Skip to main content

Advertisement

Log in

A tumor suppressor role for PP2A-B56α through negative regulation of c-Myc and other key oncoproteins

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Loss or inhibition of the serine/threonine protein phosphatase 2A (PP2A) has revealed a critical tumor suppressor function for PP2A. However, PP2A has also been shown to have important roles in cell cycle progression and survival. Therefore, PP2A is not a typical tumor suppressor. This is most likely due to the fact that PP2A represents a large number of different holoenzymes. Further understanding of PP2A function(s), and especially its tumor suppressor activity, will depend largely on our ability to determine specific targets for these different PP2A holoenzymes and to gain an understanding of how these targets confer tumor suppressor activity or contribute to cell cycle progression and cell survival. Recent work has identified c-Myc as a target of the PP2A holoenzyme, PP2A-B56α. This holoenzyme also negatively regulates β-catenin expression and modulates the anti-apoptotic activity of Bcl2, thus characterizing PP2A-B56α as a tumor suppressor PP2A holoenzyme. This review will focus on the role of PP2A-B56α in regulating c-Myc and will place this tumor suppressor activity of PP2A within the context of its other tumor suppressor functions. Finally, the mechanism(s) through which PP2A-B56α tumor suppressor activity may be lost in cancer will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APC:

adenomatous polyposis coli

Bcl2:

B-cell lymphoma 2

Cdc25:

cell division cycle 25

c-Myc:

cellular Myelocytomatosis

DARPP-32:

dopamine- and cAMP-regulated phosphoprotein 32 kD

DVL:

dishevelled

ERK:

extracellular receptor kinase

FLD:

flexible loop domain

GSK3β:

glycogen synthase kinase 3β

HAND1:

heart and neural crest derivatives expressed 1

HEAT:

huntingtin-elongation-A subunits-TOR-like

hTERT:

human telomerase reverse transcriptase

MAPK:

mitogen activated protein kinase

Mdm2:

mouse double minute 2

MIZ1:

Myc interacting zinc-finger 1

PI3K:

phosphoinositide-3-kinase

Pin1:

protein (peptidylprolyl cis/trans isomerase) NIMA-interacting 1

PP2A:

protein phosphatase 2A

PTEN:

phosphatase and tensin homolog

S:

serine

SCF:

Skp/Cullin/F-box

SV40:

Simian virus 40

T:

threonine

TCF:

T cell specific factor

Wnt:

wingless/Int

References

  1. Sansal, I., & Sellers, W. R. (2004). The biology and clinical relevance of the PTEN tumor suppressor pathway. Journal of Clinical Oncology, 22, 2954–2963.

    Article  PubMed  CAS  Google Scholar 

  2. Parsons, R. (1998). Phosphatases and tumorigenesis. Current Opinion in Oncology, 10, 88–91.

    Article  PubMed  CAS  Google Scholar 

  3. Van Hoof, C., & Goris, J. (2004). PP2A fulfills its promises as tumor suppressor: Which subunits are important. Cancer Cell, 5, 105–106.

    Article  PubMed  Google Scholar 

  4. Schonthal, A. H. (2001). Role of serine/threonine protein phosphatase 2A in cancer. Cancer Letters, 170, 1–13.

    Article  PubMed  CAS  Google Scholar 

  5. Galaktionov, K., Lee, A. K., Eckstein, J., Draetta, G., Meckler, J., Loda, M., et al. (1995). CDC25 phosphatases as potential human oncogenes. Science, 269, 1575–1577.

    Article  PubMed  CAS  Google Scholar 

  6. Yan, Z., Fedorov, S. A., Mumby, M. C., & Williams, R. S. (2000). PR48, a novel regulatory subunit of protein phosphatase 2A, interacts with Cdc6 and modulates DNA replication in human cells. Molecular and Cellular Biology, 20, 1021–1029.

    Article  PubMed  CAS  Google Scholar 

  7. Li, X., Scuderi, A., Letsou, A., & Virshup, D. M. (2002). B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in Drosophila melanogaster. Molecular and Cellular Biology, 22, 3674–3684.

    Article  PubMed  CAS  Google Scholar 

  8. Lin, X. H., Walter, J., Scheidtmann, K., Ohst, K., Newport, J., & Walter, G. (1998). Protein phosphatase 2A is required for the initiation of chromosomal DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 95, 14693–14698.

    Article  PubMed  CAS  Google Scholar 

  9. Mayer-Jaekel, R. E., Ohkura, H., Gomes, R., Sunkel, C. E., Baumgartner, S., Hemmings, B. A., et al. (1993). The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell, 72, 621–633.

    Article  PubMed  CAS  Google Scholar 

  10. Sakai, A., & Fujiki, H. (1991). Promotion of BALB/3T3 cell transformation by the okadaic acid class of tumor promoters, okadaic acid and dinophysistoxin-1. Japanese Journal of Cancer Research, 82, 518–523.

    PubMed  CAS  Google Scholar 

  11. Nagao, M., Sakai, R., Kitagawa, Y., Ikeda, I., Sasaki, K., Shima, H., et al. (1989). Role of protein phosphatases in malignant transformation. Princess Takamatsu Symposia, 20, 177–184.

    PubMed  CAS  Google Scholar 

  12. Zheng, B., Woo, C. F., & Kuo, J. F. (1991). Mitotic arrest and enhanced nuclear protein phosphorylation in human leukemia K562 cells by okadaic acid, a potent protein phosphatase inhibitor and tumor promoter. The Journal of Biological Chemistry, 266, 10031–10034.

    PubMed  CAS  Google Scholar 

  13. Kremmer, E., Ohst, K., Kiefer, J., Brewis, N., & Walter, G. (1997). Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit: Abundant expression of both forms in cells. Molecular and Cellular Biology, 17, 1692–1701.

    PubMed  CAS  Google Scholar 

  14. Xu, Y., Xing, Y., Chen, Y., Chao, Y., Lin, Z., Fan, E., et al. (2006). Structure of the protein phosphatase 2A holoenzyme. Cell, 127, 1239–1251.

    Article  PubMed  CAS  Google Scholar 

  15. Shenolikar, S. (1994). Protein serine/threonine phosphatases—new avenues for cell regulation. Annual Review of Cell Biology, 10, 55–86.

    Article  PubMed  CAS  Google Scholar 

  16. Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., & Hahn, W. C. (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell, 5, 127–136.

    Article  PubMed  CAS  Google Scholar 

  17. Millward, T. A., Zolnierowicz, S., & Hemmings, B. A. (1999). Regulation of protein kinase cascades by protein phosphatase 2A. Trends in Biochemical Sciences, 24, 186–191.

    Article  PubMed  CAS  Google Scholar 

  18. Virshup, D. M. (2000). Protein phosphatase 2A: A panoply of enzymes. Current Opinion in Cell Biology, 12, 180–185.

    Article  PubMed  CAS  Google Scholar 

  19. Schonthal, A. H. (1998). Role of PP2A in intracellular signal transduction pathways. Frontiers in Bioscience, 3, D1262–D1273.

    PubMed  CAS  Google Scholar 

  20. Jaumot, M., & Hancock, J. F. (2001). Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene, 20, 3949–3958.

    Article  PubMed  CAS  Google Scholar 

  21. Abraham, D., Podar, K., Pacher, M., Kubicek, M., Welzel, N., Hemmings, B. A., et al. (2000). Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. The Journal of Biological Chemistry, 275, 22300–22304.

    Article  PubMed  CAS  Google Scholar 

  22. Yang, J., Wu, J., Tan, C., & Klein, P. S. (2003). PP2A:B56epsilon is required for Wnt/beta-catenin signaling during embryonic development. Development, 130, 5569–5578.

    Article  PubMed  CAS  Google Scholar 

  23. Li, H. H., Cai, X., Shouse, G. P., Piluso, L. G., & Liu, X. (2007). A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. The EMBO Journal, 26, 402–411.

    Article  PubMed  CAS  Google Scholar 

  24. Chen, J., St-Germain, J. R., & Li, Q. (2005). B56 regulatory subunit of protein phosphatase 2A mediates valproic acid-induced p300 degradation. Molecular and Cellular Biology, 25, 525–532.

    Article  PubMed  CAS  Google Scholar 

  25. Goodman, R. H., & Smolik, S. (2000). CBP/p300 in cell growth, transformation, and development. Genes and Development, 14, 1553–1577.

    PubMed  CAS  Google Scholar 

  26. Dozier, C., Bonyadi, M., Baricault, L., Tonasso, L., & Darbon, J. M. (2004). Regulation of Chk2 phosphorylation by interaction with protein phosphatase 2A via its B′ regulatory subunit. Biology of the Cell, 96, 509–517.

    Article  PubMed  CAS  Google Scholar 

  27. Liang, X., Reed, E., & Yu, J. J. (2006). Protein phosphatase 2A interacts with Chk2 and regulates phosphorylation at Thr-68 after cisplatin treatment of human ovarian cancer cells. International Journal of Molecular Medicine, 17, 703–708.

    PubMed  CAS  Google Scholar 

  28. Ito, A., Kataoka, T. R., Watanabe, M., Nishiyama, K., Mazaki, Y., Sabe, H., et al. (2000). A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. The EMBO Journal, 19, 562–571.

    Article  PubMed  CAS  Google Scholar 

  29. Ito, A., Koma, Y., Sohda, M., Watabe, K., Nagano, T., Misumi, Y., et al. (2003). Localization of the PP2A B56gamma regulatory subunit at the Golgi complex: Possible role in vesicle transport and migration. American Journal of Pathology, 162, 479–489.

    PubMed  CAS  Google Scholar 

  30. Koma, Y. I., Ito, A., Watabe, K., Kimura, S. H., & Kitamura, Y. (2004). A truncated isoform of the PP2A B56gamma regulatory subunit reduces irradiation-induced Mdm2 phosphorylation and could contribute to metastatic melanoma cell radioresistance. Histology and Histopathology, 19, 391–400.

    PubMed  CAS  Google Scholar 

  31. Ma, J., Arnold, H. K., Lilly, M. B., Sears, R. C., & Kraft, A. S. (2007). Negative regulation of Pim-1 protein kinase levels by the B56beta subunit of PP2A. Oncogene, 26, 5145–5153.

    Article  PubMed  CAS  Google Scholar 

  32. Allen, J. D., & Berns, A. (1996). Complementation tagging of cooperating oncogenes in knockout mice. Seminars in Cancer Biology, 7, 299–306.

    Article  PubMed  CAS  Google Scholar 

  33. Margolis, S. S., Perry, J. A., Forester, C. M., Nutt, L. K., Guo, Y., Jardim, M. J., et al. (2006). Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell, 127, 759–773.

    Article  PubMed  CAS  Google Scholar 

  34. Ahn, J. H., McAvoy, T., Rakhilin, S. V., Nishi, A., Greengard, P., & Nairn, A. C. (2007). Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proceedings of the National Academy of Sciences of the United States of America, 104, 2979–2984.

    Article  PubMed  CAS  Google Scholar 

  35. Firulli, B. A., Howard, M. J., McDaid, J. R., McIlreavey, L., Dionne, K. M., Centonze, V. E., et al. (2003). PKA, PKC, and the protein phosphatase 2A influence HAND factor function: A mechanism for tissue-specific transcriptional regulation. Molecular Cell, 12, 1225–1237.

    Article  PubMed  CAS  Google Scholar 

  36. White, R. J. (2005). RNA polymerases I and III, growth control and cancer. Nature Reviews. Molecular Cell Biology, 6, 69–78.

    Article  PubMed  CAS  Google Scholar 

  37. Cole, M. D. (1986). The myc oncogene: Its role in transformation and differentiation. Annual Review of Genetics, 20, 361–384.

    Article  PubMed  CAS  Google Scholar 

  38. Luscher, B., & Eisenman, R. N. (1990). New light on Myc and Myb. Part I. Myc. Genes and Development, 4, 2025–2035.

    Article  PubMed  CAS  Google Scholar 

  39. Prendergast, G. C. (1999). Mechanisms of apoptosis by c-Myc. Oncogene, 18, 2967–2987.

    Article  PubMed  CAS  Google Scholar 

  40. Baudino, T. A., McKay, C., Pendeville-Samain, H., Nilsson, J. A., Maclean, K. H., White, E. L., et al. (2002). c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes and Development, 16, 2530–2543.

    Article  PubMed  CAS  Google Scholar 

  41. Davis, A. C., Wims, M., Spotts, G. D., Hann, S. R., & Bradley, A. (1993). A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes and Development, 7, 671–682.

    Article  PubMed  CAS  Google Scholar 

  42. Nesbit, C. E., Tersak, J. M., & Prochownik, E. V. (1999). MYC oncogenes and human neoplastic disease. Oncogene, 18, 3004–3016.

    Article  PubMed  CAS  Google Scholar 

  43. Felsher, D. W., & Bishop, J. M. (1999). Reversible tumorigenesis by MYC in hematopoietic lineages. Molecular Cell, 4, 199–207.

    Article  PubMed  CAS  Google Scholar 

  44. Pelengaris, S., Littlewood, T., Khan, M., Elia, G., & Evan, G. (1999). Reversible activation of c-Myc in skin: Induction of a complex neoplastic phenotype by a single oncogenic lesion. Molecular Cell, 3, 565–577.

    Article  PubMed  CAS  Google Scholar 

  45. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  46. Coppola, J. A., & Cole, M. D. (1986). Constitutive c-myc oncogene expression blocks mouse erythroleukaemia cell differentiation but not commitment. Nature, 320, 760–763.

    Article  PubMed  CAS  Google Scholar 

  47. Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., et al. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biology, 6, 308–318.

    Article  PubMed  CAS  Google Scholar 

  48. Flinn, E. M., Busch, C. M., & Wright, A. P. (1998). myc boxes, which are conserved in myc family proteins, are signals for protein degradation via the proteasome. Molecular and Cellular Biology, 18, 5961–5969.

    PubMed  CAS  Google Scholar 

  49. Jones, T. R., & Cole, M. D. (1987). Rapid cytoplasmic turnover of c-myc mRNA: Requirement of the 3″ untranslated sequences. Molecular and Cellular Biology, 7, 4513–4521.

    PubMed  CAS  Google Scholar 

  50. Kelly, K., Cochran, B. H., Stiles, C. D., & Leder, P. (1983). Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell, 35, 603–610.

    Article  PubMed  CAS  Google Scholar 

  51. Sears, R., Leone, G., DeGregori, J., & Nevins, J. R. (1999). Ras enhances Myc protein stability. Molecular Cell, 3, 169–179.

    Article  PubMed  CAS  Google Scholar 

  52. Sears, R., Nuckolls, F., Haura, E., Taya, Y., Tamai, K., & Nevins, J. R. (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes and Development, 14, 2501–2514.

    Article  PubMed  CAS  Google Scholar 

  53. Arnold, H. K., & Sears, R. C. (2006). Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Molecular and Cellular Biology, 26, 2832–2844.

    Article  PubMed  CAS  Google Scholar 

  54. Seth, A., Gonzalez, F. A., Gupta, S., Raden, D. L., & Davis, R. J. (1992). Signal transduction within the nucleus by mitogen-activated protein kinase. The Journal of Biological Chemistry, 267, 24796–24804.

    PubMed  CAS  Google Scholar 

  55. Pulverer, B. J., Fisher, C., Vousden, K., Littlewood, T., Evan, G., & Woodgett, J. R. (1994). Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene, 9, 59–70.

    PubMed  CAS  Google Scholar 

  56. Noguchi, K., Kitanaka, C., Yamana, H., Kokubu, A., Mochizuki, T., & Kuchino, Y. (1999). Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. The Journal of Biological Chemistry, 274, 32580–32587.

    Article  PubMed  CAS  Google Scholar 

  57. Lutterbach, B., & Hann, S. R. (1994). Hierarchical phosphorylation at N-terminal transformation-sensitive sites in c-Myc protein is regulated by mitogens and in mitosis. Molecular and Cellular Biology, 14, 5510–5522.

    PubMed  CAS  Google Scholar 

  58. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., & Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378, 785–789.

    Article  PubMed  CAS  Google Scholar 

  59. Welcker, M., Orian, A., Jin, J., Grim, J. A., Harper, J. W., Eisenman, R. N., et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 101, 9085–9090.

    Article  PubMed  CAS  Google Scholar 

  60. Yada, M., Hatakeyama, S., Kamura, T., Nishiyama, M., Tsunematsu, R., Imaki, H., et al. (2004). Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. The EMBO Journal, 23, 2116–2125.

    Article  PubMed  CAS  Google Scholar 

  61. Malempati, S., Tibbitts, D., Cunningham, M., Akkari, Y., Olson, S., Fan, G., et al. (2006). Aberrant stabilization of c-Myc protein in some lymphoblastic leukemias. Leukemia, 20, 1572–1581.

    Article  PubMed  CAS  Google Scholar 

  62. Chen, J., Martin, B. L., & Brautigan, D. L. (1992). Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science, 257, 1261–1264.

    Article  PubMed  CAS  Google Scholar 

  63. Xie, H., & Clarke, S. (1993). Methyl esterification of C-terminal leucine residues in cytosolic 36-kDa polypeptides of bovine brain. A novel eucaryotic protein carboxyl methylation reaction. The Journal of Biological Chemistry, 268, 13364–13371.

    PubMed  CAS  Google Scholar 

  64. Lee, J., & Stock, J. (1993). Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. The Journal of Biological Chemistry, 268, 19192–19195.

    PubMed  CAS  Google Scholar 

  65. Favre, B., Zolnierowicz, S., Turowski, P., & Hemmings, B. A. (1994). The catalytic subunit of protein phosphatase 2A is carboxyl-methylated in vivo. The Journal of Biological Chemistry, 269, 16311–16317.

    PubMed  CAS  Google Scholar 

  66. Bryant, J. C., Westphal, R. S., & Wadzinski, B. E. (1999). Methylated C-terminal leucine residue of PP2A catalytic subunit is important for binding of regulatory Balpha subunit. Biochemical Journal, 339(Pt 2), 241–246.

    Article  PubMed  CAS  Google Scholar 

  67. Tolstykh, T., Lee, J., Vafai, S., & Stock, J. B. (2000). Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. The EMBO Journal, 19, 5682–5691.

    Article  PubMed  CAS  Google Scholar 

  68. Yu, X. X., Du, X., Moreno, C. S., Green, R. E., Ogris, E., Feng, Q., et al. (2001). Methylation of the protein phosphatase 2A catalytic subunit is essential for association of Balpha regulatory subunit but not SG2NA, striatin, or polyomavirus middle tumor antigen. Molecular and Cellular Biology, 12, 185–199.

    Article  CAS  Google Scholar 

  69. Okamoto, K., Li, H., Jensen, M. R., Zhang, T., Taya, Y., Thorgeirsson, S. S., et al. (2002). Cyclin G recruits PP2A to dephosphorylate Mdm2. Molecular Cell, 9, 761–771.

    Article  PubMed  CAS  Google Scholar 

  70. Bhasin, N., Cunha, S. R., Mudannayake, M., Gigena, M. S., Rogers, T. B., & Mohler, P. J. (2007). Molecular basis for PP2A regulatory subunit B56alpha targeting in cardiomyocytes. American Journal of Physiology. Heart and Circulatory Physiology, 293, H109–H119.

    Article  PubMed  CAS  Google Scholar 

  71. Li, X., Yost, H. J., Virshup, D. M., & Seeling, J. M. (2001). Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. The EMBO Journal, 20, 4122–4131.

    Article  PubMed  CAS  Google Scholar 

  72. Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B., & Polakis, P. (1998). Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Current Biology, 8, 573–581.

    Article  PubMed  CAS  Google Scholar 

  73. Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., & Kikuchi, A. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. The EMBO Journal, 17, 1371–1384.

    Article  PubMed  CAS  Google Scholar 

  74. Sakanaka, C., Weiss, J. B., & Williams, L. T. (1998). Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America, 95, 3020–3023.

    Article  PubMed  CAS  Google Scholar 

  75. Seeling, J. M., Miller, J. R., Gil, R., Moon, R. T., White, R., & Virshup, D. M. (1999). Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science, 283, 2089–2091.

    Article  PubMed  CAS  Google Scholar 

  76. Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434, 843–850.

    Article  PubMed  CAS  Google Scholar 

  77. Ruvolo, P. P., Clark, W., Mumby, M., Gao, F., & May, W. S. (2002). A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. The Journal of Biological Chemistry, 277, 22847–22852.

    Article  PubMed  CAS  Google Scholar 

  78. Ruvolo, P. P., Deng, X., & May, W. S. (2001). Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia, 15, 515–522.

    Article  PubMed  CAS  Google Scholar 

  79. Deng, X., Gao, F., Flagg, T., Anderson, J., & May, W. S. (2006). Bcl2's flexible loop domain regulates p53 binding and survival. Molecular and Cellular Biology, 26, 4421–4434.

    Article  PubMed  CAS  Google Scholar 

  80. Deng, X., Gao, F., Flagg, T., & May Jr., W. S. (2004). Mono- and multisite phosphorylation enhances Bcl2's antiapoptotic function and inhibition of cell cycle entry functions. Proceedings of the National Academy of Sciences of the United States of America, 101, 153–158.

    Article  PubMed  CAS  Google Scholar 

  81. Xin, M., & Deng, X. (2006). Protein phosphatase 2A enhances the proapoptotic function of Bax through dephosphorylation. The Journal of Biological Chemistry, 281, 18859–18867.

    Article  PubMed  CAS  Google Scholar 

  82. Chiang, C. W., Kanies, C., Kim, K. W., Fang, W. B., Parkhurst, C., Xie, M., et al. (2003). Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis. Molecular and Cellular Biology, 23, 6350–6362.

    Article  PubMed  CAS  Google Scholar 

  83. He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., et al. (1998). Identification of c-MYC as a target of the APC pathway. Science, 281, 1509–1512.

    Article  PubMed  CAS  Google Scholar 

  84. Ozaki, S., Ikeda, S., Ishizaki, Y., Kurihara, T., Tokumoto, N., Iseki, M., et al. (2005). Alterations and correlations of the components in the Wnt signaling pathway and its target genes in breast cancer. Oncology Reports, 14, 1437–1443.

    PubMed  CAS  Google Scholar 

  85. Shiina, H., Igawa, M., Shigeno, K., Terashima, M., Deguchi, M., Yamanaka, M., et al. (2002). Beta-catenin mutations correlate with over expression of C-myc and cyclin D1 genes in bladder cancer. Journal of Urology, 168, 2220–2226.

    Article  PubMed  CAS  Google Scholar 

  86. Wang, S. S., Esplin, E. D., Li, J. L., Huang, L., Gazdar, A., Minna, J., et al. (1998). Alterations of the PPP2R1B gene in human lung and colon cancer. Science, 282, 284–287.

    Article  PubMed  CAS  Google Scholar 

  87. Takayasu, H., Horie, H., Hiyama, E., Matsunaga, T., Hayashi, Y., Watanabe, Y., et al. (2001). Frequent deletions and mutations of the beta-catenin gene are associated with overexpression of cyclin D1 and fibronectin and poorly differentiated histology in childhood hepatoblastoma. Clinical Cancer Research, 7, 901–908.

    PubMed  CAS  Google Scholar 

  88. Li, Q., Dashwood, W. M., Zhong, X., Nakagama, H., & Dashwood, R. H. (2007). Bcl-2 overexpression in PhIP-induced colon tumors: Cloning of the rat Bcl-2 promoter and characterization of a pathway involving beta-catenin, c-Myc and E2F1. Oncogene, 26, 6194–6202.

    Article  PubMed  CAS  Google Scholar 

  89. Eischen, C. M., Packham, G., Nip, J., Fee, B. E., Hiebert, S. W., Zambetti, G. P., et al. (2001). Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1. Oncogene, 20, 6983–6993.

    Article  PubMed  CAS  Google Scholar 

  90. Eischen, C. M., Woo, D., Roussel, M. F., & Cleveland, J. L. (2001). Apoptosis triggered by Myc-induced suppression of Bcl-X(L) or Bcl-2 is bypassed during lymphomagenesis. Molecular and Cellular Biology, 21, 5063–5070.

    Article  PubMed  CAS  Google Scholar 

  91. Patel, J. H., & McMahon, S. B. (2007). BCL2 is a downstream effector of MIZ-1 essential for blocking c-MYC-induced apoptosis. The Journal of Biological Chemistry, 282, 5–13.

    Article  PubMed  CAS  Google Scholar 

  92. Strasser, A., Harris, A. W., Bath, M. L., & Cory, S. (1990). Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature, 348, 331–333.

    Article  PubMed  CAS  Google Scholar 

  93. Letai, A., Sorcinelli, M. D., Beard, C., & Korsmeyer, S. J. (2004). Antiapoptotic BCL-2 is required for maintenance of a model leukemia. Cancer Cell, 6, 241–249.

    Article  PubMed  CAS  Google Scholar 

  94. Pallas, D. C., Shahrik, L. K., Martin, B. L., Jaspers, S., Miller, T. B., Brautigan, D. L., et al. (1990). Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell, 60, 167–176.

    Article  PubMed  CAS  Google Scholar 

  95. Mumby, M. (1995). Regulation by tumour antigens defines a role for PP2A in signal transduction. Seminars in Cancer Biology, 6, 229–237.

    Article  PubMed  CAS  Google Scholar 

  96. Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M., & Mumby, M. (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell, 75, 887–897.

    Article  PubMed  CAS  Google Scholar 

  97. Hahn, W. C., Dessain, S. K., Brooks, M. W., King, J. E., Elenbaas, B., Sabatini, D. M., et al. (2002). Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Molecular and Cellular Biology, 22, 2111–2123.

    Article  PubMed  CAS  Google Scholar 

  98. Rundell, K., & Parakati, R. (2001). The role of the SV40 ST antigen in cell growth promotion and transformation. Seminars in Cancer Biology, 11, 5–13.

    Article  PubMed  CAS  Google Scholar 

  99. Yu, J., Boyapati, A., & Rundell, K. (2001). Critical role for SV40 small-t antigen in human cell transformation. Virology, 290, 192–198.

    Article  PubMed  CAS  Google Scholar 

  100. Tamaki, M., Goi, T., Hirono, Y., Katayama, K., & Yamaguchi, A. (2004). PPP2R1B gene alterations inhibit interaction of PP2A-Abeta and PP2A-C proteins in colorectal cancers. Oncology Reports, 11, 655–659.

    PubMed  CAS  Google Scholar 

  101. Kalla, C., Scheuermann, M. O., Kube, I., Schlotter, M., Mertens, D., Dohner, H., et al. (2007). Analysis of 11q22-q23 deletion target genes in B-cell chronic lymphocytic leukaemia: Evidence for a pathogenic role of NPAT, CUL5, and PPP2R1B. European Journal of Cancer, 43, 1328–1335.

    Article  PubMed  CAS  Google Scholar 

  102. Calin, G. A., di Iasio, M. G., Caprini, E., Vorechovsky, I., Natali, P. G., Sozzi, G., et al. (2000). Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene, 19, 1191–1195.

    Article  PubMed  CAS  Google Scholar 

  103. Ruediger, R., Pham, H. T., & Walter, G. (2001). Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene, 20, 10–15.

    Article  PubMed  CAS  Google Scholar 

  104. Yeh, L. S., Hsieh, Y. Y., Chang, J. G., Chang, W. W., Chang, C. C., & Tsai, F. J. (2007). Mutation analysis of the tumor suppressor gene PPP2R1B in human cervical cancer. International Journal of Gynecological Cancer, 17, 868–871.

    Article  PubMed  Google Scholar 

  105. Ruteshouser, E. C., Ashworth, L. K., & Huff, V. (2001). Absence of PPP2R1A mutations in Wilms tumor. Oncogene, 20, 2050–2054.

    Article  PubMed  CAS  Google Scholar 

  106. Colella, S., Ohgaki, H., Ruediger, R., Yang, F., Nakamura, M., Fujisawa, H., et al. (2001). Reduced expression of the Aalpha subunit of protein phosphatase 2A in human gliomas in the absence of mutations in the Aalpha and Abeta subunit genes. International Journal of Cancer, 93, 798–804.

    Article  CAS  Google Scholar 

  107. Patturajan, M., Nomoto, S., Sommer, M., Fomenkov, A., Hibi, K., Zangen, R., et al. (2002). DeltaNp63 induces beta-catenin nuclear accumulation and signaling. Cancer Cell, 1, 369–379.

    Article  PubMed  CAS  Google Scholar 

  108. Martens, E., Stevens, I., Janssens, V., Vermeesch, J., Gotz, J., Goris, J., et al. (2004). Genomic organisation, chromosomal localisation tissue distribution and developmental regulation of the PR61/B′ regulatory subunits of protein phosphatase 2A in mice. Journal of Molecular Biology, 336, 971–986.

    Article  PubMed  CAS  Google Scholar 

  109. Salahshor, S., & Woodgett, J. R. (2005). The links between axin and carcinogenesis. Journal of Clinical Pathology, 58, 225–236.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalie C. Sears.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, H.K., Sears, R.C. A tumor suppressor role for PP2A-B56α through negative regulation of c-Myc and other key oncoproteins. Cancer Metastasis Rev 27, 147–158 (2008). https://doi.org/10.1007/s10555-008-9128-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-008-9128-9

Keywords

Navigation