Skip to main content

Advertisement

Log in

Clinical biomarkers for hypoxia targeting

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Tumor hypoxia or a reduction of the tissue oxygen tension is a key microenvironmental factor for tumor progression and treatment resistance in solid tumors. Because hypoxic tumor cells have been demonstrated to be more resistant to ionizing radiation, hypoxia has been a focus of laboratory and clinical research in radiation therapy for many decades. It is believed that proper detection of hypoxic regions would guide treatment options and ultimately improve tumor response. To date, most clinical efforts in targeting tumor hypoxia have yielded equivocal results due to the lack of appropriate patient selection. However, with improved understanding of the molecular pathways regulated by hypoxia and the discovery of novel hypoxia markers, the prospect of targeting hypoxia has become more tangible. This chapter will focus on the development of clinical biomarkers for hypoxia targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brown, J. M., & Giaccia, A. J. (1998). The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy. Cancer Research, 58, 1408–1416.

    PubMed  CAS  Google Scholar 

  2. Thomlinson, R. H., & Gray, L. H. (1955). The histological structure of some human lung cancers and the possible implications for radiotherapy. British Journal of Cancer, 9, 539–549.

    PubMed  CAS  Google Scholar 

  3. Kennedy, K. A., Teicher, B. A., Rockwell, S., et al. (1980). The hypoxic tumor cell: A target for selective cancer chemotherapy. Biochemical Pharmacology, 29, 1–8.

    PubMed  CAS  Google Scholar 

  4. Graeber, T. G., Peterson, J. F., Tsai, M., et al. (1994). Hypoxia induces the accumulation of p53 protein, but the activation of a G1-phase checkpoint by low oxygen conditions is independent of p53 status. Molecular and Cellular Biology, 14, 6264–6277.

    PubMed  CAS  Google Scholar 

  5. Le, Q. T., Denko, N. C., & Giaccia, A. J. (2004). Hypoxic gene expression and metastasis. Cancer and Metastasis Reviews, 23, 293–310.

    PubMed  CAS  Google Scholar 

  6. Fazekas, J. T., Pajak, T. F., Wasserman, T., et al. (1987). Failure of misonidazole-sensitized radiotherapy to impact upon outcome among stage III–IV squamous cancers of the head and neck. International Journal of Radiation Oncology, Biology, Physics, 13, 1155–1160.

    PubMed  CAS  Google Scholar 

  7. Lee, D. J., Moini, M., Giuliano, J., et al. (1996). Hypoxic sensitizer and cytotoxin for head and neck cancer. Annals of the Academy of Medicine, Singapore, 25, 397–404.

    PubMed  CAS  Google Scholar 

  8. Overgaard, J., Hansen, H. S., Anderson, A. P., et al. (1989). Misonidazole combined with split course radiotherapy in the treatment of invasive carcinoma of larynx and pharynx: Report from the DAHANCA study. International Journal of Radiation Oncology, Biology, Physics, 16, 1065–1068.

    PubMed  CAS  Google Scholar 

  9. Van den Bogaert, W., van der Schueren, E., Horiot, J. C., et al. (1995). The EORTC randomized trial on three fractions per day and misonidazole (trial no. 22811) in advanced head and neck cancer: Long-term results and side effects. Radiotherapy and Oncology, 35, 91–99.

    PubMed  Google Scholar 

  10. Lee, D. J., Pajak, T. F., Stetz, J., et al. (1989). A phase I/II study of the hypoxic cell sensitizer misonidazole as an adjunct to high fractional dose radiotherapy in patients with unresectable squamous cell carcinoma of the head and neck: A RTOG randomized study (#79-04). International Journal of Radiation Oncology, Biology, Physics, 16, 465–470.

    PubMed  CAS  Google Scholar 

  11. Hill, R. P. (2005). Targeted treatment: insights from studies of osteopontin and hypoxia. Lancet Oncology, 6, 733–734.

    PubMed  Google Scholar 

  12. Tatum, J. L., Kelloff, G. J., Gillies, R. J., et al. (2006). Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. International Journal of Radiation Biology, 82, 699–757.

    PubMed  CAS  Google Scholar 

  13. Gatenby, R. A., Kessler, H. B., Rosenblum, J. S., et al. (1988). Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. International Journal of Radiation Oncology, Biology, Physics, 14, 831–838.

    PubMed  CAS  Google Scholar 

  14. Wendling, P., Manz, R., Thews, G., et al. (1984). Heterogeneous oxygenation of rectal carcinomas in humans: A critical parameter for preoperative irradiation? Advances in Experimental Medicine and Biology, 180, 293–300.

    PubMed  CAS  Google Scholar 

  15. Vaupel, P. (2004). Tumor microenvironmental physiology and its implications for radiation oncology. Seminars in Radiation Oncology, 14, 198–206.

    PubMed  Google Scholar 

  16. Brizel, D. M., Dodge, R. K., Clough, R. W., et al. (1999). Oxygenation of head and neck cancer: Changes during radiotherapy and impact on treatment outcome. Radiotherapy and Oncology, 53, 113–117.

    PubMed  CAS  Google Scholar 

  17. Nordsmark, M., & Overgaard, J. (2000). A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. Radiotherapy and Oncology, 57, 39–43.

    PubMed  CAS  Google Scholar 

  18. Rudat, V., Stadler, P., Becker, A., et al. (2001). Predictive value of the tumor oxygenation by means of pO2 histography in patients with advanced head and neck cancer. Strahlentherapie und Onkologie, 177, 462–468.

    PubMed  CAS  Google Scholar 

  19. Le, Q. T., Chen, E., Salim, A., et al. (2006). An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clinical Cancer Research, 12, 1507–1514.

    PubMed  CAS  Google Scholar 

  20. Hockel, M., Schlenger, K., Aral, B., et al. (1996). Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Research, 56, 4509–4515.

    PubMed  CAS  Google Scholar 

  21. Hockel, M., Schlenger, K., Hockel, S., et al. (1999). Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Research, 59, 4525–4528.

    PubMed  CAS  Google Scholar 

  22. Fyles, A., Milosevic, M., Hedley, D., et al. (2002). Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. Journal Clinical Oncology, 20, 680–687.

    CAS  Google Scholar 

  23. Movsas, B., Chapman, J. D., Hanlon, A. L., et al. (2002). Hypoxic prostate/muscle pO2 ratio predicts for biochemical failure in patients with prostate cancer: Preliminary findings. Urology, 60, 634–639.

    PubMed  Google Scholar 

  24. Brizel, D. M., Prosnitz, R. G., Hunter, S., et al. (2004). Necessity for adjuvant neck dissection in setting of concurrent chemoradiation for advanced head-and-neck cancer. International Journal of Radiation Oncology, Biology, Physics, 58, 1418–1423.

    PubMed  Google Scholar 

  25. Nordsmark, M., Bentzen, S. M., Rudat, V., et al. (2005). Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiotherapy and Oncology, 77, 18–24.

    PubMed  Google Scholar 

  26. Brizel, D. M., Scully, S. P., Harrelson, J. M., et al. (1996). Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Research, 56, 941–943.

    PubMed  CAS  Google Scholar 

  27. Nordsmark, M., Alsner, J., Keller, J., et al. (2001). Hypoxia in human soft tissue sarcomas: adverse impact on survival and no association with p53 mutations. British Journal of Cancer, 84, 1070–1075.

    PubMed  CAS  Google Scholar 

  28. Stone, H. B., Brown, J. M., Phillips, T. L., et al. (1993). Oxygen in human tumors: Correlations between methods of measurement and response to therapy. Radiation Research, 136, 422–434.

    PubMed  CAS  Google Scholar 

  29. Howe, F. A., Robinson, S. P., McIntyre, D. J., et al. (2001). Issues in flow and oxygenation dependent contrast (FLOOD) imaging of tumours. NMR in Biomedicine, 14, 497–506.

    PubMed  CAS  Google Scholar 

  30. Hoskin, P. J., Carnell, D. M., Taylor, N. J., et al. (2007). Hypoxia in prostate cancer: Correlation of BOLD-MRI with pimonidazole immunohistochemistry-initial observations. International Journal of Radiation Oncology, Biology, Physics, 68, 1065–1071.

    PubMed  CAS  Google Scholar 

  31. Chapman, J. D. (1979). Hypoxic sensitizers—Implications for radiation therapy. New England Journal of Medicine, 301, 1429–1432.

    PubMed  CAS  Google Scholar 

  32. Raleigh, J. A., Calkins-Adams, D. P., Rinker, L. H., et al. (1998). Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Research, 58, 3765–3768.

    PubMed  CAS  Google Scholar 

  33. Evans, S. M., Hahn, S., Pook, D. R., et al. (2000). Detection of hypoxia in human squamous cell carcinoma by EF5 binding. Cancer Research, 60, 2018–2024.

    PubMed  CAS  Google Scholar 

  34. Varghese, A. J., Gulyas, S., & Mohindra, J. K. (1976). Hypoxia-dependent reduction of 1-(2-nitro-1-imidazolyl)-3-methoxy-2-propanol by Chinese hamster ovary cells and KHT tumor cells in vitro and in vivo. Cancer Research, 36, 3761–3765.

    PubMed  CAS  Google Scholar 

  35. Ljungkvist, A. S., Bussink, J., Kaanders, J. H., et al. (2007). Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiation Research, 167, 127–145.

    PubMed  CAS  Google Scholar 

  36. Evans, S. M., & Koch, C. J. (2003). Prognostic significance of tumor oxygenation in humans. Cancer Letters, 195, 1–16.

    PubMed  CAS  Google Scholar 

  37. Raleigh, J. A., Chou, S. C., Arteel, G. E., et al. (1999). Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiation Research, 151, 580–589.

    PubMed  CAS  Google Scholar 

  38. Koch, C. J., Hahn, S. M., Rockwell Jr., K., et al. (2001). Pharmacokinetics of EF5 [2-(2-nitro-1-H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide] in human patients: Implications for hypoxia measurements in vivo by 2-nitroimidazoles. Cancer Chemotherapy and Pharmacology, 48, 177–187.

    PubMed  CAS  Google Scholar 

  39. Ljungkvist, A. S., Bussink, J., Rijken, P. F., et al. (2000). Changes in tumor hypoxia measured with a double hypoxic marker technique. International Journal of Radiation Oncology, Biology, Physics, 48, 1529–1538.

    PubMed  CAS  Google Scholar 

  40. van Laarhoven, H. W., Klomp, D. W., Kamm, Y. J., et al. (2003). In vivo monitoring of capecitabine metabolism in human liver by 19fluorine magnetic resonance spectroscopy at 1.5 and 3 Tesla field strength. Cancer Research, 63, 7609–7612.

    PubMed  Google Scholar 

  41. Kaanders, J. H., Wijffels, K. I., Marres, H. A., et al. (2002). Pimonidazole binding and tumor vascularity predict for treatment outcome in head and neck cancer. Cancer Research, 62, 7066–7074.

    PubMed  CAS  Google Scholar 

  42. Evans, S. M., Fraker, D., Hahn, S. M., et al. (2006). EF5 binding and clinical outcome in human soft tissue sarcomas. International Journal of Radiation Oncology, Biology, Physics, 64, 922–927.

    PubMed  CAS  Google Scholar 

  43. Evans, S. M., Judy, K. D., Dunphy, I., et al. (2004). Hypoxia is important in the biology and aggression of human glial brain tumors. Clinical Cancer Research, 10, 8177–8184.

    PubMed  CAS  Google Scholar 

  44. Gagel, B., Reinartz, P., Dimartino, E., et al. (2004). pO(2) Polarography versus positron emission tomography ([(18)F] fluoromisonidazole, [(18)F]-2-fluoro-2'-deoxyglucose). An appraisal of radiotherapeutically relevant hypoxia. Strahlentherapie und Onkologie, 180, 616–622.

    PubMed  Google Scholar 

  45. Rajendran, J. G., Schwartz, D. L., O'Sullivan, J., et al. (2006). Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clinical Cancer Research, 12, 5435–5441.

    PubMed  CAS  Google Scholar 

  46. Lehtio, K., Eskola, O., Viljanen, T., et al. (2004). Imaging perfusion and hypoxia with PET to predict radiotherapy response in head-and-neck cancer. International Journal of Radiation Oncology, Biology, Physics, 59, 971–982.

    PubMed  Google Scholar 

  47. Thorwarth, D., Eschmann, S. M., Holzner, F., et al. (2006). Combined uptake of [18F]FDG and [18F]FMISO correlates with radiation therapy outcome in head-and-neck cancer patients. Radiotherapy and Oncology, 80, 151–156.

    PubMed  CAS  Google Scholar 

  48. Eschmann, S. M., Paulsen, F., Reimold, M., et al. (2005). Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. Journal of Nuclear Medicine, 46, 253–260.

    PubMed  Google Scholar 

  49. Rischin, D., Hicks, R. J., Fisher, R., et al. (2006). Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. Journal Clinical Oncology, 24, 2098–2104.

    Google Scholar 

  50. Hicks, R. J., Rischin, D., Fisher, R., et al. (2005). Utility of FMISO PET in advanced head and neck cancer treated with chemoradiation incorporating a hypoxia-targeting chemotherapy agent. European Journal of Nuclear Medicine and Molecular Imaging, 32, 1384–1391.

    PubMed  Google Scholar 

  51. Thorwarth, D., Eschmann, S. M., Paulsen, F., et al. (2007). Hypoxia dose painting by numbers: a planning study. International Journal of Radiation Oncology, Biology, Physics, 68, 291–300.

    PubMed  Google Scholar 

  52. Souvatzoglou, M., Grosu, A. L., Roper, B., et al. (2007). Tumour hypoxia imaging with [18F]FAZA PET in head and neck cancer patients: A pilot study. European Journal of Nuclear Medicine and Molecular Imaging, 34(10), 1566–1575.

    PubMed  CAS  Google Scholar 

  53. Fujibayashi, Y., Taniuchi, H., Yonekura, Y., et al. (1997). Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. Journal of Nuclear Medicine, 38, 1155–1160.

    PubMed  CAS  Google Scholar 

  54. Chao, K. S., Bosch, W. R., Mutic, S., et al. (2001). A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. International Journal of Radiation Oncology, Biology, Physics, 49, 1171–1182.

    PubMed  CAS  Google Scholar 

  55. Grigsby, P. W., Malyapa, R. S., Higashikubo, R., et al. (2007). Comparison of molecular markers of hypoxia and imaging with (60)Cu-ATSM in cancer of the uterine cervix. Molecular Imaging and Biology, 9, 278–283.

    PubMed  Google Scholar 

  56. Dehdashti, F., Mintun, M. A., Lewis, J. S., et al. (2003). In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM.. European Journal of Nuclear Medicine and Molecular Imaging, 30, 844–850.

    PubMed  CAS  Google Scholar 

  57. Lee, N. Y., Mechalakos, J. G., Nehmeh, S., et al. (2008). Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: A feasibility study.. International Journal of Radiation Oncology, Biology, Physics, 70(1), 2–13.

    PubMed  CAS  Google Scholar 

  58. Grosu, A. L., Souvatzoglou, M., Roper, B., et al. (2007). Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. International Journal of Radiation Oncology, Biology, Physics, 69, 541–551.

    PubMed  CAS  Google Scholar 

  59. Le, Q. T., Shi, G., Cao, H., et al. (2005). Galectin-1: A link between tumor hypoxia and tumor immune privilege. Journal Clinical Oncology, 23, 8932–8941.

    CAS  Google Scholar 

  60. Le, Q. T., Kong, C., Lavori, P. W., et al. (2007). Expression and prognostic significance of a panel of tissue hypoxia markers in head-and-neck squamous cell carcinomas. International Journal of Radiation Oncology, Biology, Physics, 69, 167–175.

    PubMed  CAS  Google Scholar 

  61. Erler, J. T., Bennewith, K. L., Nicolau, M., et al. (2006). Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 440, 1222–1226.

    PubMed  CAS  Google Scholar 

  62. Giatromanolaki, A., Koukourakis, M. I., Gatter, K. C., et al. (2007). BNIP3 expression in endometrial cancer relates to active hypoxia inducible factor 1a pathway and prognosis.. Journal of Clinical Pathology, 61(2), 217–220.

    PubMed  Google Scholar 

  63. Koukourakis, M. I., Giatromanolaki, A., Sivridis, E., et al. (2006). Lactate dehydrogenase 5 expression in operable colorectal cancer: Strong association with survival and activated vascular endothelial growth factor pathway—A report of the Tumour Angiogenesis Research Group. Journal Clinical Oncology, 24, 4301–4308.

    CAS  Google Scholar 

  64. Giatromanolaki, A., Sivridis, E., Gatter, K. C., et al. (2006). Lactate dehydrogenase 5 (LDH-5) expression in endometrial cancer relates to the activated VEGF/VEGFR2(KDR) pathway and prognosis. Gynecologic Oncology, 103, 912–918.

    PubMed  CAS  Google Scholar 

  65. Giatromanolaki, A., Koukourakis, M. I., Sowter, H. M., et al. (2004). BNIP3 expression is linked with hypoxia-regulated protein expression and with poor prognosis in non-small cell lung cancer. Clinical Cancer Research, 10, 5566–5571.

    PubMed  CAS  Google Scholar 

  66. de Witte, J. H., Sweep, C. G., Klijn, J. G., et al. (1999). Prognostic impact of urokinase-type plasminogen activator (uPA) and its inhibitor (PAI-1) in cytosols and pellet extracts derived from 892 breast cancer patients. British Journal of Cancer, 79, 1190–1198.

    PubMed  Google Scholar 

  67. Linderholm, B. K., Lindh, B., Beckman, L., et al. (2003). Prognostic correlation of basic fibroblast growth factor and vascular endothelial growth factor in 1307 primary breast cancers. Clinical Breast Cancer, 4, 340–347.

    Article  PubMed  CAS  Google Scholar 

  68. De Paola, F., Granato, A. M., Scarpi, E., et al. (2002). Vascular endothelial growth factor and prognosis in patients with node-negative breast cancer. International Journal of Cancer, 98, 228–233.

    Google Scholar 

  69. Kyzas, P. A., Cunha, I. W., & Ioannidis, J. P. (2005). Prognostic significance of vascular endothelial growth factor immunohistochemical expression in head and neck squamous cell carcinoma: a meta-analysis. Clinical Cancer Research, 11, 1434–1440.

    PubMed  CAS  Google Scholar 

  70. Stroka, D. M., Burkhardt, T., Desbaillets, I., et al. (2001). HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB Journal, 15, 2445–2453.

    PubMed  CAS  Google Scholar 

  71. Zundel, W., Schindler, C., Haas-Kogan, D., et al. (2000). Loss of PTEN facilitates HIF-1-mediated gene expression. Genes & Development, 14, 391–396.

    CAS  Google Scholar 

  72. Zelzer, E., Levy, Y., Kahana, C., et al. (1998). Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. EMBO Journal, 17, 5085–5094.

    PubMed  CAS  Google Scholar 

  73. Zhong, H., Chiles, K., Feldser, D., et al. (2000). Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: Implications for tumor angiogenesis and therapeutics. Cancer Research, 60, 1541–1545.

    PubMed  CAS  Google Scholar 

  74. Janssen, H. L., Haustermans, K. M., Sprong, D., et al. (2002). HIF-1A, pimonidazole, and iododeoxyuridine to estimate hypoxia and perfusion in human head-and-neck tumors. International Journal of Radiation Oncology, Biology, Physics, 54, 1537–1549.

    PubMed  CAS  Google Scholar 

  75. Mayer, A., Hockel, M., & Vaupel, P. (2005). Carbonic anhydrase IX expression and tumor oxygenation status do not correlate at the microregional level in locally advanced cancers of the uterine cervix. Clinical Cancer Research, 11, 7220–7225.

    PubMed  CAS  Google Scholar 

  76. Mayer, A., Hockel, M., Wree, A., et al. (2005). Microregional expression of glucose transporter-1 and oxygenation status: Lack of correlation in locally advanced cervical cancers. Clinical Cancer Research, 11, 2768–2773.

    PubMed  CAS  Google Scholar 

  77. Mayer, A., Wree, A., Hockel, M., et al. (2004). Lack of correlation between expression of HIF-1alpha protein and oxygenation status in identical tissue areas of squamous cell carcinomas of the uterine cervix. Cancer Research, 64, 5876–5881.

    PubMed  CAS  Google Scholar 

  78. Haugland, H., Vukovic, V., Pintilie, M., et al. (2002). Expression of hypoxia-inducible factor-1alpha in cervical carcinomas: Correlation with tumor oxygenation. International Journal of Radiation Oncology, Biology, Physics, 53, 854–861.

    PubMed  CAS  Google Scholar 

  79. Chi, J. T., Wang, Z., Nuyten, D. S., et al. (2006). Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med, 3, e47.

    PubMed  Google Scholar 

  80. Winter, S. C., Buffa, F. M., Silva, P., et al. (2007). Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Research, 67, 3441–3449.

    PubMed  CAS  Google Scholar 

  81. Riedel, F., Gotte, K., Schwalb, J., et al. (2000). Serum levels of vascular endothelial growth factor in patients with head and neck cancer. European Archives of Oto-rhino-laryngology, 257, 332–336.

    PubMed  CAS  Google Scholar 

  82. Salven, P., Manpaa, H., Orpana, A., et al. (1997). Serum vascular endothelial growth factor is often elevated in disseminated cancer. Clinical Cancer Research, 3, 647–651.

    PubMed  CAS  Google Scholar 

  83. Imagawa, S., Yamaguchi, Y., Higuchi, M., et al. (2001). Levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea–hypopnea syndrome. Blood, 98, 1255–1257.

    PubMed  CAS  Google Scholar 

  84. Dunst, J., Stadler, P., Becker, A., et al. (2001). Tumor hypoxia and systemic levels of vascular endothelial growth factor (VEGF) in head and neck cancers. Strahlentherapie und Onkologie, 177, 469–473.

    PubMed  CAS  Google Scholar 

  85. Le, Q. T., Sutphin, P. D., Raychaudhuri, S., et al. (2003). Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clinical Cancer Research, 9, 59–67.

    PubMed  CAS  Google Scholar 

  86. Nordsmark, M., Eriksen, J. G., Gebski, V., et al. (2007). Differential risk assessments from five hypoxia specific assays: The basis for biologically adapted individualized radiotherapy in advanced head and neck cancer patients.. Radiotherapy and Oncology, 83(3), 389–397.

    PubMed  Google Scholar 

  87. Petrik, D., Lavori, P. W., Cao, H., et al. (2006). Plasma osteopontin is an independent prognostic marker for head and neck cancers. Journal Clinical Oncology, 24, 5291–5297.

    CAS  Google Scholar 

  88. Overgaard, J., Eriksen, J. G., Nordsmark, M., et al. (2005). Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: Results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncology, 6, 757–764.

    PubMed  CAS  Google Scholar 

  89. Aebersold, D. M., Burri, P., Beer, K. T., et al. (2001). Expression of hypoxia-inducible factor-1alpha: A novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Research, 61, 2911–2916.

    PubMed  CAS  Google Scholar 

  90. Koukourakis, M. I., Giatromanolaki, A., Sivridis, E., et al. (2002). Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. International Journal of Radiation Oncology, Biology, Physics, 53, 1192–1202.

    PubMed  CAS  Google Scholar 

  91. Beasley, N. J., Leek, R., Alam, M., et al. (2002). Hypoxia-inducible factors HIF-1alpha and HIF-2alpha in head and neck cancer: Relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Research, 62, 2493–2497.

    PubMed  CAS  Google Scholar 

  92. Hui, E. P., Chan, A. T., Pezzella, F., et al. (2002). Coexpression of hypoxia-inducible factors 1alpha and 2alpha, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival. Clinical Cancer Research, 8, 2595–2604.

    PubMed  CAS  Google Scholar 

  93. Kyzas, P. A., Stefanou, D., Batistatou, A., et al. (2005). Hypoxia-induced tumor angiogenic pathway in head and neck cancer: An in vivo study. Cancer Letters, 225, 297–304.

    PubMed  CAS  Google Scholar 

  94. Winter, S. C., Shah, K. A., Han, C., et al. (2006). The relation between hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression with anemia and outcome in surgically treated head and neck cancer. Cancer, 107, 757–766.

    PubMed  CAS  Google Scholar 

  95. Koukourakis, M. I., Bentzen, S. M., Giatromanolaki, A., et al. (2006). Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. Journal Clinical Oncology, 24, 727–735.

    CAS  Google Scholar 

  96. Bachtiary, B., Schindl, M., Potter, R., et al. (2003). Overexpression of hypoxia-inducible factor 1alpha indicates diminished response to radiotherapy and unfavorable prognosis in patients receiving radical radiotherapy for cervical cancer. Clinical Cancer Research, 9, 2234–2240.

    PubMed  CAS  Google Scholar 

  97. Birner, P., Schindl, M., Obermair, A., et al. (2000). Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Research, 60, 4693–4696.

    PubMed  CAS  Google Scholar 

  98. Burri, P., Djonov, V., Aebersold, D. M., et al. (2003). Significant correlation of hypoxia-inducible factor-1alpha with treatment outcome in cervical cancer treated with radical radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 56, 494–501.

    PubMed  CAS  Google Scholar 

  99. Hutchison, G. J., Valentine, H. R., Loncaster, J. A., et al. (2004). Hypoxia-inducible factor 1alpha expression as an intrinsic marker of hypoxia: correlation with tumor oxygen, pimonidazole measurements, and outcome in locally advanced carcinoma of the cervix. Clinical Cancer Research, 10, 8405–8412.

    PubMed  CAS  Google Scholar 

  100. Dales, J. P., Garcia, S., Meunier-Carpentier, S., et al. (2005). Overexpression of hypoxia-inducible factor HIF-1alpha predicts early relapse in breast cancer: retrospective study in a series of 745 patients. International Journal of Cancer, 116, 734–739.

    CAS  Google Scholar 

  101. Kronblad, A., Jirstrom, K., Ryden, L., et al. (2006). Hypoxia inducible factor-1alpha is a prognostic marker in premenopausal patients with intermediate to highly differentiated breast cancer but not a predictive marker for tamoxifen response. International Journal of Cancer, 118, 2609–2616.

    CAS  Google Scholar 

  102. Schindl, M., Schoppmann, S. F., Samonigg, H., et al. (2002). Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clinical Cancer Research, 8, 1831–1837.

    PubMed  CAS  Google Scholar 

  103. Vleugel, M. M., Greijer, A. E., Shvarts, A., et al. (2005). Differential prognostic impact of hypoxia induced and diffuse HIF-1alpha expression in invasive breast cancer. Journal of Clinical Pathology, 58, 172–177.

    PubMed  CAS  Google Scholar 

  104. Trastour, C., Benizri, E., Ettore, F., et al. (2007). HIF-1alpha and CA IX staining in invasive breast carcinomas: prognosis and treatment outcome. International Journal of Cancer, 120, 1451–1458.

    CAS  Google Scholar 

  105. Giatromanolaki, A., Koukourakis, M. I., Sivridis, E., et al. (2001). Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. British Journal of Cancer, 85, 881–890.

    PubMed  CAS  Google Scholar 

  106. Swinson, D. E., Jones, J. L., Cox, G., et al. (2004). Hypoxia-inducible factor-1 alpha in non small cell lung cancer: relation to growth factor, protease and apoptosis pathways. International Journal of Cancer, 111, 43–50.

    CAS  Google Scholar 

  107. Kim, S. J., Rabbani, Z. N., Dewhirst, M. W., et al. (2005). Expression of HIF-1alpha, CA IX, VEGF, and MMP-9 in surgically resected non-small cell lung cancer.. Lung Cancer, 49(3), 325–335.

    PubMed  Google Scholar 

  108. Beasley, N. J., Wykoff, C. C., Watson, P. H., et al. (2001). Carbonic anhydrase IX, an endogenous hypoxia marker, expression in head and neck squamous cell carcinoma and its relationship to hypoxia, necrosis, and microvessel density. Cancer Research, 61, 5262–5267.

    PubMed  CAS  Google Scholar 

  109. Koukourakis, M. I., Giatromanolaki, A., Sivridis, E., et al. (2001). Hypoxia-regulated carbonic anhydrase-9 (CA9) relates to poor vascularization and resistance of squamous cell head and neck cancer to chemoradiotherapy. Clinical Cancer Research, 7, 3399–3403.

    PubMed  CAS  Google Scholar 

  110. Jonathan, R. A., Wijffels, K. I., Peeters, W., et al. (2006). The prognostic value of endogenous hypoxia-related markers for head and neck squamous cell carcinomas treated with ARCON. Radiotherapy and Oncology, 79, 288–297.

    PubMed  CAS  Google Scholar 

  111. De Schutter, H., Landuyt, W., Verbeken, E., et al. (2005). The prognostic value of the hypoxia markers CA IX and GLUT 1 and the cytokines VEGF and IL 6 in head and neck squamous cell carcinoma treated by radiotherapy +/− chemotherapy. BMC Cancer, 5, 42.

    PubMed  Google Scholar 

  112. Hedley, D., Pintilie, M., Woo, J., et al. (2003). Carbonic anhydrase IX expression, hypoxia, and prognosis in patients with uterine cervical carcinomas. Clinical Cancer Research, 9, 5666–5674.

    PubMed  CAS  Google Scholar 

  113. Loncaster, J. A., Harris, A. L., Davidson, S. E., et al. (2001). Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Research, 61, 6394–6399.

    PubMed  CAS  Google Scholar 

  114. Span, P. N., Bussink, J., Manders, P., et al. (2003). Carbonic anhydrase-9 expression levels and prognosis in human breast cancer: Association with treatment outcome. British Journal of Cancer, 89, 271–276.

    PubMed  CAS  Google Scholar 

  115. Brennan, D. J., Jirstrom, K., Kronblad, A., et al. (2006). CA IX is an independent prognostic marker in premenopausal breast cancer patients with one to three positive lymph nodes and a putative marker of radiation resistance. Clinical Cancer Research, 12, 6421–6431.

    PubMed  CAS  Google Scholar 

  116. Hussain, S. A., Ganesan, R., Reynolds, G., et al. (2007). Hypoxia-regulated carbonic anhydrase IX expression is associated with poor survival in patients with invasive breast cancer. British Journal of Cancer, 96, 104–109.

    PubMed  CAS  Google Scholar 

  117. Giatromanolaki, A., Koukourakis, M. I., Sivridis, E., et al. (2001). Expression of hypoxia-inducible carbonic anhydrase-9 relates to angiogenic pathways and independently to poor outcome in non-small cell lung cancer. Cancer Research, 61, 7992–7998.

    PubMed  CAS  Google Scholar 

  118. Kon-no, H., Ishii, G., Nagai, K., et al. (2006). Carbonic anhydrase IX expression is associated with tumor progression and a poor prognosis of lung adenocarcinoma. Lung Cancer, 54, 409–418.

    PubMed  Google Scholar 

  119. Swinson, D. E., Jones, J. L., Richardson, D., et al. (2003). Carbonic anhydrase IX expression, a novel surrogate marker of tumor hypoxia, is associated with a poor prognosis in non-small-cell lung cancer. Journal Clinical Oncology, 21, 473–482.

    CAS  Google Scholar 

  120. Oliver, R. J., Woodwards, R. T., Sloan, P., et al. (2004). Prognostic value of facilitative glucose transporter Glut-1 in oral squamous cell carcinomas treated by surgical resection; results of EORTC Translational Research Fund studies. European Journal of Cancer, 40, 503–507.

    PubMed  CAS  Google Scholar 

  121. Kunkel, M., Reichert, T. E., Benz, P., et al. (2003). Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer, 97, 1015–1024.

    PubMed  CAS  Google Scholar 

  122. Mineta, H., Miura, K., Takebayashi, S., et al. (2002). Prognostic value of glucose transporter 1 expression in patients with hypopharyngeal carcinoma. Anticancer Research, 22, 3489–3494.

    PubMed  Google Scholar 

  123. Airley, R., Loncaster, J., Davidson, S., et al. (2001). Glucose transporter glut-1 expression correlates with tumor hypoxia and predicts metastasis-free survival in advanced carcinoma of the cervix. Clinical Cancer Research, 7, 928–934.

    PubMed  CAS  Google Scholar 

  124. Stackhouse, B. L., Williams, H., Berry, P., et al. (2005). Measurement of glut-1 expression using tissue microarrays to determine a race specific prognostic marker for breast cancer. Breast Cancer Research and Treatment, 93, 247–253.

    PubMed  CAS  Google Scholar 

  125. Minami, K., Saito, Y., Imamura, H., et al. (2002). Prognostic significance of p53, Ki-67, VEGF and Glut-1 in resected stage I adenocarcinoma of the lung. Lung Cancer, 38, 51–57.

    PubMed  Google Scholar 

  126. Nguyen, X. C., Lee, W. W., Chung, J. H., et al. (2007). FDG uptake, glucose transporter type 1, and Ki-67 expressions in non-small-cell lung cancer: correlations and prognostic values. European Journal of Radiology, 62, 214–219.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was support by the National Institute of Health, 1 R01 CA118582-01 (QTL) and under Ruth L. Kirschstein National Research Service Award 5T32 CA09302 (DC). Its contents are solely the responsibility of the authors and do no necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quynh-Thu Le.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, QT., Courter, D. Clinical biomarkers for hypoxia targeting. Cancer Metastasis Rev 27, 351–362 (2008). https://doi.org/10.1007/s10555-008-9144-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-008-9144-9

Keywords

Navigation