Skip to main content

Advertisement

Log in

The role of serine/threonine protein phosphatase type 5 (PP5) in the regulation of stress-induced signaling networks and cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Although the aberrant actions of protein kinases have long been known to contribute to tumor promotion and carcinogenesis, roles for protein phosphatases in the development of human cancer have only emerged in the last decade. In this review, we discuss the data obtained from studies examining the biological and pathological roles of a serine/threonine protein phosphatase, PP5, which suggest that PP5 is a potentially important regulator of both hormone- and stress-induced signaling networks that enable a cell to respond appropriately to genomic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ASK1:

apoptosis signal-regulating kinase 1

ATM:

ataxia-telangiectasia mutated kinase

ATR:

ATM and Rad 3 related kinase

DNA-PKcs:

DNA-dependent Ser/Thr protein kinase

EGF:

epidermal growth factor

ER:

estrogen receptor

ERK:

extracellular signal-regulated kinase1/mitogen-activated protein kinase 1

FKBP51:

51kDa FK506-binding protein

FKBP52:

52kDa FK506-binding protein

GR:

glucocorticoid receptor

HIF-1:

hypoxia inducible factor-1

Hsp-90:

heat shock protein 90

Mdm2:

p53-murine double minute 2 Ub E3 ligase

MEK:

MAP/ERK kinase 1

p53:

p53 tumor suppressor protein

PP1:

serine/threonine protein phosphatase type 1

PP2A:

serine/threonine protein phosphatase type 2A

PP2B:

serine/threonine protein phosphatase type 2B/calcinurin

PP4:

serine/threonine protein phosphatase type 4

PP5:

serine/threonine protein phosphatase type 5

PP6:

serine/threonine protein phosphatase type 6

PP7:

serine/threonine protein phosphatase type 7

PPAR:

peroxisome proliferator activated receptors

PPase:

serine/threonine protein phosphatase

Rac:

Rac GTP-binding protein

Raf-1:

Raf proto-oncogene serine/threonine protein kinase

Rho:

Rho GTP-binding protein

TPR:

tetratricopeptide repeat

References

  1. Roberts, P. J., & Der, C. J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 26, 3291–3310.

    Article  PubMed  CAS  Google Scholar 

  2. Milano, A., De Rosa, V., Iaffaioli, R. V., & Caponigro, F. (2007). Downstream intracellular effectors of epidermal growth factor receptor as targets for anticancer therapy. Expert Opinion on Therapeutic Targets, 11, 771–782.

    Article  PubMed  CAS  Google Scholar 

  3. Schmitt, E., Paquet, C., Beauchemin, M., & Bertrand, R. (2007). DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. Journal of Zhejiang University Science B, 8(6), 377–397.

    Article  PubMed  CAS  Google Scholar 

  4. Shenolikar, S., & Nairn, A. C. (1991). Protein phosphatases: Recent progress. Advances in Second Messenger and Phosphoprotein Research, 23, 1–119.

    PubMed  CAS  Google Scholar 

  5. Klumpp, S., & Krieglstein, J. (2002). Serine/threonine protein phosphatases in apoptosis. Current Opinion in Pharmacology, 2(4), 458–462.

    Article  PubMed  CAS  Google Scholar 

  6. Cohen, P. T. (2002). Protein phosphatase 1—targeted in many directions. Journal of Cell Science, 115(Pt 2), 241–256.

    PubMed  CAS  Google Scholar 

  7. Cohen, P. (1989). The structure and regulation of protein phosphatases. Annual Review of Biochemistry, 58, 453–508.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen, P. T. (1997). Novel protein serine/threonine phosphatases: Variety is the spice of life. Trends in Biochemical Sciences, 22(7), 245–251.

    Article  PubMed  CAS  Google Scholar 

  9. Cohen, P. T. W., Brewis, N. D., Hughes, V., & Mann, D. J. (1990). Serine/threonine protein phosphatases: An expanding family. FEBS Letters, 268, 355–358.

    Article  PubMed  CAS  Google Scholar 

  10. Cohen, P. T. W. (1991). Cloning of protein–serine/threonine phosphatases. Methods in Enzymology, 201, 398–408.

    Article  PubMed  CAS  Google Scholar 

  11. Arndt, K. T., Styles, C. A., & Fink, G. R. (1989). A suppressor of HIS4 transcriptional defect encodes a protein with homology to the catalytic subunit of protein phosphatases. Cell, 56, 527–537.

    Article  PubMed  CAS  Google Scholar 

  12. Zhuang, Z., Dean, N. M., & Honkanen, R. E. (1998). Serine/threonine protein phosphatase type 5 acts upstream of p53 to regulate the induction of p21WAF1/Cip1 and mediate growth arrest. Journal of Biological Chemistry, 273(20), 12250–12258.

    Article  Google Scholar 

  13. Silverstein, A. M., Galigniana, M. D., Chen, M. S., Owens-Grillo, J. K., Chinkers, M., & Pratt, W. B. (1997). Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin. Journal of Biological Chemistry, 272(26), 16224–16230.

    Article  PubMed  CAS  Google Scholar 

  14. Skinner, J., Sinclair, C., Romeo, C., Armstrong, D., Charbonneau, H., & Rossie, S. (1997). Purification of a fatty acid-stimulated protein-serine/threonine phosphatase from bovine brain and its identification as a homolog of protein phosphatase 5. Journal of Biological Chemistry, 272, 22464–22471.

    Article  PubMed  CAS  Google Scholar 

  15. Huang, X., Cheng, A., & Honkanen, R. E. (1997). Genomic organization of the human PP4 gene encoding a serine/threonine protein phosphatase (PP4) suggest a common ancestry with PP2A. Genomics, 44, 336–343.

    Article  PubMed  CAS  Google Scholar 

  16. Bastians, H., & Ponstingl, H. (1996). The novel human protein serine/threonine phosphatase 6 is a functional homologue of budding yeast Sit4p and fission yeast ppe1, which are involved in cell cycle regulation. Journal of Cell Science, 109(Pt 12), 2865–2874.

    PubMed  CAS  Google Scholar 

  17. Huang, X., & Honkanen, R. E. (1998). Molecular cloning, expression and characterization of a novel human serine/threonine protein phosphatase, PP7, that is homologous to Drosophila retinal degeneration C gene product (rdgC). Journal of Biological Chemistry, 273(3), 1462–1468.

    Article  PubMed  CAS  Google Scholar 

  18. Swingle, M. R., Honkanen, R. E., & Ciszak, E. M. (2004). Structural basis for the catalytic activity of human serine/threonine protein phosphatase-5. Journal of Biological Chemistry, 279(32), 33992–33999.

    Article  PubMed  CAS  Google Scholar 

  19. Yang, J., Roe, S. M., Cliff, M. J., Williams, M. A., Ladbury, J. E., Cohen, P. T. W., et al. (2005). Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. The EMBO Journal, 24, 1–10.

    Article  PubMed  CAS  Google Scholar 

  20. Honkanen, R. E., Zwiller, J., Daily, S. L., Khatra, B. S., Dukelow, M., & Boynton, A. L. (1991). Identification, purification, and characterization of a novel serine/threonine protein phosphatase from bovine brain. Journal of Biological Chemistry, 266(10), 6614–6619.

    PubMed  CAS  Google Scholar 

  21. Becker, W., Kentrup, H., Klumpp, S., Schultz, J. E., & Joost, H. G. (1994). Molecular cloning of a protein serine threonine phosphatase containing a putative regulatory tetratricopeptide repeat domain. Journal of Biological Chemistry, 269, 22586–22592.

    PubMed  CAS  Google Scholar 

  22. Chen, M. X., McPartlin, A. E., Brown, L., Chen, Y. H., Barker, H. M., & Cohen, P. T. W. (1994). A novel human serine/threonine phosphatase, which possesses four tetratricopeptide repeat motifs and localizes to the nucleus. The EMBO Journal, 13(18), 4278–4290.

    PubMed  CAS  Google Scholar 

  23. Chinkers, M. (1994). Targeting of a distinctive protein–serine phosphatase to the protein kinase-like domain of the atrial natriuretic peptide receptor. Proceedings of the National Academy of Sciences of the United States of America, 91, 11075–11079.

    Article  PubMed  CAS  Google Scholar 

  24. Xu, X., Lagercrantz, J., Zickert, P., Bajalica-Lagercrantz, S., & Zetterberg, A. (1996). Chromosomal localization and 5” sequence of the human protein serine/threonine phosphatase 5 gene. Biochemical and Biophysical Research Communications, 218, 514–517.

    Article  PubMed  CAS  Google Scholar 

  25. Chen, M. S., Silverstein, A. M., Pratt, W. B., & Chinkers, M. (1996). The tetratricopeptide repeat domain of protein phosphatase 5 mediates binding to glucocorticoid receptor heterocomplexes and acts as a dominant negative mutant. Journal of Biological Chemistry, 271, 32315–32320.

    Article  PubMed  CAS  Google Scholar 

  26. Davies, T. H., Ning, Y. M., & Sanchez, E. R. (2005). Differential control of glucocorticoid receptor hormone-binding function by tetratricopeptide repeat (TPR) proteins and the immunosuppressive ligand FK506. Biochemistry, 44, 2030–2038.

    Article  PubMed  CAS  Google Scholar 

  27. Ollendorff, V., & Donoghue, D. J. (1997). The serine/threonine phosphatase PP5 interacts with CDC16 and CDC27, two tetratricopeptide repeat-containing subunits of the anaphase-promoting complex. Journal of Biological Chemistry, 272(51), 32011–32018.

    Article  PubMed  CAS  Google Scholar 

  28. Zhao, S., & Sancar, A. (1997). Human blue-light photoreceptor hCRY2 specifically interacts with protein serine/threonine phosphatase 5 and modulates its activity. Photochemistry and Photobiology, 66, 727–731.

    Article  PubMed  CAS  Google Scholar 

  29. Shao, J., Hartson, S. D., & Matts, R. L. (2002). Evidence that protein phosphatase 5 functions to negatively modulate the maturation of the Hsp90-dependent heme-regulated eIF2alpha kinase. Biochemistry, 41, 6770–6779.

    Article  PubMed  CAS  Google Scholar 

  30. Morita, K., Saitoh, M., Tobiume, K., Matsuura, H., Enomoto, S., Nishitoh, H., et al. (2001). Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress. The EMBO Journal, 20, 6028–6036.

    Article  PubMed  CAS  Google Scholar 

  31. Wechsler, T., Chen, B. P., Harper, R., Morotomi-Yano, K., Huang, B. C., Meek, K., et al. (2004). DNA-PKcs function regulated specifically by protein phosphatase 5. Proceedings of the National Academy of Sciences of the United States of America, 101, 1247–1252.

    Article  PubMed  CAS  Google Scholar 

  32. Ali, A., Zhang, J., Bao, S., Liu, I., Otterness, D., Dean, N. M., et al. (2004). Requirement of protein phosphatase 5 in DNA-damage-induced ATM activation. Genes and Development, 18, 249–254.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, J., Bao, S., Furumai, R., Kucera, K. S., Ali, A., Dean, N. M. et al. (2005). Protein phosphatase 5 is required for ATR-mediated checkpoint activation. Molecular and Cellular Biology, 25(22), 9910–9919.

    Article  PubMed  CAS  Google Scholar 

  34. Lubert, E. J., Hong, Y., & Sarge, K. D. (2001). Interaction between protein phosphatase 5 and the A subunit of protein phosphatase 2A: Evidence for a heterotrimeric form of protein phosphatase 5. Journal of Biological Chemistry, 276(42), 38582–38587.

    Article  PubMed  CAS  Google Scholar 

  35. Yamaguchi, Y., Katoh, H., Mori, K., & Negishi, M. (2002). Galpha(12) and Galpha(13) interact with Ser/Thr protein phosphatase type 5 and stimulate its phosphatase activity. Current Biology, 12, 1353.

    Article  PubMed  CAS  Google Scholar 

  36. Gentile, S., Darden, T., Erxleben, C., Romeo, C., Russo, A., Martin, N., et al. (2006). Rac GTPase signaling through the PP5 protein phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 103, 5202–5206.

    Article  PubMed  CAS  Google Scholar 

  37. von Kriegsheim, A., Pitt, A., Grindlay, G. J., Kolch, W., & Dhillon, A. S. (2006). Regulation of the Raf-MEK- ERK pathway by protein phosphatase 5. Nature Cell Biology, 8(9), 1011–1016.

    Article  CAS  Google Scholar 

  38. Richter, K., & Buchner, J. (2001). Hsp90: Chaperoning signal transduction. Journal of Cellular Physiology, 188(3), 281–290.

    Article  PubMed  CAS  Google Scholar 

  39. Pratt, W. B., & Toft, D. O. (1997). Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocrine Reviews, 18, 306–360.

    Article  PubMed  CAS  Google Scholar 

  40. Frydman, J., & Höhfeld, J. (1997). Chaperones get in touch: The Hip–Hop connection. Trends in Biochemical Sciences, 22, 87–92.

    Article  PubMed  CAS  Google Scholar 

  41. Zuo, Z., Urban, G., Scammell, J. G., Dean, N. M., McLean, T. K., Aragon, I. V., et al. (1999). Ser/thr protein phosphatase type 5 (PP5) is a negative regulator of glucocorticoid receptor-mediated growth arrest. Biochemistry, 38(28), 8849–8857.

    Article  PubMed  CAS  Google Scholar 

  42. Dean, D. A., Urban, G., Aragon, I. V., Swingle, M., Miller, B., Rusconi, S., et al. (2001). Serine/threonine phosphatase 5 (PP5) participates in the regulation of glucocorticoid receptor nucleocytoplasmic shuttling. BMC Cell Biology, 2(6), 1471–2121.

    Google Scholar 

  43. Riggs, D. L., Roberts, P. J., Chirillo, S. C., Cheung-Flynn, J., Prapapanich, V., Ratajczak, T., et al. (2003). The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. The EMBO Journal, 22, 1158–1167.

    Article  PubMed  CAS  Google Scholar 

  44. Denny, W. B., Valentine, D. L., Reynolds, P. D., Smith, D. F., & Scammell, J. G. (2000). Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding. Endocrinology, 141, 4107–4113.

    Article  PubMed  CAS  Google Scholar 

  45. Davies, T. H., Ning, Y. M., & Sanchez, E. R. (2002). A new first step in activation of steroid receptors: Hormone-induced switching of FKBP51 and FKBP52 immunophilins. Journal of Biological Chemistry, 277, 4597–4600.

    Article  PubMed  CAS  Google Scholar 

  46. Wang, Z., Chen, W., Kono, E., Dang, T., & Garabedian, M. J. (2007). Modulation of glucocorticoid receptor phosphorylation and transcriptional activity by C-terminal-associated protein phosphatase. Molecular Endocrinology, 21, 625–634.

    Article  PubMed  CAS  Google Scholar 

  47. Conde, R., Xavier, J., McLoughlin, C., Chinkers, M., & Ovsenek, N. (2005). Protein phosphatase 5 is a negative modulator of heat shock factor 1. Journal of Biological Chemistry, 280, 28989–28996.

    Article  PubMed  CAS  Google Scholar 

  48. Sumanasekera, W. K., Tien, E. S., Davis, J. W., II, Turpey, R., Perdew, G. H., & Vanden Heuvel, J. P. (2003). Heat shock protein-90 (Hsp90) acts as a repressor of peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARbeta activity. Biochemistry, 42(36), 10726–10735.

    Article  PubMed  CAS  Google Scholar 

  49. Meyer, B. K., Petrulis, J. R., & Perdew, J. H. (2000). Aryl hydrocarbon (Ah) receptor levels are selectively modulated by hsp90-associated immunophilin homolog XAP2. Cell Stress Chaperones, 5(3), 243–254.

    Article  PubMed  CAS  Google Scholar 

  50. Zuo, Z., Dean, N. M., & Honkanen, R. E. (1998). Serine/threonine protein phosphatase type 5 acts upstream of p53 to regulate the induction of p21WAF1/Cip1 and mediate growth arrest. Journal of Biological Chemistry, 273, 12250–12258.

    Article  PubMed  CAS  Google Scholar 

  51. Urban, G., Golden, T., Aragon, I. V., Cowsert, L., Cooper, S. R., Dean, N. M., et al. (2003). Identification of a functional link for the p53-tumor suppressor protein in dexamethasone induced growth suppression. Journal of Biological Chemistry, 278(11), 9747–9753.

    Article  PubMed  CAS  Google Scholar 

  52. Sherr, C. J. (1996). Cancer cell cycles. Science, 274, 1672–1677.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang, Y., & Xiong, Y. (2001). A p53 Amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science, 292, 1910–1915.

    Article  PubMed  CAS  Google Scholar 

  54. Bean, L. J., & Stark, G. R. (2001). Phosphorylation of serines 15 and 37 is necessary for efficient accumulation of p53 following irradiation with UV. Oncogene, 20, 1076–1084.

    Article  PubMed  CAS  Google Scholar 

  55. Storey, N. M., O’Bryan, J. P., & Armstrong, D. L. (2002). Rac and Rho mediate opposing hormonal regulation of the ether-a-go-go-related potassium channel. Current Biology, 12, 27–33.

    Article  PubMed  CAS  Google Scholar 

  56. Dougherty, M., Müller, J., Ritt, D., Zhou, M., Zhou, X., Copeland, T., et al. (2005). Regulation of Raf-1 by direct feedback phosphorylation. Molecular Cell, 17, 215–224.

    Article  PubMed  CAS  Google Scholar 

  57. Urban, G., Golden, T., Aragon, I. V., Scammell, J. G., Dean, N. M., & Honkanen, R. E. (2001). Identification of an Estrogen-inducible Phosphatase (PP5) that converts MCF-7 Human Breast Carcinoma Cells into an Estrogen-Independent phenotype when expressed constitutively. Journal of Biological Chemistry, 276(29), 27638–27646.

    Article  PubMed  CAS  Google Scholar 

  58. Ikeda, k., Ogawa, S., Tsukui, T., Horie-Inoue, K., Ouchi, Y., Kato, S., et al. (2004). Protein phosphatase 5 is a negative regulator of estrogen receptor-mediated transcription. Molecular Endocrinology, 18, 1131–1143.

    Article  PubMed  CAS  Google Scholar 

  59. Golden, T., Aragon, I. V., Zhou, G., Cooper, S. R., Dean, N. M., & Honkanen, R. E. (2004). Constitutive over expression of serine/threonine protein phosphatase 5 (PP5) augments estrogen-dependent tumor growth in mice. Cancer Letters, 215, 95–100.

    Article  PubMed  CAS  Google Scholar 

  60. Zhou, G., Golden, T., Aragon, I. V., & Honkanen, R. E. (2004). Ser/thr protein phosphatase 5 (PP5) inactivates hypoxia-induced activation of an ASK-1/MKK-4/JNK-signaling cascade. Journal of Biological Chemistry, 279, 46595–46605.

    Article  PubMed  CAS  Google Scholar 

  61. Nagai, H., Noguchi, T., Takeda, K., & Ichijo, H. (2007). Pathophysiological roles of ASK1-MAP kinase signaling pathways. Biochemistry and Molecular Biology, 40, 1–6.

    PubMed  CAS  Google Scholar 

  62. Matsuzawa, A., Nishitoh, H., Tobiume, K., Takeda, K., & Ichijo, H. (2002). Physiological roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: Advanced findings from ASK1 knockout mice. Antioxidants and Redox Signalling, 4, 415–425.

    Article  CAS  Google Scholar 

  63. Huang, S., Shu, L., Easton, J., Harwood, F. C., Germain, G. S., Ichijo, H., et al. (2004). Inhibition of mammalian target of rapamycin activates apoptosis signal-regulating kinase 1 signaling by suppressing protein phosphatase 5 activity. Journal of Biological Chemistry, 279, 36490–36496.

    Article  PubMed  CAS  Google Scholar 

  64. DiBiase, S. J., Zeng, Z.-C., Chen, R., Hyslop, T., Curran, W. J., Jr., & Iliakis, G. (2000). DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Canadian Research, 60, 1245–1253.

    CAS  Google Scholar 

  65. Abraham, R. T. (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes and Development, 15, 2177–2196.

    Article  PubMed  CAS  Google Scholar 

  66. Yong, W., Bao, S., Chen, H., Dapei, L., Sanchez, E. R., & Shou, W. (2007). Mice lacking protein phosphatase5 are defective in ataxia telangiectasia mutated (ATM)-mediated cell cycle arrest. Journal of Biological Chemistry, 282, 14690–14694.

    Article  PubMed  CAS  Google Scholar 

  67. Jeong, J.-Y., Johns, J., Sinclair, C., Park, J.-M., & Rossie, S. (2003). Characterization of Saccharomyces cerevisiae protein Ser/Thr phosphatase T1 and comparison to its mammalian homolog PP5. BMC Cell Biology, 4, 3.

    Article  PubMed  Google Scholar 

  68. Shirato, H., Shima, H., Nakagama, H., Fukuda, H., Watanabe, Y., Ogawa, K., et al. (2000). Expression in hepatomas and chromosomal localization of rat protein phosphatase 5 gene. International Journal of Oncology, 17, 909–912.

    PubMed  CAS  Google Scholar 

  69. Ghobrial, I. M., McCormick, D. J., Kaufmann, S. H., Leontovich, A. A., Loegering, D. A., Dai, N. T. et al. (2005). Proteomic analysis of mantle-cell lymphoma by protein microarray. Blood, 105, 3722–3730.

    Article  PubMed  CAS  Google Scholar 

  70. Atiye, J., Wolf, M., Kaur, S., Monni, O., Böhling, T., Kivioja, A. et al. (2005). Gene amplifications in osteosarcoma-CGH microarray analysis. Genes Chromosomes Cancer, 42(2), 158–163.

    Article  PubMed  CAS  Google Scholar 

  71. Mitelman, F., Johansson, B., Mertens, F. (Eds.) (2007). Mitelman database of chromosome aberrations in cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman

  72. Lad, C., Williams, N. H., & Wolfenden, R. (2003). The rate of hydrolysis of phosphomonoester dianions and the exceptional catalytic proficiencies of protein and inositol phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 100, 5607–5610.

    Article  PubMed  CAS  Google Scholar 

  73. Maynes, J. T., Bateman, K. S., Cherney, M. M., Das, A. K., Luu, H. A., Holmes, C. F., & James, M. N. (2001). Crystal structure of the tumor-promoter okadaic acid bound to protein phosphatase-1. Journal of Biological Chemistry, 276, 44078–44082.

    Article  PubMed  CAS  Google Scholar 

  74. Griffith, J. P., Kim, J. L., Kim, E. E., Sintchak, M. D., Thomson, J. A., Fitzgibbon, M. J., et al. (1995). X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell, 82, 507–522.

    Article  PubMed  CAS  Google Scholar 

  75. Xing, Y., Xu, Y., Chen, Y., Jeffrey, P. D., Chao, Y., Lin, Z., Li, Z., Strack, S., Stock, J. B., & Shi, Y. (2006). Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell, 127, 341–353.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Institutes of Health (NCI grant CA-60750 to REH), the National Center for Research Resources, a component of NIH (NCRR P2PRR016478 to TG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Honkanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golden, T., Swingle, M. & Honkanen, R.E. The role of serine/threonine protein phosphatase type 5 (PP5) in the regulation of stress-induced signaling networks and cancer. Cancer Metastasis Rev 27, 169–178 (2008). https://doi.org/10.1007/s10555-008-9125-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-008-9125-z

Keywords

Navigation