxicological Sciences, 95(2), 321–330.

    Article  CAS  PubMed  Google Scholar 

  47. Yamamoto, N., et al. (2006). Tyrosine phosphorylation of p145met mediated by EGFR and Src is required for serum-independent survival of human bladder carcinoma cells. Journal of Cell Science, 119(Pt 22), 4623–4633.

    Article  CAS  PubMed  Google Scholar 

  48. DerMardirossian, C., & Bokoch, G. M. (2005). GDIs: central regulatory molecules in Rho GTPase activation. Trends in Cell Biology, 15(7), 356–363.

    Article  CAS  PubMed  Google Scholar 

  49. Golovanov, A. P., et al. (2001). Structure-activity relationships in flexible protein domains: regulation of rho GTPases by RhoGDI and D4 GDI. Journal of Molecular Biology, 305(1), 121–135.

    Article  CAS  PubMed  Google Scholar 

  50. Olofsson, B. (1999). Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal, 11(8), 545–554.

    Article  CAS  PubMed  Google Scholar 

  51. Ota, T., et al. (2006). RhoGDIbeta lacking the N-terminal regulatory domain suppresses metastasis by promoting anoikis in v-src-transformed cells. Clinical & Experimental Metastasis, 23(7–8), 323–334.

    Google Scholar 

  52. Krieser, R. J., & Eastman, A. (1999). Cleavage and nuclear translocation of the caspase 3 substrate Rho GDP-dissociation inhibitor, D4-GDI, during apoptosis. Cell Death and Differentiation, 6(5), 412–419.

    Article  CAS  PubMed  Google Scholar 

  53. Kwon, K. B., et al. (2002). D4-GDI is cleaved by caspase-3 during daunorubicin-induced apoptosis in HL-60 cells. Experimental and Molecular Medicine, 34(1), 32–37.

    CAS  PubMed  Google Scholar 

  54. Zhou, X., et al. (2004). Nuclear translocation of cleaved LyGDI dissociated from Rho and Rac during Trp53-dependent ionizing radiation-induced apoptosis of thymus cells in vitro. Radiation Research, 162(3), 287–295.

    Article  CAS  PubMed  Google Scholar 

  55. Ota, T., et al. (2004). LyGDI functions in cancer metastasis by anchoring Rho proteins to the cell membrane. Molecular Carcinogenesis, 39(4), 206–220.

    Article  CAS  PubMed  Google Scholar 

  56. Ma, L., et al. (2007). Loss of expression of LyGDI (ARHGDIB), a rho GDP-dissociation inhibitor, in Hodgkin lymphoma. British Journal of Haematology, 139(2), 217–223.

    Article  CAS  PubMed  Google Scholar 

  57. Tapper, J., et al. (2001). Changes in gene expression during progression of ovarian carcinoma. Cancer Genetics and Cytogenetics, 128(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  58. Hu, L. D., et al. (2007). Biphasic expression of RhoGDI2 in the progression of breast cancer and its negative relation with lymph node metastasis. Oncology Reports, 17(6), 1383–1389.

    PubMed  Google Scholar 

  59. Zhang, B. (2006). Rho GDP dissociation inhibitors as potential targets for anticancer treatment. Drug Resistance Updates, 9(3), 134–141.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, B., et al. (2005). Rho GDP dissociation inhibitor protects cancer cells against drug-induced apoptosis. Cancer Research, 65(14), 6054–6062.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, Y., et al. (2009). Silencing of D4-GDI inhibits growth and invasive behavior in MDA-MB-231 cells by activation of Rac-dependent p38 and JNK signaling. Journal of Biological Chemistry, 284(19), 12956–12965.

    Article  CAS  PubMed  Google Scholar 

  62. Wang, Y., et al. (2005). Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet, 365(9460), 671–679.

    CAS  PubMed  Google Scholar 

  63. Essmann, F., et al. (2000). GDP dissociation inhibitor D4-GDI (Rho-GDI 2), but not the homologous rho-GDI 1, is cleaved by caspase-3 during drug-induced apoptosis. Biochemical Journal, 346(Pt 3), 777–783.

    Article  CAS  PubMed  Google Scholar 

  64. DerMardirossian, C., et al. (2006). Phosphorylation of RhoGDI by Src regulates Rho GTPase binding and cytosol-membrane cycling. Molecular Biology of the Cell, 17(11), 4760–4768.

    Article  CAS  PubMed  Google Scholar 

  65. Moissoglu, K., et al. (2009). Rho GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of RhoGTPases. Cancer Research, 69(7), 2838–2844.

    Article  CAS  PubMed  Google Scholar 

  66. Uhlenbrock, K., et al. (2004). The RacGEF Tiam1 inhibits migration and invasion of metastatic melanoma via a novel adhesive mechanism. Journal of Cell Science, 117(Pt 20), 4863–4871.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH grant R01CA075115 to DT. The authors wish to thank Dr. Michael Harding for helpful suggestions. None of the authors have any financial conflict of interest that might be construed to influence the results or interpretation of the manuscript.

Competing interest statement

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Theodorescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Said, N., Theodorescu, D. Pathways of metastasis suppression in bladder cancer. Cancer Metastasis Rev 28, 327–333 (2009). https://doi.org/10.1007/s10555-009-9197-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-009-9197-4

Keywords

Navigation