Skip to main content
Log in

The mitotic functions of integrin-linked kinase

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The cytoskeleton is composed of three major constituents: actin filaments, intermediate filaments and microtubules. These are vital for numerous normal cellular processes including cell spreading and migration, intracellular organelle transport, mechanical strength, mitosis and cytokinesis. Deregulation of cytoskeletal components can lead to cells developing several oncogenic phenotypes; for example increased migration and invasiveness, defects in cellular morphogenesis and genetic instabilities due to errors in mitosis and cytokinesis. Integrin-linked kinase (ILK) is a protein with well established roles in regulating actin cytoskeletal reorganization, survival, proliferation, cell migration, invasion and epithelial to mesenchymal transition, and is therefore essential to normal cell physiology. In addition, ILK is overexpressed or deregulated in a number of human cancers and when experimentally overexpressed leads to the acquisition of a number of oncogenic phenotypes, some of which, such as increased cell migration, are actin-dependent. Here we shall focus on the recent finding that ILK also regulates the microtubule cytoskeleton and is involved in mitotic spindle organization. Therefore its deregulation may also lead to errors in cell division causing genomic instability, potentially further contributing to cancer development. In light of these findings, the therapeutic potential of the anti-mitotic effects of genetic or pharmacological inhibition of ILK will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sakai, T., et al. (2003). Integrin-linked kinase (ILK) is required for polarizing the epiblast, cell adhesion, and controlling actin accumulation. Genes De, 17(7), 926–940.

    CAS  Google Scholar 

  2. Yasunaga, T., et al. (2005). Xenopus ILK (integrin-linked kinase) is required for morphogenetic movements during gastrulation. Genes to Cells, 10(4), 369–379.

    PubMed  CAS  Google Scholar 

  3. Mackinnon, A. C., et al. (2002). C. elegans PAT-4/ILK Functions as an adaptor protein within integrin adhesion complexes. Current Biology, 12(10), 787–797.

    PubMed  CAS  Google Scholar 

  4. Zervas, C. G., Gregory, S. L., & Brown, N. H. (2001). Drosophila integrin-linked kinase is required at sites of integrin adhesion to link the cytoskeleton to the plasma membrane. Journal of cell biology, 152(5), 1007–1018.

    PubMed  CAS  Google Scholar 

  5. Hannigan, G. E., et al. (1996). Regulation of cell adhesion and anchorage-dependent growth by a new beta1-integrin-linked protein kinase. Nature, 379(6560), 91–96.

    PubMed  CAS  Google Scholar 

  6. Li, F., Zhang, Y., & Wu, C. (1999). Integrin-linked kinase is localized to cell-matrix focal adhesions but not cell-cell adhesion sites and the focal adhesion localization of integrin-linked kinase is regulated by the PINCH-binding ANK repeats. Journal of Cell Science, 112(24), 4589–4599.

    PubMed  CAS  Google Scholar 

  7. Nikolopoulos, S. N., & Turner, C. E. (2001). Integrin-linked Kinase (ILK) binding to paxillin LD1 motif regulates ILK localization to focal adhesions. Journal of biological chemistry, 276(26), 23499–23505.

    PubMed  CAS  Google Scholar 

  8. Yamaji, S., et al. (2001). A novel integrin-linked kinase-binding protein, affixin, is involved in the early stage of cell-substrate interaction. Journal of cell biology, 153(6), 1251–1264.

    PubMed  CAS  Google Scholar 

  9. Tu, Y., et al. (2001). A new focal adhesion protein that interacts with integrin-linked kinase and regulates cell adhesion and spreading. Journal of cell biology, 153(3), 585–598.

    PubMed  CAS  Google Scholar 

  10. Legate, K. R., et al. (2006). ILK, PINCH and parvin: the tIPP of integrin signalling. Nature reviews. Molecular cell biology, 7(1), 20–31.

    PubMed  CAS  Google Scholar 

  11. Hannigan, G., Troussard, A. A., & Dedhar, S. (2005). Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nature Reviews Cancer, 5(1), 51–63.

    PubMed  CAS  Google Scholar 

  12. McDonald, P., Fielding, A. B., Dedhar, S. (2008). Integrin-linked kinase: essential roles in physiology and cancer biology. Journal of Cell Science, In Press.

  13. Olski, T. M., Noegel, A. A., & Korenbaum, E. (2001). Parvin, a 42 kDa focal adhesion protein, related to the alpha-actinin superfamily. Journal of Cell Science, 114(3), 525–538.

    PubMed  CAS  Google Scholar 

  14. Yamaji, S., et al. (2004). Affixin interacts with alpha-actinin and mediates integrin signaling for reorganization of F-actin induced by initial cell-substrate interaction. Journal of cell biology, 165(4), 539–551.

    PubMed  CAS  Google Scholar 

  15. Filipenko, N. R., et al. (2005). Integrin-linked kinase activity regulates Rac— and Cdc42-mediated actin cytoskeleton reorganization via alpha-PIX. Oncogene, 24(38), 5837–5849.

    PubMed  CAS  Google Scholar 

  16. Brown, M. C., Perrotta, J. A., & Turner, C. E. (1996). Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. Journal of cell biology, 135(4), 1109–1123.

    PubMed  CAS  Google Scholar 

  17. Kim, Y.-B., et al. (2008). Cell adhesion-dependent cofilin serine 3 phosphorylation by the integrin-linked kinase{middle dot}c-Src complex. Journal of biological chemistry, 283(15), 10089–10096.

    PubMed  CAS  Google Scholar 

  18. Loer, B., et al. (2008). The NHL-domain protein Wech is crucial for the integrin-cytoskeleton link. Nature cell biology, 10(4), 422–428.

    PubMed  Google Scholar 

  19. Zhang, W., et al. (2007). Integrin-linked kinase regulates n-wasp-mediated actin polymerization and tension development in tracheal smooth muscle. Journal of biological chemistry, 282(47), 34568–34580.

    PubMed  CAS  Google Scholar 

  20. Tu, Y., et al. (2003). Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell, 113(1), 37–47.

    PubMed  CAS  Google Scholar 

  21. Foster, L. J., et al. (2006). Insulin-dependent interactions of proteins with GLUT4 revealed through stable isotope labeling by amino acids in cell culture (SILAC)*. Journal of proteome research, 5(1), 64–75.

    PubMed  CAS  Google Scholar 

  22. Ong, S.-E., et al. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & cellular proteomics, 1(5), 376–386.

    CAS  Google Scholar 

  23. Dobreva, I., et al. (2008). Mapping the integrin-linked kinase interactome using SILAC. Journal of proteome research, 7(4), 1740–1749.

    PubMed  CAS  Google Scholar 

  24. Fielding, A. B., et al. (2008). Integrin-linked kinase localizes to the centrosome and regulates mitotic spindle organization. Journal of cell biology, 180(4), 681–689.

    PubMed  CAS  Google Scholar 

  25. Sauer, G., et al. (2005). Proteome analysis of the human mitotic spindle. Molecular & cellular proteomics, 4(1), 35–43.

    CAS  Google Scholar 

  26. Kirschner, M., & Mitchison, T. (1986). Beyond self-assembly: from microtubules to morphogenesis. Cell, 45(3), 329–342.

    PubMed  CAS  Google Scholar 

  27. Schmit, A. (2002). Acentrosomal microtubule nucleation in higher plants. International review of cytology, 220, 257–289.

    PubMed  CAS  Google Scholar 

  28. Karsenti, E., Newport, J., & Kirschner, M. (1984). Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. Journal of cell biology, 99(1), 47s–54.

    PubMed  CAS  Google Scholar 

  29. Basto, R., et al. (2006). Flies without centrioles. Cell, 125(7), 1375–1386.

    PubMed  CAS  Google Scholar 

  30. Hinchcliffe, E., et al. (2001). Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science, 291(5508), 1547–1550.

    PubMed  CAS  Google Scholar 

  31. Khodjakov, A., et al. (2000). Centrosome-independent mitotic spindle formation in vertebrates. Current Biology, 10(2), 59–67.

    PubMed  CAS  Google Scholar 

  32. Heald, R., et al. (1996). Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature, 382(6590), 420–425.

    PubMed  CAS  Google Scholar 

  33. O’Connell, C. B., & Khodjakov, A. L. (2007). Cooperative mechanisms of mitotic spindle formation. Journal of Cell Science, 120(10), 1717–1722.

    PubMed  CAS  Google Scholar 

  34. Heald, R., et al. (1997). Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. Journal of cell biology, 138(3), 615–628.

    PubMed  CAS  Google Scholar 

  35. Brinkley, B. R. (2001). Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends in Cell Biology, 11(1), 18–21.

    PubMed  CAS  Google Scholar 

  36. Sen, S. P. (2000). Aneuploidy and cancer. 2000: Current Opinion in Oncology January, 12(1), 82–88.

    CAS  Google Scholar 

  37. Boveri, T. (1902). Ueber mehrpolige Mitosen als Mittel zur Analyse des Zellkerns English translation at http://8e.devbio.com/article.php?ch=4&id=24. Vehr d phys med Ges zu Wurzburg NF, 35, 67–90.

    Google Scholar 

  38. Boveri, T. (1914). Zur Frage der Entstehung maligner Tumoren (The Origin of Malignant Tumors). Jena: Gustav Fischer.

    Google Scholar 

  39. Sotillo, R., et al. (2007). Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell, 11(1), 9–23.

    PubMed  CAS  Google Scholar 

  40. Weaver, B. A. A., & Cleveland, D. W. (2006). Does aneuploidy cause cancer? Current Opinion in Cell Biology, 18(6), 658–667.

    PubMed  CAS  Google Scholar 

  41. Weaver, B. A. A., et al. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11(1), 25–36.

    PubMed  CAS  Google Scholar 

  42. Nigg, E. A. (2006). Origins and consequences of centrosome aberrations in human cancers. International Journal of Cancer, 119(12), 2717–2723.

    CAS  Google Scholar 

  43. Nigg, E. A. (2002). Centrosome aberrations: cause or consequence of cancer progression? Nature reviews. Cancer, 2(11), 815–825.

    PubMed  CAS  Google Scholar 

  44. Pihan, G. A., et al. (2001). Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer research, 61(5), 2212–2219.

    PubMed  CAS  Google Scholar 

  45. Pihan, G. A., & Doxsey, S. J. (1999). The mitotic machinery as a source of genetic instability in cancer. Seminars in Cancer Biology, 9(4), 289–302.

    PubMed  CAS  Google Scholar 

  46. Pihan, G. A., et al. (2003). Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer research, 63(6), 1398–1404.

    PubMed  CAS  Google Scholar 

  47. Raff, J. W. (2002). Centrosomes and cancer: lessons from a TACC. Trends in Cell Biology, 12(5), 222–225.

    PubMed  CAS  Google Scholar 

  48. Doxsey, S., Zimmerman, W., & Mikule, K. (2005). Centrosome control of the cell cycle. Trends in Cell Biology, 15(6), 303–311.

    PubMed  CAS  Google Scholar 

  49. Satish Sankaran, J. D. P. (2006). Centrosome function in normal and tumor cells. Journal of cellular biochemistry, 99(5), 1240–1250.

    PubMed  Google Scholar 

  50. Lingle, W. L., et al. (2002). Centrosome amplification drives chromosomal instability in breast tumor development. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 1978–1983.

    PubMed  CAS  Google Scholar 

  51. Basto, R., et al. (2008). Centrosome amplification can initiate tumorigenesis in flies. Cell, 133(6), 1032–1042.

    PubMed  CAS  Google Scholar 

  52. Quintyne, N. J., et al. (2005). Spindle multipolarity is prevented by centrosomal clustering. Science, 307(5706), 127–129.

    PubMed  CAS  Google Scholar 

  53. Ring, D., Hubble, R., & Kirschner, M. (1982). Mitosis in a cell with multiple centrioles. Journal of cell biology, 94(3), 549–556.

    PubMed  CAS  Google Scholar 

  54. Kwon, M., et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & development, 22(16), 2189–2203.

    CAS  Google Scholar 

  55. Meraldi, P., Honda, R., & Nigg, E. A. (2002). Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. EMBO journal, 21(4), 483–492.

    PubMed  CAS  Google Scholar 

  56. Anand, S., Penrhyn-Lowe, S., & Venkitaraman, A. R. (2003). AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell, 3(1), 51–62.

    PubMed  CAS  Google Scholar 

  57. Ganem, N. J., Storchova, Z., & Pellman, D. (2007). Tetraploidy, aneuploidy and cancer. Current Opinion in Genetics & Development, 17(2), 157–162.

    CAS  Google Scholar 

  58. Margolis, R. L. (2005). Tetraploidy and tumor development. Cancer Cell, 8(5), 353–354.

    PubMed  CAS  Google Scholar 

  59. Storchova, Z., & Pellman, D. (2004). From polyploidy to aneuploidy, genome instability and cancer. Nature reviews. Molecular cell biology, 5(1), 45–54.

    PubMed  CAS  Google Scholar 

  60. McGrogan, B. T., et al. (2008). Taxanes, microtubules and chemoresistant breast cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1785(2), 96–132.

    CAS  Google Scholar 

  61. Daibata, M., et al. (2004). Differential gene-expression profiling in the leukemia cell lines derived from indolent and aggressive phases of CD56 positive T-cell large granular lymphocyte leukemia. International Journal of Cancer, 108(6), 845–851.

    CAS  Google Scholar 

  62. Bièche, I., et al. (1998). Overexpression of the stathmin gene in a subset of human breast cancer. British Journal of Cancer, 78(6), 701–709.

    PubMed  Google Scholar 

  63. Singer, S., et al. (2007). Protumorigenic overexpression of stathmin/Op18 by gain-of-function mutation in p53 in human hepatocarcinogenesis. Hepatology, 46(3), 759–768.

    PubMed  CAS  Google Scholar 

  64. Musacchio, A., & Salmon, E. D. (2007). The spindle-assembly checkpoint in space and time. Nature reviews. Molecular cell biology, 8(5), 379–393.

    PubMed  CAS  Google Scholar 

  65. Wang, X., et al. (2008). Mitotic checkpoint defects in human cancers and their implications to chemotherapy. Frontiers in bioscience, 13, 2103–2114.

    PubMed  CAS  Google Scholar 

  66. Gemma, A., et al. (2000). Somatic mutation of the hBUB1 mitotic checkpoint gene in primary lung cancer. Genes, Chromosomes and Cancer, 29(3), 213–218.

    CAS  Google Scholar 

  67. Kim, H.-S., et al. (2005). Frequent mutations of human Mad2, but not Bub1, in gastric cancers cause defective mitotic spindle checkpoint. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 578(1-2), 187–201.

    CAS  Google Scholar 

  68. Gemma, A., et al. (2001). Genomic structure of the human MAD2 gene and mutation analysis in human lung and breast cancers. Lung Cancer, 32(3), 289–295.

    PubMed  CAS  Google Scholar 

  69. Nakagawa, H., et al. (2002). No mutations of the Bub1 gene in human gastric and oral cancer cell lines. Oncology Reports, 9(6), 1229–1232.

    PubMed  CAS  Google Scholar 

  70. Grabsch, H., et al. (2003). Overexpression of the mitotic checkpoint genes BUB1, BUBR1, and BUB3 in gastric cancer-association with tumour cell proliferation. The Journal of Pathology, 200(1), 16–22.

    PubMed  CAS  Google Scholar 

  71. Yuan, B., et al. (2006). Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clinical cancer research, 12(2), 405–410.

    PubMed  CAS  Google Scholar 

  72. Pinto, M., et al. (2007). Expression changes of the MAD mitotic checkpoint gene family in renal cell carcinomas characterized by numerical chromosome changes. Virchows Archiv, 450(4), 379–385.

    PubMed  CAS  Google Scholar 

  73. Rimkus, C., et al. (2007). Expression of the mitotic checkpoint gene MAD2L2 has prognostic significance in colon cancer. International Journal of Cancer, 120(1), 207–211.

    CAS  Google Scholar 

  74. Burum-Auensen, E., et al. (2008). Reduced level of the spindle checkpoint protein BUB1B is associated with aneuploidy in colorectal cancers. Cell Proliferation, 41(4), 645–659.

    PubMed  CAS  Google Scholar 

  75. Bettencourt-Dias, M., et al. (2004). Genome-wide survey of protein kinases required for cell cycle progression. Nature, 432(7020), 980–987.

    PubMed  CAS  Google Scholar 

  76. Gkretsi, V., et al. (2007). Loss of integrin linked kinase from mouse hepatocytes in vitro and in vivo results in apoptosis and hepatitis. Hepatology, 45(4), 1025–1034.

    PubMed  CAS  Google Scholar 

  77. Koul, D., et al. (2005). Targeting integrin-linked kinase inhibits Akt signaling pathways and decreases tumor progression of human glioblastoma. Molecular cancer therapeutics, 4(11), 1681–1688.

    PubMed  CAS  Google Scholar 

  78. Edwards, L. A., et al. (2008). Suppression of VEGF secretion and changes in glioblastoma multiforme microenvironment by inhibition of Integrin-linked kinase (ILK). Molecular cancer therapeutics, 7(1), 59–70.

    PubMed  CAS  Google Scholar 

  79. Monferran, S., et al. (2008). alphavbeta3 and alphavbeta5 integrins control glioma cell response to ionising radiation through ILK and RhoB. International Journal of Cancer, 123(2), 357–364.

    CAS  Google Scholar 

  80. Jordan, M. A., et al. (1996). Mitotic block induced in hela cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer research, 56(4), 816–825.

    PubMed  CAS  Google Scholar 

  81. Blagosklonny, M. V. (2007). Mitotic arrest and cell fate: why and how mitotic inhibition of transcription drives mutually exclusive events. Cell Cycle, 6(1), 70–74.

    PubMed  CAS  Google Scholar 

  82. Weaver, B. A. A., & Cleveland, D. W. (2005). Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell, 8(1), 7–12.

    PubMed  CAS  Google Scholar 

  83. Younes, M. N., et al. (2005). Integrin-linked kinase is a potential therapeutic target for anaplastic thyroid cancer. Molecular cancer therapeutics, 4(8), 1146–1156.

    PubMed  CAS  Google Scholar 

  84. Troussard, A. A., et al. (2006). Preferential dependence of breast cancer cells versus normal cells on integrin-linked kinase for protein kinase B/Akt activation and cell survival. Cancer research, 66(1), 393–403.

    PubMed  CAS  Google Scholar 

  85. Tabe, Y., et al. (2007). Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer research, 67(2), 684–694.

    PubMed  CAS  Google Scholar 

  86. Younes, M. N., et al. (2007). Effects of the integrin-linked kinase inhibitor QLT0267 on squamous cell carcinoma of the head and neck. Archives of otolaryngology-head & neck surgery, 133(1), 15–23.

    Google Scholar 

  87. Duxbury, M. S., et al. (2005). RNA interference demonstrates a novel role for integrin-linked kinase as a determinant of pancreatic adenocarcinoma cell gemcitabine chemoresistance. Clinical cancer research, 11(9), 3433–3438.

    PubMed  CAS  Google Scholar 

  88. Shi, Q., et al. (2007). Targeting SPARC expression decreases glioma cellular survival and invasion associated with reduced activities of FAK and ILK kinases. Oncogene, 26(28), 4084–4094.

    PubMed  CAS  Google Scholar 

  89. McDonald, P. C., et al. (2008). Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival. Cancer research, 68(6), 1618–1624.

    PubMed  CAS  Google Scholar 

  90. Edwards, L. A., et al. (2005). Inhibition of ILK in PTEN-mutant human glioblastomas inhibits PKB//Akt activation, induces apoptosis, and delays tumor growth. Oncogene, 24(22), 3596–3605.

    PubMed  CAS  Google Scholar 

  91. Wong, R. P. C., et al. (2007). The role of integrin-linked kinase in melanoma cell migration, invasion, and tumor growth. Molecular cancer therapeutics, 6(6), 1692–1700.

    PubMed  CAS  Google Scholar 

  92. Gergely, F., Draviam, V. M., & Raff, J. W. (2003). The ch-TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells. Genes & development, 17(3), 336–341.

    CAS  Google Scholar 

  93. Peset, I., et al. (2005). Function and regulation of Maskin, a TACC family protein, in microtubule growth during mitosis. Journal of cell biology, 170(7), 1057–1066.

    PubMed  CAS  Google Scholar 

  94. Giet, R., et al. (2002). Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. Journal of cell biology, 156(3), 437–451.

    PubMed  CAS  Google Scholar 

  95. Kinoshita, K., et al. (2005). Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. Journal of cell biology, 170(7), 1047–1055.

    PubMed  CAS  Google Scholar 

  96. Barros, T. P., et al. (2005). Aurora A activates D-TACC-Msps complexes exclusively at centrosomes to stabilize centrosomal microtubules. Journal of cell biology, 170(7), 1039–1046.

    PubMed  CAS  Google Scholar 

  97. Gartner, W., et al. (2003). The ATP-dependent helicase RUVBL1/TIP49a associates with tubulin during mitosis. Cell Motility and the Cytoskeleton, 56(2), 79–93.

    PubMed  CAS  Google Scholar 

  98. Ducat, D., et al. (2008). Regulation of microtubule assembly and organization in mitosis by the AAA+ ATPase Pontin. Molecular biology of the cell, 19(7), 3097–3110.

    PubMed  CAS  Google Scholar 

  99. Fielding, A. B., Dobreva, I., & Dedhar, S. (2008). Beyond focal adhesions: integrin-linked kinase associates with tubulin and regulates mitotic spindle organization. Cell Cycle, 7(13), 1899–1906.

    PubMed  CAS  Google Scholar 

  100. Marumoto, T., Zhang, D., & Saya, H. (2005). Aurora-A—a guardian of poles. Nature Reviews Cancer, 5(1), 42–50.

    PubMed  CAS  Google Scholar 

  101. Spittle, C., et al. (2000). The interaction of TOGp with microtubules and tubulin. Journal of biological chemistry, 275(27), 20748–20753.

    PubMed  CAS  Google Scholar 

  102. Gard, D. L., & Kirschner, M. W. (1987). A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. Journal of cell biology, 105(5), 2203–2215.

    PubMed  CAS  Google Scholar 

  103. Vasquez, R. J., Gard, D. L., & Cassimeris, L. (1994). XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. Journal of cell biology, 127(4), 985–993.

    PubMed  CAS  Google Scholar 

  104. Tournebize, R., et al. (2000). Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nature cell biology, 2(1), 13–19.

    PubMed  CAS  Google Scholar 

  105. Charrasse, S., et al. (1998). The TOGp protein is a new human microtubule-associated protein homologous to the Xenopus XMAP215. Journal of Cell Science, 111(10), 1371–1383.

    PubMed  CAS  Google Scholar 

  106. Gergely, F., et al. (2000). The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proceedings of the National Academy of Sciences, 97(26), 14352–14357.

    CAS  Google Scholar 

  107. Cullen, C. F., & Ohkura, H. (2001). Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles. Nature cell biology, 3(7), 637–642.

    PubMed  CAS  Google Scholar 

  108. Lee, M. J., et al. (2001). Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour. Nature cell biology, 3(7), 643–649.

    PubMed  CAS  Google Scholar 

  109. Pascreau, G., et al. (2005). Phosphorylation of maskin by Aurora-A participates in the control of sequential protein synthesis during xenopus laevis oocyte maturation. Journal of biological chemistry, 280(14), 13415–13423.

    PubMed  CAS  Google Scholar 

  110. Weiske, J., & Huber, O. (2005). The histidine triad protein Hint1 interacts with pontin and reptin and inhibits TCF-beta-catenin-mediated transcription. Journal of Cell Science, 118(14), 3117–3129.

    PubMed  CAS  Google Scholar 

  111. Bauer, A., Huber, O., & Kemler, R. (1998). Pontin52, an interaction partner of beta-catenin, binds to the TATA box binding protein. PNAS, 95(25), 14787–14792.

    PubMed  CAS  Google Scholar 

  112. Kanemaki, M., et al. (1997). Molecular cloning of a rat 49-kDa TBP-interacting protein (TIP49) that is highly homologous to the bacterial RuvB. Biochemical and biophysical research communications, 235(1), 64–68.

    PubMed  CAS  Google Scholar 

  113. Qiu, X.-B., et al. (1998). An eukaryotic RuvB-like protein (RUVBL1) essential for growth. Journal of biological chemistry, 273(43), 27786–27793.

    PubMed  CAS  Google Scholar 

  114. Salzer, U., Kubicek, M., & Prohaska, R. (1999). Isolation, molecular characterization, and tissue-specific expression of ECP-51 and ECP-54 (TIP49), two homologous, interacting erythroid cytosolic proteins. Biochimica et Biophysica Acta (BBA) – Gene Structure and Expression, 1446(3), 365–370.

    CAS  Google Scholar 

  115. Ikura, T., et al. (2000). Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell, 102(4), 463–473.

    PubMed  CAS  Google Scholar 

  116. Bauer, A., et al. (2000). Pontin52 and reptin52 function as antagonistic regulators of β-catenin signalling activity. EMBO journal, 19(22), 6121–6130.

    PubMed  CAS  Google Scholar 

  117. Kanemaki, M., et al. (1999). TIP49b, a New RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. Journal of biological chemistry, 274(32), 22437–22444.

    PubMed  CAS  Google Scholar 

  118. Parfait, B., et al. (2000). Human TIP49b/RUVBL2 gene: genomic structure, expression pattern, physical link to the human CGB/LHB gene cluster on chromosome 19q13.3. Annales de Genetique, 43(2), 69–74.

    PubMed  CAS  Google Scholar 

  119. Novak, A., et al. (1998). Cell adhesion and the integrin-linked kinase regulate the LEF-1 and beta -catenin signaling pathways. PNAS, 95(8), 4374–4379.

    PubMed  CAS  Google Scholar 

  120. Persad, S., et al. (2001). Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. Journal of cell biology, 153(6), 1161–1174.

    PubMed  CAS  Google Scholar 

  121. Oloumi, A., Syam, S., & Dedhar, S. (2006). Modulation of Wnt3a-mediated nuclear beta-catenin accumulation and activation by integrin-linked kinase in mammalian cells. Oncogene, 25(59), 7747–7757.

    PubMed  CAS  Google Scholar 

  122. Bahmanyar, S., et al. (2008). Beta-Catenin is a Nek2 substrate involved in centrosome separation. Genes & development, 22(1), 91–105.

    CAS  Google Scholar 

  123. Huang, P., Senga, T., & Hamaguchi, M. (2007). A novel role of phospho-beta-catenin in microtubule regrowth at centrosome. Oncogene, 26(30), 4357–4371.

    PubMed  CAS  Google Scholar 

  124. Kaplan, D. D., et al. (2004). Identification of a role for beta-Catenin in the establishment of a bipolar mitotic spindle. Journal of biological chemistry, 279(12), 10829–10832.

    PubMed  CAS  Google Scholar 

  125. Tanaka, T., et al. (1999). Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer research, 59(9), 2041–2044.

    PubMed  CAS  Google Scholar 

  126. Gritsko, T. M., et al. (2003). Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clinical cancer research, 9(4), 1420–1426.

    PubMed  CAS  Google Scholar 

  127. Li, D., et al. (2003). Overexpression of oncogenic STK15/BTAK/aurora a kinase in human pancreatic cancer. Clinical cancer research, 9(3), 991–997.

    PubMed  CAS  Google Scholar 

  128. Takahashi, T., et al. (2000). Centrosomal kinases, HsAIRK1 and HsAIRK3, are overexpressed in primary colorectal cancers. Japanese journal of cancer research, 91(10), 1007–1014.

    PubMed  CAS  Google Scholar 

  129. Bischoff, J., et al. (1998). A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO journal, 17(11), 3052–3065.

    PubMed  CAS  Google Scholar 

  130. Zhou, H., et al. (1998). Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature genetics, 20(2), 189–193.

    PubMed  CAS  Google Scholar 

  131. Tan, C., et al. (2004). Regulation of tumor angiogenesis by integrin-linked kinase (ILK). Cancer Cell, 5(1), 79–90.

    PubMed  CAS  Google Scholar 

  132. Attwell, S., Roskelley, C., & Dedhar, S. (2000). The integrin-linked kinase (ILK) suppresses anoikis. Oncogene, 19(33), 3811–3815.

    PubMed  CAS  Google Scholar 

  133. Radeva, G., et al. (1997). Overexpression of the integrin-linked kinase promotes anchorage-independent cell cycle progression. Journal of biological chemistry, 272(21), 13937–13944.

    PubMed  CAS  Google Scholar 

  134. Somasiri, A., et al. (2001). Overexpression of the integrin-linked kinase mesenchymally transforms mammary epithelial cells. Journal of Cell Science, 114(6), 1125–1136.

    PubMed  CAS  Google Scholar 

  135. White, D., et al. (2001). Mammary epithelial-specific expression of the integrin-linked kinase (ILK) results in the induction of mammary gland hyperplasias and tumors in transgenic mice. Oncogene, 20(48), 7064–7072.

    PubMed  CAS  Google Scholar 

  136. Persad, S., et al. (2000). Inhibition of integrin-linked kinase (ILK) suppresses activation of protein kinase B/Akt and induces cell cycle arrest and apoptosis of PTEN-mutant prostate cancer cells. PNAS, 97(7), 3207–3212.

    PubMed  CAS  Google Scholar 

  137. Troussard, A., et al. (2000). The integrin linked kinase (ILK) induces an invasive phenotype via AP-1 transcription factor-dependent upregulation of matrix metalloproteinase 9 (MMP-9). Oncogene, 19(48), 5444–5452.

    PubMed  CAS  Google Scholar 

  138. Graff, J. R., et al. (2001). Integrin-linked kinase expression increases with prostate tumor grade. Clinical cancer research, 7(7), 1987–1991.

    PubMed  CAS  Google Scholar 

  139. Bravou, V., et al. (2006). ILK over-expression in human colon cancer progression correlates with activation of beta-catenin, down-regulation of E-cadherin and activation of the Akt-FKHR pathway. Journal of pathology, 208(1), 91–99.

    PubMed  CAS  Google Scholar 

  140. Marotta, A., et al. (2001). Dysregulation of integrin-linked kinase (ILK) signaling in colonic polyposis. Oncogene, 20(43), 6250–6257.

    PubMed  CAS  Google Scholar 

  141. Ito, R., et al. (2003). Expression of integrin-linked kinase is closely correlated with invasion and metastasis of gastric carcinoma. Virchows Archiv, 442(2), 118–123.

    PubMed  CAS  Google Scholar 

  142. Ahmed, N., et al. (2003). Integrin-linked kinase expression increases with ovarian tumour grade and is sustained by peritoneal tumour fluid. Journal of pathology, 201(2), 229–237.

    PubMed  CAS  Google Scholar 

  143. Ahmed, N., et al. (2004). Cell-Free 59 kDa immunoreactive integrin-linked kinase: a novel marker for ovarian carcinoma. Clinical cancer research, 10(7), 2415–2420.

    PubMed  CAS  Google Scholar 

  144. Chung, D. H., et al. (1998). ILK (β1-integrin-linked protein kinase): a novel immunohistochemical marker for Ewing’s sarcoma and primitive neuroectodermal tumour. Virchows Archiv, 433(2), 113–117.

    PubMed  CAS  Google Scholar 

  145. Dai, D. L., et al. (2003). Increased expression of integrin-linked kinase is correlated with melanoma progression and poor patient survival. Clinical cancer research, 9(12), 4409–4414.

    PubMed  CAS  Google Scholar 

  146. Sawai, H., et al. (2006). Integrin-linked kinase activity is associated with interleukin-1 alpha-induced progressive behavior of pancreatic cancer and poor patient survival. Oncogene, 25(23), 3237–3246.

    PubMed  CAS  Google Scholar 

  147. Takanami, I. (2005). Increased expression of integrin-linked kinase is associated with shorter survival in non-small cell lung cancer. BMC Cancer, 5(1), 1.

    PubMed  Google Scholar 

  148. Okamura, M., et al. (2007). Prognostic value of integrin beta 1-ILK-pAkt signaling pathway in non-small cell lung cancer. Human Pathology, 38(7), 1081–1091.

    PubMed  CAS  Google Scholar 

  149. Watzka, S. B., et al. (2008). Reactivity of integrin-linked kinase in human mesothelial cell proliferation. Interact CardioVasc Thorac Surg, 7(1), 107–110.

    PubMed  Google Scholar 

  150. Lin, S.-W., et al. (2007). Critical involvement of ILK in TGF beta1-stimulated invasion/migration of human ovarian cancer cells is associated with urokinase plasminogen activator system. Experimental Cell Research, 313(3), 602–613.

    PubMed  CAS  Google Scholar 

  151. Assi, K., et al. (2008). Integrin-linked kinase regulates cell proliferation and tumour growth in murine colitis-associated carcinogenesis. Gut, 57(7), 931–940.

    PubMed  CAS  Google Scholar 

  152. Rosano, L., et al. (2005). Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells. Cancer research, 65(24), 11649–11657.

    PubMed  CAS  Google Scholar 

  153. Rosano, L., et al. (2006). Integrin-linked kinase functions as a downstream mediator of endothelin-1 to promote invasive behavior in ovarian carcinoma. Molecular cancer therapeutics, 5(4), 833–842.

    PubMed  CAS  Google Scholar 

  154. Liu, J., et al. (2006). Integrin-linked kinase inhibitor KP-392 demonstrates clinical benefits in an orthotopic human non-small cell lung cancer model. Journal of thoracic oncology, 1(8), 771–779.

    PubMed  Google Scholar 

  155. Yau, C. Y. F., et al. (2005). Inhibition of integrin-linked kinase by a selective small molecule inhibitor, QLT0254, inhibits the PI3K/PKB/mTOR, Stat3, and FKHR pathways and tumor growth, and enhances gemcitabine-induced apoptosis in human orthotopic primary pancreatic cancer xenografts. Cancer research, 65(4), 1497–1504.

    PubMed  CAS  Google Scholar 

  156. Agnese, V., et al. (2007). The role of Aurora-A inhibitors in cancer therapy. Annals of oncology, 18(suppl_6), vi47–52.

    PubMed  Google Scholar 

  157. Gligorov, J., & Lotz, J. P. (2004). Preclinical pharmacology of the taxanes: implications of the differences. Oncologist, 9(suppl_2), 3–8.

    PubMed  CAS  Google Scholar 

  158. Edwards, L. A., et al. (2006). Combined inhibition of the phosphatidylinositol 3-kinase/Akt and Ras/mitogen-activated protein kinase pathways results in synergistic effects in glioblastoma cells. Molecular cancer therapeutics, 5(3), 645–654.

    PubMed  CAS  Google Scholar 

  159. Reverte, C. G., et al. (2006). Perturbing integrin function inhibits microtubule growth from centrosomes, spindle assembly, and cytokinesis. Journal of cell biology, 174(4), 491–497.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

S.D. acknowledges grant support from the National Cancer Institute of Canada (NCIC) with funds raised through the Canadian Cancer Society (CCS) and the Terry Fox Foundation, and from the Canadian Institutes for Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoukat Dedhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fielding, A.B., Dedhar, S. The mitotic functions of integrin-linked kinase. Cancer Metastasis Rev 28, 99–111 (2009). https://doi.org/10.1007/s10555-008-9177-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-008-9177-0

Keywords

Navigation