Skip to main content

Advertisement

Log in

Kinesin motor proteins as targets for cancer therapy

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The process of mitosis is a validated point of intervention in cancer therapy and a variety of anti-mitotic drugs are successfully being used in the clinic. To date, all approved antimitotics target the spindle microtubules, thus interfering with spindle dynamics, leading to mitotic arrest and apoptosis. While effective, these drugs are also associated with a variety of side effects, including neurotoxicity. In recent years, mitotic kinesins have attracted significant attention in the search for novel, alternative mitotic drug targets. Due to their specific function in mitosis, targeting these proteins creates an opportunity for the development of more selective antimitotics with an improved side effect profile. In addition, kinesin inhibitors may overcome resistance to microtubule targeting drugs. Drug discovery efforts in this area have initially focused on the plus-end directed kinesin spindle protein (KSP) and a variety of compounds are currently undergoing clinical testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Compton, D. A. (2000). Spindle assembly in animal cells. Annual Review of Biochemistry, 69, 95–114.

    Article  PubMed  CAS  Google Scholar 

  2. Cheesman, I. M., & Desai, A. (2008). Molecular architecture of the kinetochore-microtubule interphase. Nature Reviews Molecular and Cellular Biology, 9, 33–46.

    Article  Google Scholar 

  3. Jordan, M. A., & Wilson, L. (2004). Microtubules as target for anticancer drugs. Nature Reviews Cancer, 4, 253–265.

    Article  PubMed  CAS  Google Scholar 

  4. Wood, K. W., Cornwell, W. D., & Jackson, J. R. (2001). Past and future of the mitotic spindle as an oncology target. Current Opinion in Pharmacology, 1, 370–377.

    Article  PubMed  CAS  Google Scholar 

  5. Musacchio, A., & Hardwick, K. G. (2002). The spindle checkpoint: Structural insights into dynamic signalling. Nature Reviews Molecular and Cellular Biology, 3, 731–741.

    Article  CAS  Google Scholar 

  6. Miki, H., Okada, Y., & Hirokawa, N. (2005). Analysis of the kinesin superfamily: Insights into structure and function. Trends in Cell Biology, 15, 467–476.

    Article  PubMed  CAS  Google Scholar 

  7. Mountain, V., & Compton, D. A. (2000). Dissecting the role of molecular motors in the mitotic spindle. Anatomical Record (New Anat), 261, 14–24.

    Article  CAS  Google Scholar 

  8. Hirokawa, N., & Takemura, R. (2004). Kinesin superfamily proteins and their various functions and dynamics. Experimental Cell Research, 301, 50–59.

    Article  PubMed  CAS  Google Scholar 

  9. Heck, M. M. S. (1999). Dr Dolittle and the making of the mitotic spindle. BioEssays, 21, 985–990.

    Article  PubMed  CAS  Google Scholar 

  10. Zhu, C., Zhao, J., Bibikova, M., Leverson, J. D., Bossy-Wetzel, E., Fan, J-B., et al. (2005). Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Molecular Biology of the Cell, 16, 3187–3199.

    Article  PubMed  CAS  Google Scholar 

  11. Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L., & Mitchison, T. J. (1999). Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 286, 971–974.

    Article  PubMed  CAS  Google Scholar 

  12. LeGuellec, R., Paris, J., Couturier, A., Roghi, C., & Philippe, M. (1991). Cloning by differential screening of a Xenopus cDNA that encodes a kinesin-related protein. Molecular and Cellular Biology, 11, 3395–3398.

    CAS  Google Scholar 

  13. Sawin, K. E., LeGuellec, K., Philippe, M., & Mitchison, T. J. (1992). Mitotic spindle organization by a plus-end-directed microtubule motor. Nature, 359, 540–543.

    Article  PubMed  CAS  Google Scholar 

  14. Valentine, M. T., Fordyce, P. M., & Block, S. M. (2006). Eg5 steps it up! Cell Division, 1, 31.

    Article  PubMed  Google Scholar 

  15. Kapitein, L. C., Peterman, E. J. G., Kwok, B. H., Kim, J. H., Kapoor, T. M., & Schmidt, C. F. (2005). The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature, 435, 114–118.

    Article  PubMed  CAS  Google Scholar 

  16. Heck, M. M. S., Pereira, A., Pesavento, P., Yannoni, Y., Spradling, A. C., & Goldstein, L. S. B. (1993). The kinesin-like protein KLP61F is essential for mitosis in Drosophila. Journal of Cell Biology, 123, 665–679.

    Article  PubMed  CAS  Google Scholar 

  17. Blangy, A., Lane, H. A., d’Herin, P., Harper, M., Kress, M., & Nigg, E. A. (1995). Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell, 83, 1159–1169.

    Article  PubMed  CAS  Google Scholar 

  18. Castillo, A., Morse, H. C., Godfrey, V. L., Naeem, R., & Justice, M. J. (2007). Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Research, 67, 10138–10147.

    Article  PubMed  CAS  Google Scholar 

  19. Castillo, A., & Justice, M. J. (2007). The kinesin related motor protein, Eg5, is essential for maintenance of pre-implantation embryogenesis. Biochemical and Biophysical Research Communications, 357, 694–699.

    Article  PubMed  CAS  Google Scholar 

  20. Chauviere, M., Kress, C., & Kress, M. (2008). Disruption of the mitotic kinesin Eg5 gene (Knsl1) results in early embryonic lethality. Biochemical and Biophysical Research Communications, 372, 513–519.

    Article  PubMed  CAS  Google Scholar 

  21. Carter, B. Z., Mak, D. H., Shi, Y., Schoeber, W. D., Wang, R. Y., Konopleva, M., et al. (2006). Regulation and targeting of Eg5, a mitotic motor protein in blast crisis CML: Overcoming imatinib resistance. Cell Cycle, 5, 2223–2229.

    PubMed  CAS  Google Scholar 

  22. Hegde, P. S., Cogswell, J., Carrick, K., Jackson, J., Wood, K. W., Eng, W. K., et al. (2003). Differential gene expression analysis of kinesin spindle protein in human solid tumors. Proceedings of the American Society of Clinical Oncology, 22, abstract 535.

    Google Scholar 

  23. Saijo, T., Ishii, G., Ochiai, A., Yoh, K., Goto, K., Nagai, K., et al. (2006). Eg5 expression is closely correlated with the response of advanced non-small cell lung cancer to antimititic agents combined with platinum chemotherapy. Lung Cancer, 54, 217–225.

    Article  PubMed  Google Scholar 

  24. DeBonis, S., Skoufias, D. A., Lebeau, L., Lopez, R., Robin, G., Margolis, R. L., et al. (2004). In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Molecular Cancer Therapeutics, 3, 1079–1090.

    PubMed  CAS  Google Scholar 

  25. Sakowicz, R., Finer, J. T., Beraud, C., Crompton, A., Lewis, E., Fritsch, A., et al. (2004). Antitumor activity of a kinesin inhibitor. Cancer Research, 64, 3276–3280.

    Article  PubMed  CAS  Google Scholar 

  26. Marcus, A. I., Peters, U., Thomas, S. L., Garrett, S., Zelnak, A., Kapoor, T. M., et al. (2005). Mitotic kinesin inhibitors induce mitotic arrest and cell death in taxol-resistant and -sensitive cancer cells. Journal of Biological Chemistry, 280, 11569–11577.

    Article  PubMed  CAS  Google Scholar 

  27. Chin, G. M., & Herbst, R. (2006). Induction of apoptosis by monastrol, an inhibitor of the mitotic kinesin Eg5, is independent of the spindle checkpoint. Molecular Cancer Therapeutics, 5, 2580–2591.

    Article  PubMed  CAS  Google Scholar 

  28. Lemieux, C., DeWolf, W., Voegtli, W., DeLisle, R. K., Laird, E., Wallace, E., et al. (2007). ARRY-520: A novel, highly selective KSP inhibitor with potent anti-proliferative activity. AACR Annual Meeting.

  29. Woessner, R., Corrette, C., Allen, S., Hans, J., Zhao, Q., Aicher, T., et al. (2007). ARRY-520: A KSP inhibitor with efficacy and pharmacodynamic activity in animal models of solid tumors. AACR Annual Meeting.

  30. Weaver, B. A. A., & Cleveland, D. W. (2005). Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell, 8, 7–12.

    Article  PubMed  CAS  Google Scholar 

  31. Tao, W., South, V. J., Zhang, Y., Davide, J. P., Farrell, L., Kohl, N. E., et al. (2005). Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage. Cancer Cell, 8, 49–59.

    Article  PubMed  CAS  Google Scholar 

  32. Tao, W., South, V. J., Diehl, R. E., Davide, J. P., Sepp-Lorenzino, L., Fraley, M. E., et al. (2007). An inhibitor of the kinesin spindle protein activates the intrinsic apoptotic pathway independently of p53 and de novo protein synthesis. Molecular and Cellular Biology, 27, 689–698.

    Article  PubMed  CAS  Google Scholar 

  33. Vijapurkar, U., Wang, W., & Herbst, R. (2007). Potentiation of kinesin spindle protein inhibitor-induced cell death by modulation of mitochondrial and death receptor apoptotic pathways. Cancer Research, 67, 237–245.

    Article  PubMed  CAS  Google Scholar 

  34. Shi, J., Orth, J. D., & Mitchison, T. (2008). Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Research, 68, 3269–3276.

    Article  PubMed  CAS  Google Scholar 

  35. Gascoigne, K. E., & Taylor, S. S. (2008). Cancer cells display profound intra-and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell, 14, 111–122.

    Article  PubMed  CAS  Google Scholar 

  36. Kappe, C. O., Shishkin, O. V., Uray, G., & Verdino, P. (2000). X-Ray structure, conformational analysis, enantioseparation, and determination of absolute configuration of the mitotic kinesin Eg5 inhibitor monastrol. Tetrahedron, 56, 1859–1862.

    Article  CAS  Google Scholar 

  37. Yan, Y., Sardana, V., Xu, B., Homnick, C., Halczenko, W., Buser, C. A., et al. (2004). Inhibition of a mitotic motor protein: Where, how and conformational changes. Journal of Molecular Biology, 335, 547–554.

    Article  PubMed  CAS  Google Scholar 

  38. Bristol Myers Squibb (2002). WO2002079169.

  39. Bristol Myers Squibb (2002). WO2002079149.

  40. Leipzig University/Max-Planck Institute (2006). WO2006048308.

  41. Gartner, M., Sunder-Plassmann, N., Seiler, J., Utz, M., Vernos, I., Surrey, T., et al. (2005). Development and biological evaluation of potent and specific inhibitors of mitotic kinesin Eg5. ChemBioChem, 6, 1173–1177.

    Article  PubMed  CAS  Google Scholar 

  42. Sarli, V., Huemmer, S., Sunder-Plassmann, N., Mayer, T. U., & Giannis, A. (2005). Synthesis and biological evaluation of novel Eg5 inhibitors. ChemBioChem, 6, 2005–2013.

    Article  PubMed  CAS  Google Scholar 

  43. Harvard University, WO2006074293

  44. Sorbera, L. A., Bolos, J., Serradell, N., & Bayes, M. (2006). Ispinesib mesilate. Drugs Future, 31, 778–787.

    Article  CAS  Google Scholar 

  45. Cytokinetics (2001). WO2001030768

  46. Cytokinetics (2001). WO200198278

  47. Bergnes, G., Ha, E., Feng, B., Smith, W. W., Yao, B., Tochimoto, T., et al. (2002). Mitotic kinesin-targeted antitumor agents: Discovery, lead optimization and anti-tumor activity of a series of novel quinazolinones as inhibitors of kinesin spindle protein (KSP). Abstracts of Papers, 223rd ACS National Meeting, Orlando, FL, United States, MEDI-249.

  48. Cytokinetics/GSK (2003). WO2003103575.

  49. Merck & Co. (2003). WO2003049679.

  50. BMS (2003). WO2003099286.

  51. Merck & Co. (2003). WO2003049678.

  52. Merck & Co. (2003). WO2003050122.

  53. Merck & Co. (2004). WO2004039774.

  54. Cytokinetics/GSK (2004). WO2004024086.

  55. Cytokinetics/GSK (2004). WO200406741.

  56. Merck & Co. (2003). WO2003050064.

  57. Cytokinetics/GSK (2005). WO2005042697.

  58. AstraZeneca (2004). WO2004078758.

  59. AstraZeneca (2006). WO2006018627.

  60. AstraZeneca (2006). WO2006018628.

  61. AstraZeneca (2006). WO2006008523.

  62. Chiron (2004). WO2004113335.

  63. Chiron (2005). WO2005100357.

  64. Cytokinetics (2005). WO2005061460.

  65. BMS (2005). WO2005077920.

  66. Chiron (2006). WO2006049835.

  67. Takeda (2006). WO2006060737.

  68. Cytokinetics/GSK (2003). WO2003088903.

  69. Merck & Co. (2003). WO2003039460.

  70. Merck & Co. (2003). WO2003050122.

  71. Cytokinetics (2004). WO2004009036.

  72. Cytokinetics (2004). WO2004034972.

  73. Cytokinetics/GSK (2004). WO2004055008.

  74. Merck & Co. (2006). WO2006078574.

  75. Merck & Co. (2006). WO2006078575.

  76. Merck & Co. (2006). WO2006078598.

  77. Cytokinetics/GSK (2003). WO2003094839.

  78. Cytokinetics (2004). WO2004006865.

  79. Cytokinetics/GSK (2004). WO2004032840.

  80. Cytokinetics (2004). WO2004032879.

  81. Chiron (2006). WO2006002236.

  82. Cytokinetics (2004). WO2004091547.

  83. Cytokinetics (2004). WO2004103282.

  84. Cytokinetics (2004). WO2004100873.

  85. Cytokinetics (2005). WO2005013888.

  86. Merck & Co. (2003). WO2003105855.

  87. Merck & Co. (2004). WO2004037171.

  88. Cox, C. D., Breslin, M. J., Mariano, B. J., Coleman, P. J., Buser, C. A., Walsh, E. S., et al. (2005). Kinesin spindle protein (KSP) inhibitors. Part 1: The discovery of 3,5-diaryl-4,5-dihydropyrazoles as potent and selective inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 15, 2041–2045.

    Article  CAS  Google Scholar 

  89. Fraley, M. E., Garbaccio, R. M., Arrington, K. L., Hoffman, W. F., Tasber, E. S., Coleman, P. J., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Part 2: The design, synthesis, and characterization of 2,4-diaryl-2,5-dihydropyrrole inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 16, 1775–1779.

    Article  CAS  Google Scholar 

  90. Garbaccio, R. M., Fraley, M. E., Tasber, E. S., Olson, C. M., Hoffman, W. F., Arrington, K. L., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Part 3: Synthesis and evaluation of phenolic 2,4-diaryl-2,5-dihydropyrroles with reduced hERG binding and employment of a phosphate prodrug strategy for aqueous solubility. Bioorganic & Medicinal Chemistry Letters, 16, 1780–1783.

    Article  CAS  Google Scholar 

  91. Cox, C. D., Torrent, M., Breslin, M. J., Mariano, B. J., Whitman, D. B., Coleman, P. J., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Structure-based design of 5-alkylamino-3,5-diaryl-4,5-dihydropyrazoles as potent, water-soluble inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 16, 3175–3179.

    Article  CAS  Google Scholar 

  92. Cox, C. D., Breslin, M. J., Whitman, D. B., Coleman, P. J., Garbaccio, R. M., Fraley, M. E., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Discovery of 2-propylamino-2,4-diaryl-2,5-dihydropyrroles as potent, water-soluble KSP inhibitors, and modulation of their basicity by β -fluorination to overcome cellular efflux by P-glycoprotein. Bioorganic & Medicinal Chemistry Letters, 17, 2697–2702.

    Article  CAS  Google Scholar 

  93. Coleman, P. J., Schreier, J. D., Cox, C. D., Fraley, M. E., Garbaccio, R. M., Buser, C. A., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 6: Design and synthesis of 3,5-diaryl-4,5-dihydropyrazole amides as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5390–5395.

    Article  CAS  Google Scholar 

  94. Garbaccio, R. M., Tasber, E. S., Neilson, L. A., Coleman, P. J., Fraley, M. E., Olson, C., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 7: Design and synthesis of 3,3-disubstituted dihydropyrazolobenzoxazines as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5671–5676.

    Article  CAS  Google Scholar 

  95. Roecker, A. J., Coleman, P. J., Mercer, S. P., Schreier, J. D., Buser, C. A., Walsh, E. S., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 8: Design and synthesis of 1,4-diaryl-4,5-dihydropyrazoles as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5677–5682.

    Article  CAS  Google Scholar 

  96. Cox, C. D., Coleman, P. J., Breslin, M. J., Whitman, D. B., Garbaccio, R. M., Fraley, M. E., et al. (2008). Kinesin Spindle Protein (KSP) Inhibitors. 9. Discovery of (2S)-4-(2,5-Difluorophenyl)-N-[(3R,4S)-3-fluoro-1-methylpiperidin-4-yl]-2-(hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (MK-0731) for the Treatment of Taxane-Refractory Cancer. Journal of Medicinal Chemistry, 51, 4239–4252.

    Article  PubMed  CAS  Google Scholar 

  97. Kyowa Hakko/Fuji Film (2005). WO2005035512.

  98. Kyowa Hakko/Fuji Film (2005). JP2005232016.

  99. Kyowa Hakko/Fuji Film (2006). WO2006101102.

  100. Merck & Co. (2006). WO2006023440.

  101. Merck & Co. (2006). WO2006031348.

  102. Array Biopharma (2006). WO2006044825.

  103. Array Biopharma (2008). WO2008042928.

  104. Merck KgaA (2006). WO2006133805.

  105. Merck KgaA (2006). WO2006002726.

  106. Merck KgaA (2005). WO2005063735.

  107. Merck KgaA (2006). WO2006133821.

  108. Merck KgaA (2007). WO2007054138.

  109. Sunder-Plassmann, N., Sarli, V., Gartner, M., Utz, M., Seiler, J., Huemmer, S., et al. (2005). Synthesis and biological evaluation of new tetrahydro-β -carbolines as inhibitors of the mitotic kinesin Eg5. Bioorganic & Medicinal Chemistry, 13, 6094–6111.

    Article  CAS  Google Scholar 

  110. Nakazawa, J., Yajima, J., Usui, T., Ueki, M., Takatsuki, A., Imoto, M., et al. (2003). A novel action of terpendole E on the motor activity of mitotic kinesin Eg5. Chemistry & Biology, 10, 131–137.

    Article  CAS  Google Scholar 

  111. Cytokinetics (2002). WO2002057244.

  112. Okumura, H., Nakazawa, J., Tsuganezawa, K., Usui, T., Osada, H., Matsumoto, T., et al. (2006). Phenothiazine and carbazole-related compounds inhibit mitotic kinesin Eg5 and trigger apoptosis in transformed culture cells. Toxicology Letters, 166, 44–52.

    Article  PubMed  CAS  Google Scholar 

  113. Cytokinetics (2002). WO2002056880.

  114. Merck & Co. (2004). WO2004058700.

  115. ICCB (2004). US040059138.

  116. Kalypsys (2007). WO2007011721.

  117. Merck KgaA (2006). WO2006094602.

  118. Schering (2006). WO2006098961.

  119. Schering (2006). WO2006098962.

  120. Brier, S., Lemaire, D., DeBonis, S., Forest, E., & Kozielski, F. (2006). Molecular dissection of the inhibitor binding pocket of mitotic kinesin Eg5 reveals mutants that confer resistance to antimitotic agents. Journal of Molecular Biology, 360, 360–376.

    Article  PubMed  CAS  Google Scholar 

  121. Maliga, Z., & Mitchison, T. J. (2006). Small-molecule and mutational analysis of allosteric Eg5 inhibition by monastrol. BMC Chemical & Biology, 6, 2.

    Article  Google Scholar 

  122. Rickert, K. W., Schaber, M., Torrent, M., Neilson, L. A., Tasber, E. S., Garbaccio, R., et al. (2008). Discovery and biochemical characterization of selective ATP competitive inhibitors of the human mitotic kinesin KSP. Archives of Biochemistry and Biophysics, 469, 220–231.

    Article  PubMed  CAS  Google Scholar 

  123. Parrish, C. A., Adams, N. D., Auger, K. R., Burgess, J. L., Carson, J. D., Chaudhari, A. M., et al. (2007). Novel ATP-competitive kinesin spindle protein inhibitors. Journal of Medicinal Chemistry, 50, 4939–4952.

    Article  PubMed  CAS  Google Scholar 

  124. Luo, L., Parrish, C. A., Nevins, N., McNulty, D. E., Chaudhari, A. M., Carson, J. D., et al. (2007). ATP-competitive inhibitors of the mitotic kinesin KSP that function via an allosteric mechanism. Nature Chemical Biology, 3, 722–726.

    Article  PubMed  CAS  Google Scholar 

  125. Jones, S. F., Plummer, E. R., Burris, H. A., Razak, A. R., Meluch, A. A., Bowen, C. J., et al. (2006). Phase I study of ispinesib in combination with carboplatin in patients with advanced solid tumors. Proceedings of the American Society of Clinical Oncology, 24, 2027.

    Google Scholar 

  126. Rodon, J., Till, E., Patnaik, A., Takimoto, C., Beeram, M., Williams, D., et al. (2006). Phase I study of ispinesib (SB-715992), a kinesin spindle protein inhibitor, in combination with capecitabine in patients with advanced solid tumors. European Journal of Cancer, Supplement, 4, 193.

    Article  Google Scholar 

  127. Blagden, S. P., Molife, L. R., Seebaran, A., Payne, M., Reid, A. H. M., Protheroe, A. S., et al. (2008). A phase I trial of ispinesib, a kinesin spidle protein inhibitor, with docetaxel in patients with advanced solid tumors. British Journal of Cancer, 98, 894–899.

    Article  PubMed  CAS  Google Scholar 

  128. Souid, A., Dubowy, R. L., Greenwald Triplett, D., Ingle, A. M., Sun, J., Blaney, S. M., et al. (2008). Pediatric phase I trial and pharmacokinetic (PK) study of ispinesib (SB715992): A children’s oncology group phase I consortium study. Proceedings of the American Society of Clinical Oncology, 26, 10014.

    Google Scholar 

  129. Lee, R. T., Beekman, K. E., Hussain, M., Davis, N. B., Clark, J. I., Thomas, S. P., et al. (2008). A University of Chicago consortium phase II trial of SB-715992 in advanced renal cell cancer. Clin Genitourin Cancer, 6, 21–24.

    Article  PubMed  CAS  Google Scholar 

  130. Miller, K., Ng, C., Ang, P., Brufsky, A. M., Lee, S. C., Dees, E. C., et al. (2005). Phase II, open label study of ispinesib in Patients with locally advanced or metastatic breast cancer. San Antonio Breast Cancer Symposium, 1089.

  131. Shahin, M. S., Braly, P., Rose, P., Malpass, T., Bailey, H., Alvarez, R. D., et al. (2007). A phase II, open-label study of ispinesib (SB-715992) in patients with platimun/taxane refractory or resistant relapsed ovarian cancer. Proceedings of the American Society of Clinical Oncology, 25, 5562.

    Google Scholar 

  132. Holen, K. D., Belani, C. P., Wilding, G., Ramalingam, S., Heideman, J. L., Ramanathan, R. K., et al. (2006). Phase I study to determine tolerability and pharmacokinetics (PK) of SB-743921, a novel kinesin spindle protein (KSP) inhibitor. Proceedings of the American Society of Clinical Oncology, 24, 2000.

    Google Scholar 

  133. O’Connor, O. A., Goy, A., Orlowski, R., Hainsworth, J. D., Leonard, J. P., Afanasyev, B., et al. (2008). A phase I-II trial of the kinesin spindle protein (KSP) inhibitor SB-743921 on day 1 and 15 every 28 days in non-Hodgkin or Hodgkin lymphoma. Proceedings of the American Society of Clinical Oncology, 26, 8539.

    Google Scholar 

  134. Stephenson, J. J., Lewis, N., Martin, J. C., Ho, A., Li, J., Wu, K., et al. (2008). Phase I multicenter study to assess the safety, tolerability, and pharmacokinetics of AZD4877 administered twice weekly in adult patients with advanced solid malignancies. Proceedings of the American Society of Clinical Oncology, 26, 2516.

    Google Scholar 

  135. Heath, E. I., Alousi, A., Eder, J. P., Valdivieso, M., Vasist, L. S., Appleman, L., et al. (2006). A phase I dose escalation trial of ispinesib (SB-715992) administered days 1-3 of a 21-day cycle in patients with advanced solid tumors. Proceedings of the American Society of Clinical Oncology, 24, 2026.

    Google Scholar 

  136. Wood, K. W., Sakowicz, R., Goldstein, L. S. B., & Cleveland, D. W. (1997). CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell, 91, 357–366.

    Article  PubMed  CAS  Google Scholar 

  137. Kapoor, T. M., Lampson, M. A., Hergert, P., Cameron, L., Cimini, D., Salmon, E. D., et al. (2006). Chromosomes can congress to the metaphase plate before biorientation. Science, 311, 388–391.

    Article  PubMed  CAS  Google Scholar 

  138. Schaar, B. T., Chan, G. K., Maddox, P., Salmon, E. D., & Yen, T. J. (1997). CENP-E function at kinetochores is essential for chromosome alignment. Journal of Cell Biology, 139, 1373–1382.

    Article  PubMed  CAS  Google Scholar 

  139. Yao, X., Abrieu, A., Zheng, Y., Sullivan, K. F., & Cleveland, D. W. (2000). CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nature Cell Biology, 2, 484–491.

    Article  PubMed  CAS  Google Scholar 

  140. Mao, Y., Abrieu, A., & Cleveland, D. W. (2003). Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell, 114, 87–98.

    Article  PubMed  CAS  Google Scholar 

  141. Yinghui, M., Ariane, A., & Cleveland, D. W. (2003). Activating and Silencing the Mitotic Checkpoint through CENP-E-Dependent Activation/Inactivation of BubR1. Cell, 114, 87–98.

    Article  Google Scholar 

  142. McEwen, B. F., Chan, G. K., Zubrowski, B., Savoian, M. S., Sauer, M. T., & Yen, T. J. (2001). CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Molecular Biology of the Cell, 12, 2776–2789.

    PubMed  CAS  Google Scholar 

  143. Putkey, F. R., Cramer, T., Morphew, M. K., Silk, A. D., Johnson, R. S., McIntosh, J. R., et al. (2002). Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev. Cell, 3, 351–365.

    CAS  Google Scholar 

  144. Weaver, B. A., Bonday, Z. Q., Putkey, F. R., Kops, G. J., Silk, A. D., & Cleveland, D. W. (2003). Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. Journal of Cell Biology, 162, 551–563.

    Article  PubMed  CAS  Google Scholar 

  145. Weaver, B. A. A., Silk, A. D., Montagna, C., Pascal Verdier-Pinard, C. P., & Cleveland, D. W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11, 25–36.

    Article  PubMed  CAS  Google Scholar 

  146. Chua, P. R., Desai, R., Schauer, S. P., Cornwell, W., Gilmartin, A., Sutton, D., et al. (2007). Differential response of tumor cell lines to inhibition of the mitotic checkpoint regulator and mitotic kinesin, CENP-E. AACR-NCI-EORTC-2007.

  147. Sutton, D., Gilmartin, A. G., Kusnierz, A. M., Sung, C-M., Luo, L., Carson, J. D., et al. (2007). A potent and selective inhibitor of the mitotic kinesin CENP-E (GSK923295A) demonstrates a novel mechanism of inhibiting tumor cell proliferation and shows activity against a broad panel of human tumor cell lines in vitro. AACR-NCI-EORTC_2007.

  148. Sutton, D., Diamond, M., Faucette, L., Giardiniere, M., Zhang, S. Y., Vidal, J., et al. (2007). GSK-923295, a potent and selective CENP-E inhibitor, has broad spectrum activity against human tumor xenografts in nude mice. AACR 2007.

  149. Schafer-Hales, K., Iaconelli, J., Snyder, J. P., Prussia, A., Nettles, J. H., El-Naggar, A., et al. (2007). Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function. Molecular Cancer Therapeutics, 6, 1317–1328.

    Article  PubMed  CAS  Google Scholar 

  150. Ashar, H. R., James, L., Gray, K., Carr, D., Black, S., Armstrong, L., et al. (2000). Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. Journal of Biological Chemistry, 275, 30451–30457.

    Article  PubMed  CAS  Google Scholar 

  151. Corson, T. W., Huang, A., Tsao, M. S., & Gallie, B. L. (2005). KIF14 is a candidate oncogene in the 1q minimal region of genomic gain in multiple cancers. Oncogene, 24, 4741–4753.

    Article  PubMed  CAS  Google Scholar 

  152. Corson, T. W., & Gallie, B. L. (2006). KIF14 mRNA expression is a predictor of grade and outcome in breast cancer. International Journal of Cancer, 119, 1088–1094.

    Article  CAS  Google Scholar 

  153. Corson, T. W., Zhu, C. Q., Lau, S. K., Shepherd, F. A., Tsao, M. S., & Gallie, B. L. (2007). KIF14 messenger RNA expression is independently prognostic for outcome in lung cancer. Clinical Cancer Research, 13, 3229–3234.

    Article  PubMed  CAS  Google Scholar 

  154. Carleton, M., Mao, M., Biery, M., Warrener, P., Kim, S., Buser, C., et al. (2006). RNA interference-mediated silencing of mitotic kinesin KIF14 disrupts cell cycle progression and induces cytokinesis failure. Molecular and Cellular Biology, 26, 3853–3863.

    Article  PubMed  CAS  Google Scholar 

  155. Gruneberg, U., Neef, R., Li, X., Chan, E. H., Chalamalasetty, R. B., Nigg, E. A., et al. (2006). KIF14 and citron kinase act together to promote efficient cytokinesis. Journal of Cell Biology, 172, 363–372.

    Article  PubMed  CAS  Google Scholar 

  156. Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., Thery, M., et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, 22, 2189–2203.

    Article  CAS  Google Scholar 

  157. Mayr, I. M., Hummer, S., Bormann, J., Gruner, T., Adio, S., Woehlke, G., et al. (2007). The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Current Biology, 17, 488–498.

    Article  PubMed  CAS  Google Scholar 

  158. Stumpf, J., von Dassow, G., Wagenbach, M., Asbury, C., & Wordeman, L. (2008). The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Developments in Cell, 14, 252–262.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Daniel Russell, Victor Sandor and Louise Grochow for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Herbst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huszar, D., Theoclitou, ME., Skolnik, J. et al. Kinesin motor proteins as targets for cancer therapy. Cancer Metastasis Rev 28, 197–208 (2009). https://doi.org/10.1007/s10555-009-9185-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-009-9185-8

Keywords

Navigation