Skip to main content

Advertisement

Log in

Clinical target promiscuity: lessons from ras molecular trials

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Mutated ras has been identified in approximately 30% of human tumors, and dysregulation of ras function and signal transduction pathways is a critical step in tumorigenesis. Herein, we review the early data that supports the concept that the intrinsic radiosensitivity of tumor cells can be altered by oncogenic ras expression and that this impacts the PI3K-dependent signaling cascade. This ras-induced radioresistance can be reversed using prenyl transferase inhibitors (PTIs.). We discuss the effects of PTIs as a radiosensitizer in both in vivo and in vitro studies and show that PTIs can lead to increased radiosensitization in vivo through a variety of potential mechanisms that enhance radiation-induced cell kill. We critically evaluate the use of ras biomarkers in predicting the clinical response to PTIs that may explain the mixed results seen thus far in clinical trials using PTIs as a clinical radiosensitizer. We conclude that Ras-mediated radioresistance is the result of multiple intercommunicating pathways functioning against a complex genetic background and a solitary biomarker may not be adequate to predict for PTI-mediated radiosensitization. Nonetheless, our knowledge of the ras-signaling pathway has led to development and testing of specific therapies directed against PI3K-AKT signaling pathways as a future approach towards clinical radiosensitization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barbacid, M. (1987). Ras genes. Annual Review of Biochemistry, 56, 779–827.

    Article  PubMed  CAS  Google Scholar 

  2. Barbacid, M. (1990). Ras oncogenes: Their role in neoplasia. European Journal of Clinical Investigation, 20, 225–235.

    Article  PubMed  CAS  Google Scholar 

  3. Burchill, S. A., Neal, D. E., & Lunec, J. (1994). Frequency of H-ras mutations in human bladder cancer detected by direct sequencing. British Journal of Urology, 73, 516–521.

    PubMed  CAS  Google Scholar 

  4. Land, H., Parada, L., & Weinberg, R. (1983). Cellular oncogenes and multistep carcinogenesis. Science, 222, 771–778.

    Article  PubMed  CAS  Google Scholar 

  5. Garbisa, S., Pozzatti, R., Muschel, R. J., et al. (1987). Secretion of type IV collagenolytic protease and metastatic phenotype: Induction by transfection with c-Ha-ras but not c-Ha-ras plus Ad2-E1a. Cancer Research, 47, 1523–1528.

    PubMed  CAS  Google Scholar 

  6. Muschel, R. J., & McKenna, W. G. (1989). Oncogenes and tumor progression. Anticancer Research, 9, 1395–1406.

    PubMed  CAS  Google Scholar 

  7. Shirasawa, S., Furuse, M., Yokoyama, N., & Sasazuki, T. (1993). Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science, 260, 85–88.

    Article  PubMed  CAS  Google Scholar 

  8. Gupta, S., Plattner, R., Der, C. J., & Stanbridge, E. J. (2002). Dissection of Ras-dependent signaling pathways controlling aggressive tumor growth of human fibrosarcoma cells: Evidence for a potential novel pathway. Molecular and Cellular Biology, 20, 9294–9306.

    Article  Google Scholar 

  9. Gupta, S., & Stanbridge, E. J. (2001). Paired human fibrosarcoma cell lines that possess or lack endogenous mutant N-ras alleles as experimental model for Ras signaling pathways. Methods in Enzymology, 333, 290–306.

    Article  PubMed  CAS  Google Scholar 

  10. Reuther, G. W., & Der, C. J. (2000). The Ras branch of small GTPases: Ras family members don't fall far from the tree. Current Opinion in Cell Biology, 12, 157–165.

    Article  PubMed  CAS  Google Scholar 

  11. Chakravarti, A., Chakladar, A., Delaney, M. A., Latham, D. E., & Loeffler, J. S. (2002). The epidermal growth factor receptor pathway mediates resistance to sequential administration of radiation and chemotherapy in primary human glioblastoma cells in a RAS-dependent manner. Cancer Research, 62, 4307–4315.

    PubMed  CAS  Google Scholar 

  12. Reardon, D. B., Contessa, J. N., Mikkelsen, R. B., et al. (1999). Dominant negative EGFR-CD533 and inhibition of MAPK modify JNK1 activation and enhance radiation toxicity of human mammary carcinoma cells. Oncogene, 18, 4756–4766.

    Article  PubMed  CAS  Google Scholar 

  13. Hagan, M., Wang, L., Hanley, J. R., Park, J. S., & Dent, P. (2000). Ionizing radiation-induced mitogen-activated protein (MAP) kinase activation in DU145 prostate carcinoma cells: MAP kinase inhibition enhances radiation-induced cell killing and G2/M-phase arrest. Radiation Research, 153, 371–383.

    Article  PubMed  CAS  Google Scholar 

  14. Gupta, A. K., Bernhard, E. J., Bakanauskas, V. J., Wu, J., Muschel, R. J., & McKenna, W. G. (2000). RAS-Mediated radiation resistance is not linked to MAP kinase activation in two bladder carcinoma cell lines. Radiation Research, 154, 64–72.

    Article  PubMed  CAS  Google Scholar 

  15. Grana, T. M., Rusyn, E. V., Zhou, H., Sartor, C. I., & Cox, A. D. (2002). Ras mediates radioresistance through both phosphatidylinositol 3-kinase-dependent and Raf-dependent but mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-independent signaling pathways. Cancer Research, 62, 4142–4150.

    PubMed  CAS  Google Scholar 

  16. Kasid, U., Pfeifer, A., Brennan, T., et al. (1989). Effect of antisense c-raf-1 on tumorigenicity and radiation sensitivity of a human squamous carcinoma. Science, 243, 1354–1356.

    Article  PubMed  CAS  Google Scholar 

  17. Kasid, U., Pirollo, K., Dritschilo, A., & Chang, E. (1993). Oncogenic basis of radiation resistance. Advances in Cancer Research, 61, 195–233.

    Article  PubMed  CAS  Google Scholar 

  18. Gupta, A. K., Bakanauskas, V. J., Cerniglia, G. J., et al. (2001). The Ras radiation resistance pathway. Cancer Research, 61, 4278–4282.

    PubMed  CAS  Google Scholar 

  19. Rodriguez-Viciana, P., Warne, P. H., Dhand, R., et al. (1994). Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature, 370, 527–532.

    Article  PubMed  CAS  Google Scholar 

  20. Kodaki, T., Woscholski, R., Hallberg, B., Rodriguez-Viciana, P., Downward, J., & Parker, P. J. (1994). The activation of phosphatidylinositol 3-kinase by Ras. Current Biology, 4, 798–806.

    Article  PubMed  CAS  Google Scholar 

  21. Rodriguez-Viciana, P., Warne, P. H., Khwaja, A., et al. (1997). Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell, 89, 457–467.

    Article  PubMed  CAS  Google Scholar 

  22. Khwaja, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P. H., & Downward, J. (1997). Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. Embo Journal, 16, 2783–2793.

    Article  PubMed  CAS  Google Scholar 

  23. Liang, K., Jin, W., Knuefermann, C., et al. (2003). Targeting the phosphatidylinositol 3-kinase/Akt pathway for enhancing breast cancer cells to radiotherapy. Molecular Cancer Therapeutics, 2, 353–360.

    PubMed  CAS  Google Scholar 

  24. Gupta, A. K., Cerniglia, G. J., Mick, R., et al. (2003). Radiation sensitization of human cancer cells in vivo by inhibiting the activity of PI3K using LY294002. International Journal of Radiation Oncology, Biology, Physics, 56, 846–853.

    PubMed  CAS  Google Scholar 

  25. Luo, J., Manning, B. D., & Cantley, L. C. (2003). Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cells, 4, 257–262.

    Article  CAS  Google Scholar 

  26. Kim, I., Fernandes, A., Wu, J., et al. (2003). Selective inhibition of RAS signaling pathway increases the radiosensitivity in the wild type head and neck squamous cancer cell line with EGFR overexpression. International Journal of Radiation Oncology, Biology, Physics, 57, S354.

    Google Scholar 

  27. Kim, I. A., Fernandes, A. T., Gupta, A. K., McKenna, W. G., & Bernhard, E. J. (2004). The influence of Ras pathway signaling on tumor radiosensitivity. Cancer Metastasis Review, 23, 227–236.

    Article  CAS  Google Scholar 

  28. Gupta, A. K., McKenna, W. G., Weber, C. N., et al. (2002). Local recurrence in head and neck cancer: relationship to radiation resistance and signal transduction. Clinical Cancer Research, 8, 885–892.

    PubMed  Google Scholar 

  29. Hancock, J. F. (2003). Ras proteins: Different signals from different locations. Nature Reviews. Molecular Cell Biology, 4, 373–384.

    Article  PubMed  CAS  Google Scholar 

  30. Hancock, J. F., Magee, A. I., Childs, J. E., & Marshall, C. J. (1989). All ras proteins are polyisoprenylated but only some are palmitoylated. Cell, 57, 1167–1177.

    Article  PubMed  CAS  Google Scholar 

  31. Hancock, J. F., Paterson, H., & Marshall, C. J. (1990). A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell, 63, 133–139.

    Article  PubMed  CAS  Google Scholar 

  32. Voice, J. K., Klemke, R. L., Le, A., & Jackson, J. H. (1999). Four human ras homologs differ in their abilities to activate Raf-1, induce transformation, and stimulate cell motility. Journal of Biological Chemistry, 274, 17164–17170.

    Article  PubMed  CAS  Google Scholar 

  33. Sieburth, D. S., Sun, Q., & Han, M. (1998). SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans. Cell, 94, 119–130.

    Article  PubMed  CAS  Google Scholar 

  34. Wolfman, A. (2001). Ras isoform-specific signaling: location, location, location. Sci STKE, PE2,

  35. Roy, S., Luetterforst, R., Harding, A., et al. (1999). Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. 1, 98–105.

  36. Prior, I. A., Harding, A., Yan, J., Sluimer, J., Parton, R. G., & Hancock, J. F. (2001). GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nature Cell Biology, 3, 368–375.

    Article  PubMed  CAS  Google Scholar 

  37. Chen, X., & Resh, M. D. (2001). Activation of mitogen-activated protein kinase by membrane-targeted Raf chimeras is independent of raft localization. Journal of Biology Chemistry, 276, 34617–34623.

    Article  CAS  Google Scholar 

  38. Prior, I. A., Muncke, C., Parton, R. G., & Hancock, J. F. (2003). Direct visualization of Ras proteins in spatially distinct cell surface microdomains. Journal of Cell Biology, 160, 165–170.

    Article  PubMed  CAS  Google Scholar 

  39. Niv, H., Gutman, O., Kloog, Y., & Henis, Y. I. (2002). Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. Journal of Cell Biology, 157, 865–872.

    Article  PubMed  CAS  Google Scholar 

  40. FitzGerald, T. J., Daugherty, C., Kase, K., Rothstein, L. A., McKenna, M., & Greenberger, J. S. (1985). Activated human N-ras oncogene enhances x-irradiation repair of mammalian cells in vitro less effectively at low dose rate. Implications for increased therapeutic ratio of low dose rate irradiation. American Journal of Clinical Oncology, 8, 517–522.

    Article  PubMed  CAS  Google Scholar 

  41. Sklar, M. D. (1988). The ras oncogenes increase the intrinsic resistance of NIH 3T3 cells to ionizing radiation. Science, 239, 645–647.

    Article  PubMed  CAS  Google Scholar 

  42. McKenna, W. G., Weiss, M. C., Endlich, B., et al. (1990). Synergistic effect of the v-myc oncogene with H-ras on radioresistance. Cancer Research, 50, 97–102.

    PubMed  CAS  Google Scholar 

  43. Bernhard, E. J., Stanbridge, E. J., Gupta, S., et al. (2000). Direct evidence for the contribution of activated N-ras and K-ras oncogenes to increased intrinsic radiation resistance in human tumor cell lines. Cancer Research, 60, 6597–6600.

    PubMed  CAS  Google Scholar 

  44. Russell, J. S., Lang, F. F., Huet, T., et al. (1999). Radiosensitization of human tumor cell lines induced by the adenovirus-mediated expression of an anti-Ras single-chain antibody fragment. Cancer Research, 59, 5239–5244.

    PubMed  CAS  Google Scholar 

  45. Rait, A., Pirollo, K., Will, D. W., et al. (2000). 3'-End conjugates of minimally phosphorothioate-protected oligonucleotides with 1-O-hexadecylglycerol: synthesis and anti-ras activity in radiation-resistant cells. Bioconjugate Chemistry, 11, 153–160.

    Article  PubMed  CAS  Google Scholar 

  46. Fiordalisi, J. J., Johnson 2nd, R. L., Weinbaum, C. A., et al. (2003). High affinity for farnesyltransferase and alternative prenylation contribute individually to K-Ras4B resistance to farnesyltransferase inhibitors. Journal of Biology Chemistry, 278, 41718–41727.

    Article  CAS  Google Scholar 

  47. Capella, G., Cronauer-Mitra, S., Pienado, M. A., & Perucho, M. (1991). Frequency and spectrum of mutations at codons 12 and 13 of the c-K-ras gene in human tumors. Environmental Health Perspectives, 93, 125–131.

    Article  PubMed  CAS  Google Scholar 

  48. Kohl, N. E., Mosser, S. D., deSolms, S. J., et al. (1993). Selective inhibition of ras dependent transformation by a farnesyltransferase inhibitor. Science, 260, 1934–1936.

    Article  PubMed  CAS  Google Scholar 

  49. Prevost, G. P., Pradines, A., Viossat, I., et al. (1999). Inhibition of human tumor cell growth in vitro and in vivo by a specific inhibitor of human farnesyltransferase: BIM-46068. International Journal of Cancer, 83, 283–287.

    Article  CAS  Google Scholar 

  50. Sepp-Lorenzino, L., Ma, Z., Rands, E., et al. (1995). A peptidomimetic inhibitor of Farnesyl:protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Research, 55, 5302–5309.

    PubMed  CAS  Google Scholar 

  51. Nagasu, T., Yoshimatsu, K., Rowell, C., Lewis, M. D., & Garcia, A. M. (1995). Inhibition of human tumor xenograft growth by treatment with the farnesyl transferase inhibitor B956. Cancer Research, 55, 5310–5314.

    PubMed  CAS  Google Scholar 

  52. Sebti, S. M., & Der, C. J. (2003). Opinion: Searching for the elusive targets of farnesyltransferase inhibitors. Natures Review Cancer, 3, 945–951.

    Article  PubMed  CAS  Google Scholar 

  53. Yao, R., Wang, Y., Lu, Y., et al. (2006). Efficacy of the farnesyltransferase inhibitor R115777 in a rat mammary tumor model: Role of Ha-ras mutations and use of microarray analysis in identifying potential targets. Carcinogenesis, 27, 1420–1431.

    Article  PubMed  CAS  Google Scholar 

  54. Bruyneel, E. A., Storme, G. A., Schallier, D. C., Van den Berge, D. L., Hilgard, P., & Mareel, M. M. (1993). Evidence for abrogation of oncogene-induced radioresistance of mammary cancer cells by hexadecylphosphocholine in vitro. European Journal of Cancer, 29A, 1958–1963.

    Article  PubMed  CAS  Google Scholar 

  55. Miller, A. C., Gafner, J., Clark, E. P., & Samid, D. (1993). Differences in radiation-induced micronuclei yields of human cells: influence of ras gene expression and protein localization. International Journal of Radiation Biology, 64, 547–554.

    Article  PubMed  CAS  Google Scholar 

  56. Miller, A. C., Kariko, K., Myers, C. E., Clark, E. P., & Samid, D. (1993). Increased radioresistance of EJras-transformed human osteosarcoma cells and its modulation by lovastatin, an inhibitor of p21ras isoprenylation. International Journal of Cancer, 53, 302–307.

    Article  CAS  Google Scholar 

  57. Bernhard, E. J., Kao, G., Cox, A. D., et al. (1996). The farnesyltransferase inhibitor FTI-277 radiosensitizes H-ras-transformed rat embryo fibroblasts. Cancer Research, 56, 1727–1730.

    PubMed  CAS  Google Scholar 

  58. Bernhard, E. J., McKenna, W. G., Hamilton, A. D., et al. (1998). Inhibiting Ras prenylation increases the radiosensitivity of human tumor cell lines with activating mutations of ras oncogenes. Cancer Research, 58, 1754–1761.

    PubMed  CAS  Google Scholar 

  59. Shi, Y., Wu, J., Mick, R., et al. (2005). Farnesyltransferase inhibitor effects on prostate tumor micro-environment and radiation survival. Prostate, 62, 69–82.

    Article  PubMed  CAS  Google Scholar 

  60. Cohen-Jonathan, E., Muschel, R. J., Gillies McKenna, W., et al. (2000). Farnesyltransferase inhibitors potentiate the antitumor effect of radiation on a human tumor xenograft expressing activated HRAS. Radiation Research, 154, 125–132.

    Article  PubMed  CAS  Google Scholar 

  61. Brunner, T. B., Cengel, K. A., Hahn, S. M., et al. (2205). Pancreatic cancer cell radiation survival and prenyltransferase inhibition: The role of K-Ras. Cancer Research, 65, 8433–8441.

    Article  CAS  Google Scholar 

  62. Kim, J., Seong, J., & Kim, S. H. (2004). Enhancement of tumor response by farnesyltransferase inhibitor in C3H/HeJ hepatocarcinoma. Annals of the New York Academyof Sciences, 1030, 95–102.

    Article  CAS  Google Scholar 

  63. Delmas, C., End, D., Rochaix, P., Favre, G., Toulas, C., & Cohen-Jonathan, E. (2003). The farnesyltransferase inhibitor R115777 reduces hypoxia and matrix metalloproteinase 2 expression in human glioma xenograft. Clinical Cancer Research, 9, 6062–6068.

    PubMed  CAS  Google Scholar 

  64. Larner, J., Jane, J., Laws, E., Packer, R., Myers, C., & Shaffrey, M. (1998). A phase I-II trial of lovastatin for anaplastic astrocytoma and glioblastoma multiforme. American Journal of Clinical Oncology, 21, 579–583.

    Article  PubMed  CAS  Google Scholar 

  65. Hahn, S. M., Bernhard, E. J., Regine, W., et al. (2002). A phase I trial of the farnesyltransferase inhibitor L-778,123 and radiotherapy for locally advanced lung and head and neck cancer. Clinical Cancer Research, 8, 1065–1072.

    PubMed  CAS  Google Scholar 

  66. Martin, N. E., Brunner, T. B., Kiel, K. D., et al. (2004). A phase I trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L-778,123 and radiotherapy for locally advanced pancreatic cancer. Clinical Cancer Research, 10, 5447–5454.

    Article  PubMed  CAS  Google Scholar 

  67. Moyal, E. C., Laprie, A., Delannes, M., et al. (2007). Phase I trial of tipifarnib (R115777) concurrent with radiotherapy in patients with glioblastoma multiforme. International Journal Radiation Oncology Biology Physics, 68, 1396–1401.

    Google Scholar 

  68. Willett, C. G., Safran, H., Abrams, R. A., Regine, W. F., & Rich, T. A. (2003). Clinical research in pancreatic cancer: the radiation therapy oncology group trials. International Journal Radiation Oncology Biology Physics, 56, 31–37.

    Article  Google Scholar 

  69. Su, L.-N., & Little, J. B. (1992). Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen. Internation Journal Radiation Biology, 62, 201–210.

    Article  CAS  Google Scholar 

  70. Grant, M. L., Bruton, R. K., Byrd, P. J., et al. (1990). Sensitivity to ionising radiation of transformed human cells containing mutant ras genes. Oncogene, 5, 1159–1164.

    PubMed  CAS  Google Scholar 

  71. Ling, C. C., & Endlich, B. (1989). Radioresistance induced by oncogenic transformation. Radiation Research, 120, 267–279.

    Article  PubMed  CAS  Google Scholar 

  72. Russo, P., Loprevite, M., Cesario, A., & Ardizzoni, A. (2004). Farnesylated proteins as anticancer drug targets: from laboratory to the clinic. Current Medical Chemistry Anticancer Agents, 4, 123–138.

    Article  CAS  Google Scholar 

  73. Zhang, Y. A., Nemunaitis, J., Samuel, S. K., Chen, P., Shen, Y., & Tong, A. W. (2006). Antitumor activity of an oncolytic adenovirus-delivered oncogene small interfering RNA. Cancer Research, 66, 9736–9743.

    Article  PubMed  CAS  Google Scholar 

  74. Iannitti, D., Dipetrillo, T., Akerman, P., et al. (2005). Erlotinib and chemoradiation followed by maintenance erlotinib for locally advanced pancreatic cancer: a phase I study. American Journal of Clinical Oncology, 28, 570–575.

    Article  PubMed  CAS  Google Scholar 

  75. Cengel, K. A., Voong, K. R., Chandrasekaran, S., et al. (2007). Oncogenic K-Ras signals through epidermal growth factor receptor and wild-type H-Ras to promote radiation survival in pancreatic and colorectal carcinoma cells. Neoplasia, 9, 341–348.

    Article  PubMed  CAS  Google Scholar 

  76. Grana, T. M., Sartor, C. I., & Cox, A. D. (2003). Epidermal growth factor receptor autocrine signaling in RIE-1 cells transformed by the Ras oncogene enhances radiation resistance. Cancer Research, 63, 7807–7814.

    PubMed  CAS  Google Scholar 

  77. Toulany, M., Baumann, M., & Rodemann, H. P. (2007). Stimulated PI3K-AKT signaling mediated through ligand or radiation-induced EGFR depends indirectly, but not directly, on constitutive K-Ras activity. Molecular Cancer Research, 5, 863–872.

    Article  PubMed  CAS  Google Scholar 

  78. Caron, R. W., Yacoub, A., Zhu, X., et al. (2005). H-RAS V12-induced radioresistance in HCT116 colon carcinoma cells is heregulin dependent. Molecular Cancer Therapy, 4, 243–255.

    CAS  Google Scholar 

  79. Shintani, S., Li, C., Mihara, M., et al. (2003). Enhancement of tumor radioresponse by combined treatment with gefitinib (Iressa, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, is accompanied by inhibition of DNA damage repair and cell growth in oral cancer. International Journal Cancer, 107, 1030–1037.

    Article  CAS  Google Scholar 

  80. Friedmann, B., Caplin, M., Hartley, J. A., & Hochhauser, D. (2004). Modulation of DNA repair in vitro after treatment with chemotherapeutic agents by the epidermal growth factor receptor inhibitor gefitinib (ZD1839). Clinical Cancer Research, 10, 6476–6486.

    Article  PubMed  CAS  Google Scholar 

  81. Lieber, M. R., Ma, Y., Pannicke, U., & Schwarz, K. (2003). Mechanism and regulation of human non-homologous DNA end-joining. Nature Reviews. Molecular Cell Biology, 4, 712–720.

    Article  PubMed  CAS  Google Scholar 

  82. Iliakis, G., Metzger, L., Muschel, R. J., & McKenna, W. G. (1990). Induction and repair of DNA double strand breaks in radiation-resistant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and v-myc. Cancer Research, 50, 6575–6579.

    PubMed  CAS  Google Scholar 

  83. Malyapa, R. S., Wright, W. D., Taylor, Y. C., & Roti Roti, J. L. (1996). DNA supercoiling changes and nuclear matrix-associated proteins: Possible role in oncogene-mediated radioresistance. International Journal of Radiation Oncology Biology Physics, 35, 963–973.

    CAS  Google Scholar 

  84. Ayene, I. S., Bernhard, E. J., McKenna, W. G., Muschel, R. J., Krisch, R. E., & Koch, C. J. (2000). DNA as an important target in radiation-induced apoptosis of MYC and MYC plus RAS transfected rat embryo fibroblasts. International Journal of Radiation Biology, 76, 343–354.

    Article  PubMed  CAS  Google Scholar 

  85. Choe, G., Horvath, S., Cloughesy, T. F., et al. (2003). Analysis of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma patients in vivo. Cancer Research, 63, 2742–2746.

    PubMed  CAS  Google Scholar 

  86. Cengel, K. A., Deutsch, E., Stephens, T. C., Voong, K. R., Kao, G. D., & Bernhard, E. J. (2006). Radiosensitizing effects of the prenyltransferase inhibitor AZD3409 against RAS mutated cell lines. Cancer Biology Therapy, 5, 1206–1210.

    PubMed  CAS  Google Scholar 

  87. Lori, F., Pollard, R. B., Whitman, L., et al. (2005). Lowering the dose of hydroxyurea minimizes toxicity and maximizes anti-HIV potency. AIDS Research Human Retroviruses, 21, 263–272.

    Article  CAS  Google Scholar 

  88. Zujewski, J., Horak, I. D., Bol, C. J., et al. (2000). Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer. Journal of Clinical Oncology, 18, 927–941.

    PubMed  CAS  Google Scholar 

  89. Lobell, R. B., Liu, D., Buser, C. A., et al. (2002). Preclinical and clinical pharmacodynamic assessment of L-778,123, a dual inhibitor of farnesyl:protein transferase and geranylgeranyl:protein transferase type-I. Molecular Cancer Therapeutics, 1, 747–758.

    PubMed  CAS  Google Scholar 

  90. Hu, W., Wu, W., Verschraegen, C. F., et al. (2003). Proteomic identification of heat shock protein 70 as a candidate target for enhancing apoptosis induced by farnesyl transferase inhibitor. Proteomics, 3, 1904–1911.

    Article  PubMed  CAS  Google Scholar 

  91. Wang, C. C., Liao, Y. P., Mischel, P. S., Iwamoto, K. S., Cacalano, N. A., & McBride, W. H. (2006). HDJ-2 as a target for radiosensitization of glioblastoma multiforme cells by the farnesyltransferase inhibitor R115777 and the role of the p53/p21 pathway. Cancer Research, 66, 6756–6762.

    Article  PubMed  CAS  Google Scholar 

  92. Lobell, R. B., Liu, D., Buser, C. A., et al. (2002). Preclinical and clinical pharmacodynamic assessment of L-778,123, a dual inhibitor of farnesyl:protein transferase and geranylgeranyl:protein transferase type-I. Molecular Cancer Therapeutics, 1, 747–758.

    PubMed  CAS  Google Scholar 

  93. Zimmerman, T. M., Harlin, H., Odenike, O. M., et al. (2004). Dose-ranging pharmacodynamic study of tipifarnib (R115777) in patients with relapsed and refractory hematologic malignancies. Journal Clinical Oncology, 22, 4816–4822.

    Article  CAS  Google Scholar 

  94. Svensson, J. P., Stalpers, L. J., Esveldt-van Lange, R. E., et al. (2006). Analysis of gene expression using gene sets discriminates cancer patients with and without late radiation toxicity. PLoS Med, 3, e422.

    Article  PubMed  CAS  Google Scholar 

  95. Bae, S. S., Cho, H., Mu, J., & Birnbaum, M. J. (2003). Isoform-specific regulation of insulin-dependent glucose uptake by Akt/protein kinase B. Journal of Biological Chemistry, 278, 49530–49536.

    Article  PubMed  CAS  Google Scholar 

  96. Gupta, A. K., Cerniglia, G. J., Mick, R., McKenna, W. G., & Muschel, R. J. (2005). HIV protease inhibitors block Akt signaling and radiosensitize tumor cells both in vitro and in vivo. Cancer Research, 65, 8256–8265.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rengan, R., Cengel, K.A. & Hahn, S.M. Clinical target promiscuity: lessons from ras molecular trials. Cancer Metastasis Rev 27, 403–414 (2008). https://doi.org/10.1007/s10555-008-9133-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-008-9133-z

Keywords

Navigation